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§1. Introduction

The purpose of this note is to prove the follauwing

unpublished result due to O. Gabtber.

Theorem 1.1 (0. Gabber) Let X be a complex manifold,

T*X the cotangent bundle aover X, Q@ an open subset of
T*X - (zero section) and Y a conic closed analytic subset
‘uith the following condition:

Condition. For any p € Y, there exist a neighbourhood
of p in Q and f, g & I, Qpny) such that fIVIWU =0,
gl = 0 and {f, 39} (p) = 0. (Here {f., g} means the
Poisson bracket.)

Let M be a coherent gx—ﬁadule on U and N a coherent

~

u s M oulQ-Y e NIQ-Y}.

sub-gx(O)—Module of O. Put N =

Then N’ is also coherent over E (Q).
= =X

This theorem is a generalization of the fundamental
theorem of Sato-Kawai-Kashiwara concerning the involutivity of
the characteristic varieties of coherant Qx—modules (cf.
[SKKJ1). Explain the connection shortly.

Let @ be the ane in Theorem 1.1 and let V be a conic
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involutive analvtic subset of T*X contained in Q. Define

(PYIV = 0}

l, = £ P = E,(DIQ 5 0y

K ’ 0 _
o dy + (Here I,7 = §x§0).) Now recall the

and put év = U
e K
"regular singularity".

definition of

Definition. A coherent gx—ﬂodule M on Q has regular

singularities (= RS) alang V if for anvy. p € Q, there exist a

neighbourhood U of p in Q and a coherent gX(O)—Module

on U such that 0= EXE and QVE = L.

In general. for a coherent E,-Module 0 on Q, define

IRM,W = { p e Q; 1 does not have RS along V

in a neighbourhood U of p in Q}.

Theorem 1.2, Let Q, VV be as above and M a coherent

gx—Module on Q. Then IRM,V) 1is an involutive closed

analytic subset of Q and is contained in Supp M.

Sketch of The 1.1 =>Th. 1.2. It suffices to shouw the

involutivity of IRWIL,V). For this purpose, put Z = IR(H,V).
Changing Q with a smaller one, we may assume the follouwing
from thé first.

{a) 2 # 0.

(by = f. g2 TQ, Qruy (01 s.t.



£12 = g1z = 0, {f, 3}(p) # O.

[¥5}
3
~
.

(c);% L ¢ a coherent gX(O)—Hodule on

E.L=U, 2= Supp(ivg/g).

m

Putv L* = {u Qi ulQ-2 « LIQ-2). Than, applving Thegorem .1,

we conclude that L’ is coherent over EL(0). Since L CL’,

the condition (c) implies that gxg’ = On the gther hand.

n=

by definition, I,L" =L+ Then & has RS along V and ue
find that IR{Q.,V) = 0. This contradicts the assumption and

Theorem 1.2 follows.

Consider the case V =@ in Theorem 1.2. Then IR(M,V) =
Supp I and therefore Supp 0 1is involutive. This statement
is nothing but the contents of the fundamental theorem of
Sato-Kawai-Kashiwara mentioned above. .

Theorem 1.1 has an important conseguence which we are

gning to mention (see [KK1, 2] INI).

Theorem 1.3. Let [ "be a holonomic EX—Module on § and

put A = Supp l. Then the following conditions (i)-{iv) are
mutually equivalent.
(i) M has RS along A.

(ii) M has RS along any conic involutive analvtic subset

V containing A.
(iii) B has RS along saome conic Lagrangian analvtic

_subset A? containing. A.

{iv) M has RS along A in an open neighbourhood of a

dense open subset of A.




To prove Theorem 1.1, we need some preparation aon 3 kind
of "non-commutative' algebraic geometry thch will be developed
in the subseguent sections and therefore the proof of Theorem 1
will be postponed until §4. |

Closing this introduction, I give some caoamments on this
note. The outline of the proof of Gabber’s theorem was
lectured by M. Kashiwara at RIMS in 1981. S. Ishiura, M.
Noumi, T. Yano and I learned the contents of the proof based on
M. Saito’s notes of Kashiwara’s lecture. I believe that this
note is not comleted without their help. I thank them for

their effaorts and kindness.



"§2. D-rings and MD-rings.

This section is devoted to the preparation to the proof of
Theorem 1.1 of §1 which will be done in S4. Hence we first
introduce the notion of D-rings and MD-rings which are obtained by
abstracting some basic properties of the stalks of the sheaves QX
and gx and next prove some basic properties of them which will be
needed in the next section. For example, the ring of left
fractions, the homogeneous spectrum, the structure sheaf on the
homogeneous spectrum of a D-ring are discussed. Most results of
this section are well-known when the ring in question is commutative
and therefore the results of this section are in some sense familiar
to the experts for the commutative algebra. The only thing we must
take care of is the difficulty arised from the non-commutativity of

a D-ring.

