ON THE MULTIVALENT FUNCTIONS WITH BOUNDED ARGUMENT

MAMORU NUNOKAWA (群馬大・教育 布川護) W. M. CAUSEY (ミシシッピー大)

ABSTRACT

The object of the present paper is to give the starlike boundary and convex boundary of certain subclass of p-valent functions in the unit disk.

1. Introduction

Let F(p) be the subclass of functions of the form

$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n$$
 $(p \in N = \{1,2,3,\dots\})$

which are analytic in $E = \{ z \mid |z| < 1 \}$.

Also let $A(\alpha)$ denote the class of functions

$$g(z) = 1 + \sum_{n=1}^{\infty} b_n z^n ,$$

analytic in E and satisfying

$$|\arg g(z)| \le \pi \alpha/2$$
 (z \in E)

where $\alpha > 0$.

It is well known [3] that if $g(z) \in A(1)$, then

$$g(z) \Rightarrow \frac{1+z}{1-z}$$

where 3 denotes " is subordinate to " and [1] that

(1)
$$\left| \frac{g'(z)}{g(z)} \right| \leq \frac{2}{1-r^2} , \qquad \text{for } |z| = r < 1.$$

In this paper, we need the following lemata.

LEMMA 1. Suppose $g(z) \in A(\alpha)$, where $\alpha > 0$. Then we have

$$\left|\frac{zg'(z)}{g(z)}\right| \le \frac{2\alpha r}{1-r^2} \qquad \text{for } |z| = r < 1.$$

PROOF. Let $h(z) = g(z)^{1/\alpha}$. Then we have $h(z) \in A(1)$ and from (1) we have

$$\left|\frac{h'(z)}{h(z)}\right| = \frac{1}{\alpha} \left|\frac{g'(z)}{g(z)}\right| \le \frac{2}{1-r^2}$$

for |z| = r < 1. This completes our proof and a proof of this result can be found in [4, 7].

If a function

$$g(z) = 1 + \sum_{n=1}^{\infty} b_n z^n$$

is analytic in E and does not assume non-positive real values in E, then $g(z) \in A(2)$ and from LEMMA 1, it follows that

$$\left|\frac{zg'(z)}{g(z)}\right| \le \frac{4r}{1-r^2}$$
 for $|z| = r < 1$.

REMARK. Throughout the paper, all powers are meant as principal values.

LEMMA 2. Suppose that $f(z) \in F(p)$ and

$$p + Re = \frac{zf^{(p+1)}(z)}{f^{(p)}(z)} > 0$$
 in E.

Then we have

$$1 + Re \frac{zf''(z)}{f'(z)} > 0 \qquad \text{in E,}$$

and therefore f(z) is p-valently convex in E.

A proof of this lemma can be found in [5, Theorem 1].

LEMMA 3. Suppose $f(z) \in F(p)$ and

Re
$$\frac{zf^{(p)}(z)}{f^{(p-1)}(z)} > 0$$
 in E.

Then we have

$$Re \frac{zf'(z)}{f(z)} > 0 in E,$$

and therefore f(z) is p-valently starlike in E.

A proof of this lemma can be found in [5, Theorem 5].

LEMMA 4. Let $h(z) \in A(2)$. Then we have

$$\left(\frac{1-r}{1+r}\right)^2 \le \operatorname{Re} h(z) \le \left(\frac{1+r}{1-r}\right)^2$$

for $|z| = r(2 - \sqrt{3})$, and

$$\frac{1 - 6r^2 + r^4}{2(1 - r^2)^2} \le \text{Re } h(z) \le \left(\frac{1 + r}{1 - r}\right)^2$$

for $2 - \sqrt{3} \le |z| = r < 1$. Therefore we have that

Re
$$h(z) > 0$$

in $|z| < \sqrt{2} - 1$.

This result is sharp. A proof can be found in [6].

2. Main theorems

THEOREM 1. Let $f(z) \in F(p)$ and

$$\frac{f(z)}{z^p} \in A(\alpha), \quad \text{where}$$

Then f(z) is p-valently starlike in $|z| < \sqrt{(\chi^2 + p^2)} - \alpha)/p$ and the result is sharp.

PROOF. Let $g(z) = f(z)/z^{D}$. Then $g(z) \in A(X)$ and from LEMMA 1, we have

$$\left| \frac{zg'(z)}{g(z)} \right| = \left| \frac{zf'(z)}{f(z)} - p \right| \le \frac{2\alpha r}{1 - r^2}$$

for |z| = r < 1.

