A Note on Closed-to-Convex Functions

(An Application of Schwarz-Christoffel Formula)

Tetsujiro Kakehashi, Kinki University (梯 鉄次郎,近畿大学)

Let z_k : $k=1,2,\cdots$, n be points on the unit circle z=1 such that $z_k=\mathrm{e}^{i\theta_k}$ ($0\leq \theta 1<\theta 2<\cdots<\theta n<2\pi$)

and w(z) defined in the unit disc z < 1 be the function which satisfies the following equation

(1)
$$\frac{dw}{dz} = C(z-z_1)^{d_1-1}(z-z_2)^{d_2-1} \cdot \cdot (z-z_n)^{d_n-1}$$

where C is a constant complex nummber, and α_k ($k = 1, 2, \dots, n$) satisfy

$$0 \le \alpha_k \le 2$$
 , $\sum_{k=1}^n \alpha_k = n-2$

and (*) are assumed to take values of the branch $1^{3n} = 1$.

If points z_k on the unit circle z=1 are suitably chosen, by the function w(z), the interior of unit disc in z-plane is transformed into the interior of a polygon with n sides in the w-plane, and each vertex w_k of the polygon corresponds to z_k on the unit circle z=1. And each interior angle at w_k is equal to $\pi \alpha_k$.

But if points z_k on the unit circle are arbitrary chosen, the polygon defined by (1) may be not in general a bounded polygon in common sense. This formula (1) is well-known as Schwarz-Christoffel's transformation.

The function w(z) defined in (1) can be normalised to w(0) = 0 and w'(0) = 1, as follows

$$(2) \frac{dw}{dz} = (1 - \varepsilon_1 z)^{\delta_1} (1 - \varepsilon_2 z)^{\delta_2} \cdots (1 - \varepsilon_n z)^{\delta_n}$$

where $\varepsilon_k = z_k^{-4}$, $\delta_k = \alpha_k - 1$, $\delta_k \le 1$ and $\sum_{k=1}^n \delta_k = -2$.

At first, we consider the case when a polygon is convex. In this case, interior angles $\pi \alpha_k$ at all vertices are smaller than π , and all δ_k satisfy

$$-1 < \delta_k < 0$$
, $\Sigma_{k=1}^m \delta_k = -2$

And we have a following relation from (2)

Fig. 3

$$z \frac{\mathbf{w}''(z)}{\mathbf{w}'(z)} = -\sum_{k=1}^{n} \frac{\delta_{k} \varepsilon_{k} z}{1 - \varepsilon_{k} z} = -\frac{1}{2} \sum_{k=1}^{n} \delta_{k} \frac{1 + \varepsilon_{k} z}{1 - \varepsilon_{k} z} - 1$$

and from $\delta k < 0$, we have an equality

Re.
$$z \frac{w''(z)}{w'(z)} > -1 : |z| < 1$$

Accordingly, in the case when all δ_{k} are negative, for arbitrary points z_{k} on the unit circle, the function w(z) defined by (2) is a convex function. Next, we consider the estimation of coefficients by the Taylor expansion of a convex function w(z) defined by (2). Generally, when γ is a positive number, in the power series

$$(1-z)^{-\gamma} = 1 + \frac{r}{1!}z + \frac{r(r+1)}{2!}z^2 + \frac{r(r+1)(r+2)}{3!}z^3 + \cdots$$

all coefficients are positive.

Accordingly, all coefficients of power series of $(1 - \varepsilon_k z)^{\sigma_k}$ in (2) are majorated by coefficients of power series of $(1-z)^{\sigma_k}$, and coefficients of the power series of dw/dz in (2) are majorated by coefficients of

$$(1-z)^{\delta_1} (1-z)^{\delta_2} \cdot \cdot \cdot (1-z)^{\delta_2} = (1-z)^{-2}$$

= 1+2z+3z²+4z³+...

and all coefficients of Taylor exapansion of w(z) are majorated by coefficients of

$$(1-z)^{-1} = 1+z+z^2+z^3+\cdots$$

Next, we consider the case when a function defined by (2) is closed-toconvex. At first, we show a lemma as follows

<u>Lemma.</u> Let z_k ($k=1, 2, \dots, 2n$) be points on the unit circle |z|=1 such that

$$z_k = e^{i\theta_k}$$
: $0 \le \theta_1 \le \theta_2 \le \cdots \le \theta_{2n} \le 2\pi$

and $\phi(z)$ be a function reresented by

$$\phi(z) = \frac{1-\epsilon_2 z}{1-\epsilon_1 z} \frac{1-\epsilon_4 z}{1-\epsilon_3 z} \cdot \cdot \cdot \frac{1-\epsilon_{2n} z}{1-\epsilon_{2n-1} z}$$

where $\varepsilon_k = z_k^{-1}$.

