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1. Introduction and Preliminaries. We denote a two-dimensional deterministic
{nondeterministic) one-marker automaton by ”Z—DMla {("2-NM;"), and a three-way
two-dimensional deterministic (nondeterministic! Turing machine by "TR2-DTM"
{("TR2-NTM"). In this paper, we show that the neoessar& and sufficient space
for TR2-NTM’s to simulate 2-DMi’s (2-NMi’s) is n log n (n2), and the neces-

sary and sufficient space for TR2-DIM’s to simulate 2-DMi’s (2-NMi’s) is

2 0(n log n) ( 2 0 n%) ) yhere n is the number of columns of rectangular in
put tapes. |

In this paper, the detailed definitions of two-dimensional marker automata
and (space-bounded} three-way two-dimensional Turing machines are omitted. If

necessary, refer to [1,2].

Definitioﬁ 1. Let 3 be a finite set of symbols. A two-dimensional tape over
Y is a two—dimensional rectangular array of elements of X . |

The set of all two-dimensional tapes over X isbdenoted by X (27,

For a tape x€ X (2), we let §; (x) be the number of rows of x and @, (x) be
the number of columns of x. If 1<i<Q; (x) and 1¢j<Q;(x), we let x(i,j) denote
the symbol in x with coordinates {i,j). Furthermore, we define

x[(1,4),(i7,3") 1,

when 1<i<i’<Q; (x) and 1<j<j’<R.(x), as the two-dimensional tape z satisfying



2

the following:
(i) Qi (z)=i’-i+l and Q;(z)=j’-j+1,
(ii) for each k,r [1<k<Q;(z),1<r<Q,(2)]1, z(k,r)=x(k+i-1,r+j-1).
When a two-dimensional tape x is given to any two-dimensional automaton as an

input, x is surrounded by the boundary symbol "#"s.

Definition 2. >Let X be in ¥ (2) and §,(x)=n. When §,; (x) is divided by n, we:
call
x[{((j-1)n+1,1),(jn,n)]

an n-block of x, for each j(1<j<R; (x)/n).

Definition 3. For any two-dimensional automaton M with input alphabet X ,
define
T{M)={xe€ X (2)| M accepts x}.
Furthermore, define
L12-DM1]1={T| T=T(M) for some 2-DM; M} and
LI[2-NM11={T}| T=T(M) for some 2-NM; M}.
We similarly define £ [TR2-DTM(L(m,n))] (& [TR2-NTM(L(m,n))]) as the class of

sets accepted by L(m,n) space-bounded TR2-DTMs (TR2-NTMs).

By using an ordinary technique, We can easily show that the following

theorem holds.

Theorem 1. For any function L(m,n)’log n,

&£ [TR2-NTM(L{m,n))] € <& [TR2-DTM(20(L(m,n)))],




2. Sufficient Space.
In this section, we investigate the sufficient space for three-way Turing

machines to simulate 1-marker automata.

We first show that n log n space is sufficient for TR2-NTM’'s to simulate 2-

DMi’s.
Theorem 2. £ [2-DM;] S .2 [TR2-NTM(n log n)].

Proof. Suppose that a 2-DM; M is given. Let the set qf states of M be S. We
,partition S into two disjoint subsets St and,S' which corrésponds to the sets
of states when M is holding and not holding the marker in the finite control,
respectively.! We assume that the initial state qo and the’unique accepting
state qa of M are both in S*. In order to make our proofvclear, we also as-
sume that M begins to move with its input head én the rightmost bottom bound-
iary symbol # of an input tapevand, when M accepts an input, it enters the ac-

cepting state at the rightmost bottom boundary symbol.

" Suppose that an input tape x with Q (x)=m and Q; (x)=n is given to M. For M
"and x, we define three types of mappings f'-i:S-x {0,1,...,n+1}>S-X
{0,1,...,n+¥1}U {2}, fF+;:8*x {0,1,...n+1}>S+*x {0,1,...,n+1JU {0}, and
ft-;:8-%x {0,1,...,n+1}>8-%x {0,1,...,n+1}U {2} (i=0,1,...,m+l) as follows.

