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A Note on Closed-to-Convex Functions
~ ( An Application of Schwarz-Christoffel For;mula )
Tetsujiro Kakehashi, Kinki University — ( 8§ SREB, ERAYE )

Let z¢ : k=1,2,+++,n be points on the unit circle z =1 such that
zi =% (0361 <62<-++<6n<2n)
and w(z) defined in the unit disc z < 1 be the function which satisfies
the following equation ‘
(1) d_w = C(z-2 %‘d(z‘-—m 3:12:1. c (z—2a )é"_\
dz
where C is a constant complex nummber, and ai ( k = 1,2,+++,n ) satisfy
"

0=av =2 ,2 ax = n—2
K:i .

and ( ¥ ) are assumed to take values of the branch 1&..: 1.
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Fig. 1 - Fig. 2

If points 2« on the unit circle 2z =1 are suitably chosen, by the func-
tion w(z), the interior of unit disc in z-plane is transformed into the
interior of a polygon with n'sides in the w-plane, and each vertex wx of
the polygon COrrespénds to zx on the unit circle z = 1. And each interior
angle at wy is equal to may -

But if points z« on the unit circle are arbitrary chosen, the polygon de-
fined by (1) may be not in general a bounded polygon in common sense. This
formula (1) is well-known as Schwarz-Christoffel’s transformation.

The function w(z) defined in (1) can be normalised to w(0) =0 and

w’(0) =1, as follows



dw
(2) — =

d‘l i é‘ é‘v\
p (1-g1 2) (1—¢€> Z)z“‘(l—en z)
z S

- 3 - n,
where £ =Zk4: Sk =ax — 1, laxlé 1. and Z;_‘Sk
At first, we consider the case when a poly-

gon is convex. |n this case, interior angles

w oy at all vertices are smaller than =,
L

and all &y satisfy

"
_1 <8k < 0 » EKz.ak =

=-2
And we have a following relation from (2)
w(z) n Ok €k Z 1 x 1 +ex 2z
—=-Z == 3 fg— -1
w’(z) K=l —gx 2 2 = 1 —ex 2
and from &k < 0 , we h#ve an equality
W”(Z)
Re. >=-1 1 jz1 <1
w’'(z)

Accordingly, in the case when all 8 are negative, for arbitrary points 2«
on the unit circle, the function w(z) defined by (2) is a convex function.
Next, we consider the estimation of coefficients by the Taylor expansion
of a convex function w(2) defined by (2). Generally, when 7 is a posi-

tive number, in the power series

r r  rCr+1)
(1-2)  =1+—z+—-
1t 21

rCr+ D(r+2)
3t

z2 +

Z3 oo

all coefficients are positive.

"Accordingly, all coefficients of power series of ( 1 — €42 5;“ in (2) are

majorated by coefficients of power series of ( l—z.)d-‘, and coefficients of

the power ser‘ies of dw/dz in (2) are majorated by coefficients of
(1-2) 1=z« (1=-z3"= (1-2)2

=1+ 22+ 322 +42% ++ ¢+



and all coefficients of Taylor exapansion of w(2) are majorated by coeffi-
cients of :

(1=2)1 = 1+2+22 +23 ++ 4
Next, we consider the case when a funct/ion defined by (2) is closed-to-
convex. At first, we show a lemma as follows

Lemma . Let 2« ‘( k=1, 2,~~~,2n ) be points on the unit circle (z}j= 1

such that
Ze =eP . 026, S0, S+ +S0mS 20

and ¢(2) be a function reresented by

l1—€2 2z 1—¢4 2 »1—€2n 2
¢ (Z): ¢ e ——
l-eg1 2z 1—¢g3 z I —¢g2-12

vhere £x = zx'.

Then the function @(2) takes values on a half
plane which contains the unit in its interior,

and is borderd by a line which passes the origin.

Proof. In Fig.4 , when [z]= 1, we have
Z2 ~ 2 '5(92 -0,) :Z?ZT\Za
arg ={ . —_—
Zy — 2 - (02 —61) +miz€2 22
and when fzl< 1, we have . Fig. 4
1 o Z=2Z2 1
— (82 —8,) < arg <-—(8s —01 ) +nxn
2 Z=2Z1 o
Accordingly, when Jz) =1 , we have
1—¢2 2 (—%(92 -8 ) . ZZZT‘ZQ

arg —— . A —
1—¢:1 2 sz(ez-ex)f+n r Z€ 21 22

- - . . . —
When z varies on:the unit circle, if 2 .is not on any one of arcs 2:122,2324,

**%,Zon-122n
A
arg ¢ (z) =8 =—(82 =01 +04 =0z ++ ¢ *+02.—O20-1)

and if z is on any one of these arcs, arg ¢(z) is equal to © +nx .

