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A NOTE ON MULTIVALENT FUNCTIONS

Hitoshi SAITOH (Gunma College of Technology)

- 1. INTRODUCTION

Let Ap denote the class of functions of the form

[oe]

(1.1) f(z) = I anzn (a_=1;peN-= {1,2,3,--- })

n=p
which are analytic in the unit disk U = {z:|z|< 1}.
A function f(z) belonging the class Ap is said to be p-valently

a=convex in the unit disk U if and only if

(p) (p+1)
e e+ E—Eh) > 0
£'P7 (z) £'P)(2)

(1.2) Re{(l - a)
for some real o, and for all z ¢ U(cf.[5]).

Denoting by Ap(a) the subclass of Ap consisting of functions
which are p-valently a-convex in the unit disk U, we see thathp(u)
is the generalizétion class of o-convex functions studied by Miller,
Mocanu and Reade [2] (or [31,I[4]).

Recently, Saitoh, Nunokawa, Owa, Sekine and Fukui [6] have

proved some interesting results for functions belonging to the class

Ap(a).

2. PROPERTIES OF THE CLASS Ap(u)

We begin with the statements of the following lemmas.



92

LEMMA 1 ([1]). Let ¢(u,v) be a complex valued function,
¢£'D - C , D‘C C'x cC (C is the complex plane ),
and let u = uy + iu2 PV =V + iv2 . Suppose that the function
$(u,v) satisfies the following conditions:
(1) ¢ (u,v) is continuous in D ;

(ii) (1,0) ¢ D and Re{®(1,0)} > 0 ;

(iidi) Re{@(iuz,vl)}g 0 for all (iu2,vl) ¢ D and such that

2
vy £ =-(1 + u, )Y/2.
Let p(z) = 1 + pyz + p222 + -—- be regular in the unit disk

U such that (p(z), zp'(z)) € D for all z ¢ U.

If

Re{d(p(z), zp'(2))} > O (z e U) ,
then

Re{p(z)} > 0 (z e U) .

LEMMA 2 ([6]). If f£(z) ¢ Ap(a) with ¢ 2 1 , then
(p) Jalo ¥ 8)
(2.1) Re{Zf (z) } s -0 +/vYo(o + 8) .
’ f(p_l)(z) 4 ‘

‘for z e U.

PROOF . Define the function g(z) by

z£ (P) ()

(2.2) e
f(p—l)(z)

=g+ (1-8)g(2)

for £(z) ¢ Ap(u), where

-a +/a(a + 8)
4

(2.3) B(a) =

It follows from the above that g(z) is regular in the unit

disk U, and that g(z) = 1+ 9,2 + gzz2 4 ———
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Making the logarithmic differentiations of both sides in (2.2), we

have
(p+1) '
zf (z) _ - (1 - B)zg'(z)
(2.4) 1+ f(p)(z) B + (1 BYg(z) + T s
Thus we can see that
(p) (p+1)
(2.5) Re{ (1 - a)_E§_:T§zl_.+ a(l + zf( : (z),
£P7 (2) £P) (2)

a(l - B)zg' (2)
e+ (L -pigzy | >0

= Re{B + (1 - 8)g(z) +
for f(z) € Ap(a). Letting

a(l - B)v
B+ (1 - Blu 7

(2.6) o(u,v) = B+ (1L - Blu +

( note that u = g(z) and v = zg'(z) ), we know that
(i) ®(u,v) is continuous in D = ( C - {B/(B - 11} ) x C ;

(i1) (1,0) ¢ D and Re{0¢(1,0)} =1 > 0 ;
2

(iii) for all (iuz,vl) e D such that vy < ~(1 + u, Y/2,
) aB (1l - B)Vl
Re{@(luzrvl)} = B + 5 p)

8%+ (1 - 8)%u,

aB(1 - 8) (1 + uy?)
%)

"

B_
2(8% + (1 - )%,

<0 .
Therefore, the funcfion ®(u,v) defined by (2.6) satisfie§ the
conditions Lemma 1. It follows from this fact that Re{g(z)} > O,
that is, that

{ zf(p)(z) }

(2.7) Re
f(P“l) (Z)

> B

which completes the proof of Lemma 2.