£t -i(q-,j)= g (q-’,3’): Suppose that we make M start from the configura-

‘1. Rigorously, 'S- does not contain the states in which the input head of M

positions on the same cell as where the marker is placed.
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tion (q-,(i-1,j)) with no marker on the input xf
(i.e., we take away the marker from the input
tape by force). After that, if M reaches the j.

th row of x in some time, the configuration cor-

responding to the first arrival is (q-’,(i,j’));
\\Q : Starting from the configuration (q-,(i-1,j)) With
no marker on the input tape, M never reaches the

i-th row of x.

fT+i(q*,j)= (q*’,J’): Suppose that we make M start from the configura- :
tion (q*,(i-1,j)). After that, if M reaches the
i-th row of x with its marker held in the finitg
control in some time (so, when M puts.down the

marker on the way, it must retﬁrn to this posi- 
tion again and pick up the marker), the con- ‘
figuration corresponding to the first arrival is

(a*’,(1,3°));

: Starting from the configuration (q*,(i-1,j)) with

—_
]

no marker on the tape, M never reaches the i-th'
row of x with its marker held in the finite con{
trol.

]

f+-i(q-,j)= (q-’,j’): Suppose that we make M start from the configura-
tion (q-,(i+1,j)) with no marker on the input
tape (i.e., we take away the marker from the inf

put tape by force). After that, if M reaches

the i~-th row of x in some time, the configura- 7
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tion corresponding to the first arrival is (q-

{1,370,

-]

Q : Starting from the configuration (q-,(i+1,j)) with
no marker on the tape, M never reaches the i-th

row of x.

Below, we show that there exists a TR2-NTM(n log n) M such that T(M)=T(M).
Roughly speaking, while scanning from the top row down to the bottom row of
the input, M’ guesses and checks f*-;, constructs f'-; and f'+;, and finally
at the bottom row of the input, M’ decides by using f% -n+: and f' *5.1 whether
or not M accepts X {(see Figure 1). 1In order to record these mappihgs for each
i, O{(n) blocks of O(log n) size suffice, so totally O(n log n) cells of the
working tape suffice. More precisely, the working tape must be used as a
"multi-track" tape. In the following discussion, we omit the detailed con-

struction of the working tape of M’,

First, set fT-o, f'+o to the fixed value Q.
For i=0 to m+l, repeat the following. {ff‘;, £+, are already computed at the
{i-1)st row.]

(0) Go to the i-th row; When i=0, assume the bbundary symbols on the first
row.

(1) Guess f*-;; if i=mtl, set f+-n:1 to the fixed value Q.

(2) [compute f£'-i4+1 from f*-;] When ifm+l, do the following: Assume that
there is no marker on the input tape. For each (q-,j)€ S-X
{O,l,...,nfl}, start to simulate M from the configuration (q-,(i,Jj)).
While M moves only at the i-th row, behave just as M does. On the way

of the simulation, if M would go up to the (i-1)st row at the k-th
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(3)

column and would enter the internal state p-, then search the table f7~;
to know the behavior of M above the i-th row. If the value f'-;(p-,k)
is "0", write "Q" into the block corresponding fo ft-i+1(q-,J); If the
value ft-i(p-,k) is "(p-’,k’)", restart the simulation of M from the
\configuration (p-’,(i,k’)). While continuing to move in this way, if M
would go down to the (i+l)st row, then write the pair of the internal
state and column number just after that movement into the block cor-
responding to f’-y+1(q;,j) of the working tape. If M never goes down t&
the (i+l)st row (including the casé when M enters a loop), then write "
2" into the correspondentvblock.

[compute £t +;+1 from f'-i,ft+i, and f*-i] When ifm+l, do the following:
For each (q*,j)e€ S*x {0,1,...,n+1}, starting from the configuration
(q*,(i,Jj)), simulate M until M goes down to the (i+1)st row with the
marker in the finite control. On the way of the simulation, if M would
go up to the (i-1)st row with the marker held, then search the table
f*+; to know the behavior of M above the i-th row. If this value of
fT+; is J;Q", write " Q" into the block corresponding to f**}+1(q',j);

otherwise, restart. the simulation of M from the configuration on the i- -

th row determined by the table value. If M puts the marker down on the

i-th row of the input tape, then record the column number of this posi-
tion in some track of the working tape and start the simulation of M
which has no marker in the finite control. After that, If M would go
down to the (i+l)st row or would go up to the (i-1)st row, then search
the respective table f*-; or ft-; to find the configuration in which M
return to the i-th row again. (If M never returns to the i-th row, write
"0" into the block corresponding to f**i+1(q*,j)). From this con-

figuration, restart the simulation of M. After that, if M returns to




the position where M put down the marker previously and picks it up,
then continue the simulation of M; otherwise write "0 " into the block
corresponding to (q*,j). At some point of the simulation, If M goes
‘dbwn to the (i+l)st row with the marker held,in‘the finite control,k
write the,pair of the internal state which M would enter just after that
time and the row number of this head position into the block correspond-
ing to fT*+i.+1(q*,j). If M never goes down to the (i+ljst row, then

write " Q" into the correspondent block.