Then the function $\phi(z)$ takes values on a half plane which contains the unit in its interior, and is borderd by a line which passes the origin.

<u>Proof.</u> In Fig.4, when |z| = 1, we have

$$\arg \frac{z_2 - z}{z_1 - z} = \begin{cases} \frac{1}{2} (\theta_2 - \theta_1) & : z \in \widehat{z_1} z_2 \\ \frac{1}{2} (\theta_2 - \theta_1) + \pi : z \in \widehat{z_1} z_2 \end{cases}$$

and when |z| < 1, we have

Fig. 4

$$\frac{1}{2}(\theta_2 - \theta_1) < \arg \frac{z - z_2}{z - z_1} < \frac{1}{2}(\theta_2 - \theta_1) + \pi$$

Accordingly, when |z| = 1, we have

$$\arg \frac{1-\varepsilon_2 \ z}{1-\varepsilon_1 \ z} = \begin{bmatrix} -\frac{1}{2} \left(\theta_2 - \theta_1\right) & \vdots & z \in \widehat{z_1} \ z_2 \\ -\frac{1}{2} \left(\theta_2 - \theta_1\right) + \pi & \vdots & z \in \widehat{z_1} \ z_2 \end{bmatrix}$$

When z varies on the unit circle, if z is not on any one of arcs $\widehat{z_1}\widehat{z_2},\widehat{z_3}\widehat{z_4}$, \cdots , $\widehat{z_{2n-1}}\widehat{z_{2n}}$

arg
$$\phi$$
 (z) = Θ = $\frac{-1}{2}$ ($\theta_2 - \theta_1 + \theta_4 - \theta_3 + \cdots + \theta_{2n} - \theta_{2n-1}$)
and if z is on any one of these arcs, arg ϕ (z) is equal to $\Theta + \pi$.

And when z is an interior point on the unit disc, we have

Fig. 5

Fig. 6

Now the lemma has been proved.

Next I show a theorem as follows.

Theorem . Let $z_k = e^{i\theta_k}$: $k = 1, 2, \cdots, n$ ($0 \le \theta_1 \le \theta_2 \le \cdots \le \theta_n$) and $z_{i,k} = e^{i\theta_i,k}$: $k = 1, 2, \cdots, 2n_i$ ($0 \le \theta_{i,1} \le \theta_{i,2} \le \cdots \le \theta_{i,2n_i}$); $j=1,2,\cdots,m$ be points on the unit cicle z=1, and w(z) defined in the unit disc $i \ge 1 < 1$ be a function which satisfies

(3)
$$\frac{\mathrm{d} w}{\mathrm{d} z} = \prod_{k=1}^{n} \left(1 - \varepsilon_{k} z\right)^{\beta_{k}} \prod_{j=1}^{m} \left[\prod_{k=1}^{n+1} \frac{1 - \varepsilon_{j,2k-1} z}{1 - \varepsilon_{j,2k-1} z}\right]^{\lambda_{j}}$$

where δ_k are negative numbers satisfying $\sum_{k=1}^m \delta_k = -2$, and λ_i are real numbers satisfying $\sum_{k=1}^m |\lambda_i| = 1$.

Then, in the Taylor expansion of the function w(z), i.e.

$$w(z) = z + A_2 z^2 + \cdots + A_k z^k + \cdots$$

$$|A_n| \le n : n = 1, 2, 3, \cdots$$

and w(z) is a closed-to-convex function.

Proof of Theorem. In the equation (3), $\phi(z) = \prod_{k=1}^{n} (1 - \epsilon_k z)^k$ is the derivative of a convex function, and in the Taylor expansion of $\phi(z)$, i.e.

$$\phi(z) = 1 + a_1 z + a_2 z^2 + \cdots + a_k z^k + \cdots$$

all coefficient $a_k : k = 1, 2, \cdots$ are majorated by coefficients of

$$(1-z)^{-2}=1+2z+3z^2+\cdots$$

And in (3),
$$\phi_i(z) = \prod_{k=1}^{n-1} \frac{1-\varepsilon_{i,2k} z}{1-\varepsilon_{i,2k-1} z}$$
 takes values on a half plane which

contains the unit in its interior, and is bordered by a line which passes the origin.

And
$$\psi_{j}(z) = \left[\phi_{j}(z)\right]^{j} = \left[\prod_{k=1}^{n_{j}} \frac{1-\varepsilon_{j,2k}-z}{1-\varepsilon_{j,2k-1}z}\right]^{\lambda_{j}}$$
 takes values on a domain,

which contains the unit in its interior, and is bordered by two lines meet at the angle $\pi \lambda_i$ in the origin.

Accordingly, the function

$$\psi(z) = \prod_{j=1}^{m} \psi_{j}(z) = \prod_{j=1}^{m} \left[\prod_{k=1}^{n_{j}} \frac{1-\varepsilon_{j,2k} - z}{1-\varepsilon_{j,2k-1} z} \right]^{\lambda_{j}}$$

takes values on a half plane, which contains the unit in its interior and is bordered by a line passes the origin.