Then it follows that

$$Re \frac{zf'(z)}{f(z)} \ge p - \frac{2\alpha r}{1 - r^2} = \frac{p - 2\alpha r - pr^2}{1 - r^2}$$

for |z| = r < 1.

This shows that f(z) is p-valently starlike in $|z| < (\sqrt{\alpha^2 + p^2} - \alpha)/p$. The result is sharp as seen by letting

$$f(z) = z^{p} \left(\frac{1+z}{1-z} \right)^{q}$$

COROLLARY 1. Let $f(z) \in F(p)$ and let $f(z)/z^p$ do not assume non-positive real values in E. Then f(z) is p-valently starlike in $|z| < (\sqrt{4+p^2}-2)/p$ and the result is sharp as seen by letting

$$f(z) = z^{p}(\frac{1+z}{1-z})^{2}$$
.

Applying the same method as the proof of THEOREM 1, we have the following theorem.

THEOREM 2. Let $f(z) \in F(p)$ and $f^{(p)}(z)/(p!) \in A(\alpha)$. Then f(z) is p-valently onvex in $|z| < (\sqrt{\alpha^2 + p^2} - \alpha)/p$.

PROOF. Let $g(z) = f^{(p)}(z)/(p|)$. From LEMMA 1, we have

$$\left| \frac{zg'(z)}{g(z)} \right| = \left| \frac{zf^{(p+1)}(z)}{f^{(p)}(z)} \right| \le \frac{2\chi r}{1 - r^2}$$

for |z| = r < 1.

Then, it follows that

$$p + Re = \frac{zf^{(p+1)}(z)}{f^{(p)}(z)} \ge p - \frac{2\alpha r}{1 - r^2} > 0$$

in
$$|z| = r < (\sqrt{\chi^2 + p^2} - \chi)/p$$
.

Therefore, from LEMMA 2, we have

$$1 + \operatorname{Re} \frac{zf^{n}(z)}{f'(z)} > 0 \qquad \qquad \operatorname{in} |z| < (\sqrt{\alpha^{2} + p^{2}} - \alpha)/p.$$

This shows that f(z) is p-valently convex in $|z| < (\sqrt{\chi^2 + p^2} - \chi)/p$. This completes our proof.

REMARK. For the case p = 1 and q = 1, this result is sharp [1, 4].

COROLLARY 2. Let $f(z) \in F(p)$ and let $f^{(p)}(z)/(p!)$ do not assume non-positive real values in E ($f^{(p)}(z)/(p!) \in A(2)$).

Then f(z) is p-valently convex in $|z| < (\sqrt{4 + p^2} - 2)/p$.

THEOREM 3. Let $f(z) \in F(p)$ and $f^{(p-1)}(z)/(p!z) \in A(\alpha)$.

Then f(z) is p-valently starlike in $|z| < \sqrt{\alpha^2 + 1} - \alpha$.

PROOF. Let $g(z) = f^{(p-1)}(z)/(p|z)$. Then from LEMMA 1, we easily have

$$\left| \frac{zg'(z)}{g(z)} \right| = \left| \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} - 1 \right| \le \frac{2\alpha r}{1 - r^2}$$

for |z| = r < 1.

It follows that

Re
$$\frac{zf^{(p)}(z)}{f^{(p-1)}(z)} > 0$$
 in $|z| < \sqrt{\alpha^2 + 1} - \alpha$.

Then, from LEMMA 3, we have

$$Re \frac{zf'(z)}{f(z)} > 0 \qquad in |z| < \sqrt{\alpha^2 + 1} - \alpha.$$

This shows that f(z) is p-valently starlike in $|z| < \sqrt{\alpha^2 + 1} - \alpha$.

This completes our proof.

REMARK. For the case p = 1 and $\alpha = 1$, this result is sharp [1, 2, 4].

COROLLARY 3. Let $f(z) \in F(p)$ and let $f^{(p-1)}(z)/z$ do not assume non-positive real values in E. Then f(z) is p-valently starlike in $|z| < \sqrt{5} - 2$.