(4) [check f*-i-; from f*+-;] When i#0, do the following: In order to check

that the table f*fx-;_guessed on the‘previous row is consistent with the
table f*-; (guessed at the present row), first newly compute a mapping
ft~,.1, which is uniquely determined from f*-; and the content of the i-
th row of the input. After this computation, check that f*-;., is iden-
tical to the mapping f+-i.1 guessed at the previous row. If the

equality holds, then continue the process; otherwise, reject and halt.

After the above procedure, on the (m+l)st row, M’ begins to simulate M from
the initial configuration (q‘e,(m+l,n+1)) to decide whether or not M accepts
the input after all. When M goes up to the_m~th row with or withoﬁt the

- marker, we can know how M returns again to the (m+l)st row, from ff +a+; or

ff *u4+1, respectively. . If M never returns to. the (m+1)st rqw‘again, then M’
rejects and halts. If M returns to the (ﬁ+1)th row, then M’ continues the
simulation. M"acéepts the input x only if M’ finds that M enters the accept-
ing configuration (q*a,(m+1,n+1}).

It will be obvious that T(M)=T(M’).

From Theorem 1 and Theorem 2, we get the following.
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Corollary 1. 2 [2-DM:] & 2 [TR2-DIM(2 ©(n leg n))],

We next investigate suffiéient space for TR2-NTM’s to simulate 2-NM; . By
using the same idea as in the proof of Theorem 2, we can show that the follow- .

ing theorem holds.
Theorem 3. £ [2-NM;] € .8 [TR2-NTM(n2)].
From Theorem 1 and Theorem 3, we get the following.

Corollary 2. J2[2-NM:] € o8 [TR2-DTM(2 °(»%))].

3. Necessary space.

In this section, we show that the algorithms described in the previous sec-?
tion are optimal in some sense. That is, those spaces are required for three-k
way Turing machines when the spaces depend only on one variable n (i.e., the

number of columns of the input tapes).

Lemma 1. Let Ti={xe€ {0,1}(2)| In>1[Q, (x)=n & (each row of x contains exactly
one "1") & Fk>2[(x has k n-blocks) & (the last n-block is equal to some other
n-block)})]]}. Then, |
(1) Tire £[2-DM;] and
(2) T1€ & [TR2-DTM(2L(2))] (so, T1¢ £ [TR2-NTM(L(n))]) for any L:N-R such
that Iimnse [L(n)/n log n]=0.

Proof. (1): We can easily construct a 2-DM; M accepting Ti as shown in Fig.



(2): The proof of Part (2) is lengthy, so ommited here.
|

Lemma 2. Let Ta2={xe€ {0,1}(2)] In>1[0,;(x)=n & T k>2[(x has k n-blocks) & (the
last n-block is equal to some other n-block)}l}. Then,

(1) T2€ £[2-NM1],

(2) T2¢ £ [TR2-DTM(21(m))] (so, T:& .2 [TR2-NTM(L(n))}) for any L:N-R such

that 1imn,e [L(n)/n21=0, |

Proof. It is shown in [3] that Part (1) holds. From the same reason as in

the proof of Lemma 1(2), we ommit the proof of Part (2}.
From Lemma 1 and Lemma 2, we can conclude as follows.

Theorem 4. 7To simulate 2—DM1'S, (1) TR2~NTM'S require Q (n log n) space and

(2) TR2-DIM’s require 2 § (n 10€ n) gpace in general.

Theorem 5. 7To simulate 2-NM;’s, (1) TR2-NTM’s require Q (n2?) space and (2)

TR2-DTM’s require 2 % (1% ) gpace in general.
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Fig.1. Mutual Dependences Fig.2. Action of 2-DM; M

.of the mappings. on a tape in Ti.
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