In the Taylor expansion of $\psi(z)$ i.e.

$$\psi(z) = 1 + b_1 z + b_2 z^2 + b_3 z^3 + \cdots$$

it is well-known that all coefficient $b_{\,\mathbf{k}}$ are majorated by coefficients of the expansion

$$\frac{1+z}{1-z} = 1 + 2z + 2z^2 + 2z^3 + \cdots$$

Accordigly, in the expansion of the function dw/dz defined in (3), i.e.

$$\frac{d w}{d z} = \phi (z) \psi (z) = 1 + a_1 z + a_2 z^2 + \cdots$$

every coefficient ak is majorated by the function

$$\frac{1+z}{(1-z)^3} = 1+2^2z+3^2z^2+\cdots+n^2z^{n-1}+\cdots$$

and in the Taylor expansion

$$w(z) = z + A_2 z^2 + \cdots + A_k z^k + \cdots$$

all coefficients Ak are majorated by coefficients of the function

$$\frac{z}{(1-z)^2} = z + 2z^2 + 3z^3 + \cdots + nz^n + \cdots$$

Thus, $|A_k| \leq n$ has been proved.

Moreover, in $dw/dz = \phi(z)$ $\psi(z)$, $\phi(z)$ is the derivative of a convex function, and $\psi(z)$ takes values on a half plane which contains the unit in its interior, and is bordered by a line which passes the origin. Accordingly, the function w(z) is a closed-to convex function. Thus the theorem has been proved.

At last, I show a simple example of closed-to-convex functions. Let us consider a simply connected polygon Ω which has 2n sides parallel to the real axis or imaginary axis in the w-plane. If we call its vertices w_1 , w_2 , \cdots w_{2n} and denote its interior angles $\pi \alpha_1, \pi \alpha_2, \cdots, \pi \alpha_{2n}$ respectively, α_k take the value 1/2 or 3/2,

and satisfy $\sum_{k=1}^{m} \alpha_k = 2n - 2$.

We can construct the function w = f(z) which maps the interior of unit circle |z| < 1 onto the interior of such a polygon by

Fig. 7

$$\frac{dw}{dz} = C (z - z_1)^{d_1-1} (z - z_2)^{d_2-1} \cdot \cdot \cdot (z - z_{2n})^{d_{2n-1}}$$

where C is a complex number, and z_k are points on the unit circle, such that

$$z_k = e^{i\Theta_k}$$
: $k = 1, 2, \dots, 2n$; $0 < \theta_1 < \theta_2 < \dots < \theta_{2n} < 2\pi$

Now , if we put $z_k^{-1} = \epsilon_k$, the function w = f(z) is normalized by

$$\frac{dw}{dz} = (1 - \varepsilon_1 z)^{\delta_1} (1 - \varepsilon_2 z)^{\delta_2} \cdot \cdot \cdot (1 - \varepsilon_{2n} z)^{\delta_{2n}}$$

where $\delta_k(=\alpha_k-1)$ take the value -1/2 or 1/2 , and $\sum_{k=1}^{2n}\delta_k=-2$.

We consider the polygon shown in Fig.7. In this case, we can write signs of δ_k in order and if we take apart suitable four minus signs, we can arrange a sequence of couples (-+) or (+-) as follows

$$\bigcirc\bigcirc$$
 (+-)(-+) $\bigcirc\bigcirc$ (-+)(+-)(-+)(+-)

In such a case, as the function w(z) satisfies

$$\frac{\mathrm{d}\,\mathbf{w}}{\mathrm{d}\,z} = \prod_{k=1}^{4} (1 - \varepsilon_{1,k} \, z) \left[\prod_{k=1}^{3} \frac{1 - \varepsilon_{2,2k} \, z}{1 - \varepsilon_{2,2k-1} \, z} \right]^{2} \left[\prod_{k=1}^{4} \frac{1 - \varepsilon_{3,2k} \, z}{1 - \varepsilon_{3,2k-1} \, z} \right]^{-\frac{1}{2}}$$

and satisfies the codition of the theorem, such a mapping fucntion w(z) is closed-to-convex, and in the Taylor expansion $w(z) = z + A_2 z^2 + A_3 z^3 + \cdots$, all coefficients A_k satify $|A_k| \le k$.

Remark. Equalities $|A_k| = k \ (k = 1, 2, \cdots)$ can be satisfied only when

$$z_1 = z_2 = z_3 = z_6 = z_7 = z_8 = \varepsilon$$

 $z_4 = z_5 = -\varepsilon \quad (|\varepsilon| = 1)$

as the limit case of such a polygon in Fig. 8.

Fig. 8