-J



And when z is an.interior point on the unit disc, we have

© <arge( < B +n .
/ - ﬁ'\‘_
z BN :
Z,
Z. h
0(X®
,/
Zan Y
Fig. 5 Fig. 6
Now the lemma has been proved.
Next | show a theorem as follows.
Theorem . Let z¢ = eie“: k = 1,2,%eo,n (0 S0; S0 S ¢+¢50,)

and z;,x= e{'eix": k= 1,2,0¢¢.2n; (0260;,1 S0;5,2 S **2S6;, 207 )
s j=1,2,°++,m be points on the unit cicle z =1, and w(2) defined in the

unit disc 121 < 1 be a function which satisfies

‘\.
dw n ‘ & il —gi0 2 ™
(3) — = (1-—ex 25" T[ 1T
dz =t = il —€52k12
where & are negati.ve numbers satisfying 2m‘8k = =2, and A; are
R=

real numbers satisfying E;:‘\?\;l= 1.
Then, in the Taylor expansion of the function w(z2) ,i.e.
w(2) =z+As2 22 + ¢ oo +A, Zk +ooo
[As]= n P on=1, 2,3, s
and w(z) is a closed-to-convex function. 5
Proof of Theorem. ~ In the equation (3), @(2) = [[( 1 —ez %‘k‘isr the
derivative of a convex function, and in the Taylor expl;:‘sionvof d(z) ,i.e.
¢ (z) =1+a12+az 22 ++«s+ay zk ++ >

all coefficient ax ¢ k= 1,2,+++ are majorated by coefficients of .

(1—-2) 2=1+22+ 322 + ¢« ¢



»{1- Ei. 2k 2
And in (3), ¢i(2)= ——— _ takes values on a half plane which
e w=il —€ji.2k-12 . :
contains the unit in its interior , and is bordered by a 1ine which passes
the origin.

And %3(2) = [di;@)?: [ﬁl_’i_“_z

pal — €5.2k-12

N )\3'
takes values on a domain,

which contains the unit in its interior, and is bordered by iwo lines meet
at the angle . m A; in the origin.
Accordingly, the function

m m [ ] —g 14 ol
b (2) = T[os@ = ﬂ[ﬂ = ]
1= ¥ :

szl —€5,2k-12

takes values on a half plane, which contains the unit in its interior and is
bordered by a line passes the origin.
In the Taylor expansion of #(z) i.e.
p (z) = 1+b, ‘z+b2 z2 +bg z% + o
it .is well-known that all cosfficient b -are majorated by coefficients of
the expansion

1+2z

=1+ 22+ 222 + 223 ++ « »
1-2z
Accordigly, in the expansion of the function dw/dz defined in (3), i.e.
dw
— =¢ (z) p (z) =1+ar z+az 2?2 ++
dz ‘
- every coefficient ax is majorated by the function
1+z , ,
T = 1422243222 + ¢+ o +n? 2" o0
(1-2)°3

and in the Taylor expansion
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w(z) =z+Az2 2% + ¢+ +Ac z¥ + o
all coefficients Ay are majorated by coefficients of the function

G =2+ 222 +3z2% +++o4+nz™ +

(1-2)2

Thus, |Ax| = n has been proved.

Moreover, in dw/dz =¢(2) ®»(z) , ¢(2) is the derivative of a convex
function, and ©»(2) takes values on a half plane which contains the unit in
its interior, and is bordered by a line which passes the origin. According-
ly, the function w(z) is a closed-to convex function. Thus the theorem
has been proved.

At last, | show a simple example of_closed-to-convex functions. Let us
conéider a simply connected polygon Q which has 2n sides parallel to the
real axis or imaginary axis in the w-plane. If we call its vertices wi,

W2,°** Wa, and denote its interior angles mai,maz,***, T d2n respe-

ctively, o« take the value 1/2 or 3/2,

and satisfy = ax =2n —2 . ]
k=1 W= = Wap —
We can construct the funciion w= " — _
+ +

f(z) which maps the interior of unit + _+ . -
circle |z1< 1 onto the interior of = — : =
such a polygon by ‘ o Fig. T

dw -l A -

P =C (z—Zx3 (z—Zz§~-'(z—Zan§"\

z A

-where C is a complex number, and zx are points on the unit circle, such that

Ze =e'®: k= 1,2,0¢¢,2n ; 0 <f; <02 <+ +<hs< 271
Now ,if we put 2z =&« , the function w= f(2) is normalized by

dw J J

— =(l1-2g1 25 (1=¢g2 23 ++» (1—ganz)*

dz

FALN
wvhere §y(=ayx —1) take the value —1/2 or 1/2 ,and X 8¢ =-2 .
k:.i

.u6_



We consider the polygon shown in Fig."].. In this case, we can write signs
of &8« in order and if we take apart suitable four minus signs, we can ar-
range a sequence of couples <(—+) or (+—) as follows

OO (+-X—-+) QO (—+)(+-X—+)(+-)

In such a case, as the function w{(2) satisfies

2 4

, -
dw <+ 31"82,2!( Z l—€3,2¢ 2 £
d- =T|-(1—81,k z) ﬂ ﬂ

Z k= ke 1T E2,2k-1 2 k"l—SS.Zk—lz
\
and satisfies the codition of the theorem, such a mapping fucntion w(z2) is
closed-to-convex, and in the Taylor expansion w(z) = z2+A222+A3z23+ e,

all coefficients Ax satify |Acl= k .

Remark. - Equalities |Axl= k ( k= 1,2,¢+*) " e
r W, W o
can be satisfied only when
Z1 =22 =23 =Z¢ =Z7 =Zg =¢
W, W; W W,
zs =25 =—¢ (lel=1)
as the limit case of such a polygon in Fig. §. ' Fig. 8
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