LEMMA 3. Let k denote the real number such that 0 <k < 1.

Then we have the following inequality.

(2.8) cosk8 3 cos¥o (8] <m/2)

PROOF. We put

F(6) = cosk8 - coske .
Then we have
sinb

cost™%g

F'(8) = k( ~ sink6) 2 O

and F(0) = 0.

It follows from the above that
F(6) 2 0 .

Therefore, we have

coskb 2 coske .

Consequently, we complete the proof of Lemma 3.
Applying the above lemmas, we prove

THEOREM. If £(z) Ap(a) with o 2 1, then

(p-1) k k
(2.9) Re{j“—z“"—(zl'} > {‘T;lm}

(Z € U)I
where B(a) is given by (2.3) and 0. <k g1 ( k ; real number ).
PROOF . Step 1. First, we prove for k = 1.

Define the function g(z) by

(p-1)
(2.10) f_T_(_Z_)_ = v + (1 - y)g(z)
with
_ 1
(2.11) Y= 3T 2R
Then g(z) = 1 + 9,2 + g222 + --— is regulaf in U. Making use of
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the logarithmic differentiations of both sides in (2.10), we have

(p) '
zf (z) . _ (I - y)zg'(z)
2:120 0 D, Tty F T 9@
Using Lemma 2, (2.12) leads to
(p)
(2.13) Re{zf *1f2) - g(a)}
£P7 (2)

_ (1 - y)zg'(2)
Re{l B(a) + Y ¥ (1 - y)g(z)}
> 0 .

Let u = ul + iy, v =vy + iv,, and

(1L - y)v
Yy + (1 - y)u

(2.14) ¢(u,v) = 1 - B{a) +

(note that u = g(z) and v = zg'(z)). Then, it follows from (2.14)

that

(1) ¢ (u,v) is continuous in D = (C —'{Y Z l}) x C ;
(ii) (1,0) ¢ D and Ré{0(1,0)} =1 - B(a) > 0 ;
(iii)  for all (iu,,v;) ¢ D such that v, g - (1 + w,®)/2 ,

Y(1 - y)vl

Ré{@(iuz,v } =1 - 8(a) + 5

2 2
Yoo+ (1 - vy) u,

1)

Y- )L+ uy?)
2{y" + (1 - v) u,

}

a - Y)(l—ZB(a))uzz

2{Y2 + (1 - Y)2u22}

0
because 1 - 28(a) £ 0 for a 2 1 .. Thus the function d(u,v) defined
by (2.14) satisfies the conditions in Lemma 1. THis implies that

Re{g(z)} > 0 (z ¢ U), that is, that

(p-1)
f (z)} .

(2.15) Ré { Z
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~Therefore, we complete the assertion for k = 1.

Step 2. In the next place, we prove for 0 <k < 1.
Letting
(p-1)
(2.16) £7 (2 - ha)
and
(2.17) I S
: Y= 328 (@ :

In Step 1, we have
(2.18) Re{h(z)} > y > 0
Now, we put
h(z) = p(cosB + ising) .
From (2.18), we can see that
(2.19) pcosB > v > 0 ( le] <=n/2 )
Therefore,

Re{h(z)}k Re{p (coso + isine)}k

Re pk(coske + isink®)

pk coskb

pk coske - ( by Lemma 3 )

I

v

(p-cose)k

>Yk .

Hence, we complete the assertion for 0 <k < 1.

Accordingly, we complete the proof of Theorem.

Making oo = 1 and p = 1 in Theorem, we have

2

COROLLARY. If the function f(z) = z + a,z + ——-

convex in U, then



a7

R k- k ;
(2.20) Re{—féil} > (—%—) (z € U)

for all real number k (0 <k g1).
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