THEOREM 4. Let $f(z) \in F(p)$ and let

$$\frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \in A(\alpha), \qquad 0 < \alpha \le 1.$$

Then f(z) is p-valently convex in $|z| < \beta$ where β is the root of the equation

$$\left(\frac{1-r}{1+r}\right)^{\alpha}-\frac{2\alpha r}{1-r^2}=0.$$

PROOF. Let $g(z) = zf^{(p)}(z)/f^{(p-1)}(z)$. Then from LEMMA 1, we have

$$\left| \frac{zg'(z)}{g(z)} \right| = \left| 1 + \frac{zf^{(p+1)}(z)}{f^{(p)}(z)} - \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \right|$$

$$\leq \frac{2\alpha r}{1 - r^2} \qquad \text{for } |z| = r < 1.$$

Because of the assumption that $0 < \alpha \le 1$, we easily have

$$\operatorname{Re} \frac{\operatorname{zf}^{(p)}(z)}{\operatorname{f}^{(p-1)}(z)} \geq \left(\frac{1-r}{1+r}\right)^{\kappa}$$

for |z| = r < 1. Then we have

$$1 + \text{Re} \frac{zf^{(p+1)}(z)}{f^{(p)}(z)} \stackrel{\geq}{=} \text{Re} \frac{zf^{(p)}(z)}{f^{(p-1)}(z)} - \frac{2\alpha r}{1 - r^2}$$

$$= \left(\frac{1 - r}{1 + r}\right)^{\alpha} - \frac{2\alpha r}{1 - r^2} \qquad \text{for } |z| = r < 1.$$

Hence we have

$$1 + \text{Re} \frac{zf^{(p+1)}(z)}{f^{(p)}(z)} > 0$$
 for $|z| < \beta$

where f is as stated in the hypothesis of the THEOREM 4. Clearly 0 < f < 1. THEOREM 5. Let $f(z) \in F(p)$ and let

$$\frac{zf^{(p)}(z)}{f^{(p-1)}(z)} \in A(\alpha), \qquad \alpha > 1$$

Then f(z) is p-valently starlike for $|z| < (1 - \cos(\pi/2\alpha))/\sin(\pi/2\alpha)$. PROOF. From the hypothesis of the Theorem, we easily have

$$|\arg \frac{zf^{(p)}(z)}{f^{(p-1)}(z)}| \le \alpha \sin^{-1}(\frac{2r}{1+r^2})$$

for |z| = r < 1.

This shows that

$$\operatorname{Re} \frac{\operatorname{zf}^{(p)}(z)}{\operatorname{f}^{(p-1)}(z)} > 0 \qquad \operatorname{for} |z| < \frac{1 - \cos(\pi/2\alpha)}{\sin(\pi/2\alpha)}.$$

Therefore, from LEMMA 3 we have

$$\operatorname{Re} \frac{zf'(z)}{f(z)} > 0 \qquad \text{for } |z| < \frac{1 - \cos(\pi/2\alpha)}{\sin(\pi/2\alpha)}.$$

This completes our proof.

COROLLARY 4. Let $f(z) \in F(p)$ and let $zf^{(p)}(z)/f^{(p-1)}(z) \in A(2)$.

Then f(z) is p-valently starlike in $|z| < \sqrt{2} - 1$.

PROOF. From LEMMA 4, we have

Re
$$\frac{zf^{(p)}(z)}{f^{(p-1)}(z)} > 0$$
 in $|z| < \sqrt{2} - 1$.

REFERENCES

- [1] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104(1962), 532-537.
- [2] T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 104(1963), 514-520.
- [3] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1952.
- [4] M. Nunokawa and W. M. Causey, On certain analytic functions with bounded argument, Sci. Rep. of Gurma Univ. 34(1985), 1-3.
- [5] M. Nunokawa, On the theory of multivalent functions, Tsukuba Jour. of Math. 11(2)(1987), to appear.
- [6] M. Nunokawa, S. Owa, S. Fukui, H. Saitoh and M-P. Chen, A class of functions which do not assume non-positive real values, Tamkang Jour. of Math. 19(2)(1988), to appear.
- [7] T. Yaguchi and M. Nunokawa, Functions whose derivatives do not assume non-positive real values, Proc. of the Inst. of Natur. Sci. of Nihon Univ. 23(1988), to appear.
- M. Nunokawa: Department of Mathematics Faculty of Education Gunma University Maebashi, Gunma 371 Japan
- W. M. Causey: Department of Mathematics
 The University of Mississippi
 University, Ms, 38677
 U. S. A.