2.1. The definition of D-ring and MB-ring.

Definition 2.1. Let A be a (not necessarily commutative)
ring. Assume that A has a filtration {A(n)3 5. Namely
{A(n)}nez is a family of sub-Z-modules of A satisfying the

following conditions:

CA(n) C An+), A= U A, AmMAWKD) C Aln+n).
neZ ,

Then (A, {A(n)}nez) or simply A is called a D-ring if the

following conditions (i)-(iv) hold for {A(n)}nezz

(i> ELtA(m), A(NMI C A(m+n-1) for any m, n € Z.

(i1) A(O) contains 1 and is left and right Noetherian.
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(1ii) gr(A) = @ grn(A) (grn(A) = A(n)/A(n=-1)) is a finitely
generated grO(A)—alg:§ra.

(iv) Acty = n:Z A(MT" is also a left and right Noetherian
ring. (Here, T 1is an indeterminate commuting with each element of

A

Lemma 2.2. Let A be a D-ring. Then the following statements
hold. ’
(i) A 1is left and right Noetherian.

(1i1) gr(A) 1is a commutative Noetherian ring.
This lemma is clear from the definition.

Remark 2.3. In the definition of the D-ring, the condition
(iv) does not follow from (i)>-@ii). In fact, we can construct a
ring A uwhich satisfies (i)-(@ii) but does not (iv). For example,
the Fo]]buing is such a ring.

Let A =({CCx1] be the ring of formal power series of x and

let m = Ax. Define

A (n > O
A(n) =
m (n < O).
In this case, {A(n)} scatisfies the conditions (i)-@ii) but A(T)
is not Noetherian. In fact, J = 2 A<T>xT-n is an ideal of A(T)

n=1

but is not finitely generated over A(T)'

In this section, we will develop "non-commutative algebraic

geometry'’” for a D~rihg.b In the last part of this section and also
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in the next section, we restrict our attention to such a ring called
an MD-ring which satisfies the conditions stronger than thase
contained in the definition of a D-ring. For this reason, we nouw

give the definition of an MD-ring.

Definition 2.4. Let A be a (not necessarily commutative)

ring with the filtration <{A(M2}. Then (A, {A(nN)3}) or simply A
is an MD-ring if {A(n)} satisfies the the cnditions (i)—(vi below:
(i> [Am), A(n)] € A(m+n—-1) for any m, n € Z.
(ﬁ) gr(A) 1is a finitely generated gro(A)—module.
(iii) A(O0) contains @ and is left and right Noertherian.
(iv) There exist u e A(-1) and v € A(1) such that
uv = vu = 1.
(v) For'ény ae€ A(-1), 1+a is invertible in A(0), that is,
there exists an element b € A(O) such that (1+a)b = b(1+a) = 1.
It is not clear whether if (A, (A(R)I> is an MD-ring, then
(A, {A(n)>3) is a D-ring or not. But this is éctua]]y true.

Namely, the following lemma holds.
Lemma 2.5. Every MD-ring is a D-ring.

Proof. Let (A, {A(n)3}) be an MD-ring. To prove the lemma,

it suffices to show that A = @ A(MT" is left Noetherian and
<T> neZ

right Noetherién.
Now show that A<f> is left Noetherian. Let

{Iv; v =1, 2,...3 be an increasing sequeﬁce of left ideals of

> 0

A(T)' We are going to prove that there exists an integer

Yo



such that Iu = IVO for any v 2 Vo- By definition, Iv is

expressed of the form C)Iv(n)Tn, where each Iu(n) is contained
nezZ ?

in A{(n) and is an A(O)-module for any v and n. Then, by the

assumption, Iu(n) - Iv ny ¢ v, n). Fix u e AC-1) and

+1
v € A(1l)Y such that wuv = vu = 1. Now define J(,n) = vnlu(—n) if
n > 0. Then it follows that each Jw,n) 1is a left ideal of A0)
and that 1 (-n) = u"Jw,n). On the other hand, it is easy to see

that

Jw,n) C Jw+l,n), JWw,n) C JWw,n+l) for any v, n > O.

Since A(0) 1is left Noetherian, these imply the existence of
integers Vor Ng > 0 such that Jw,n) = J(vo,no) w 2 Vgs N 2 nO).

Put J = JW ). Then we find that Iv(—n) =u"J w 2 v

0*"o 0’

n > no). By the same reason, there exists a left ideal J* of

ACO) sucb that Iv(n) =V w 2 Vas N > no). Here we change the
integers Vo and No by the greater ones if necessary. At any
rate, we may assume that there‘exist positive integers wv,, ng, and
left ideals J, J* of A(0) such that lv(n) = vy, I,(-n) = u"J
if v 2vy n 2 nge Fix an integer n (Inl < ng). Since if n >0
(resp. n =0, n < 0), then {unlv(n); v =1, 2,...3 (resp.

{Iu(n); v =1, 2,...3, {v_nlp(-nég v =1, 2,...3) is an increasing
sequence of left ideals of A(O0) and since A(0) is left
Noetherian, the sequence is stationary. Therefore we conclude that
the increasing sequence {IU} of left ideals of A<T> is also

'stationary. "This means that A(T) is left Noetherian. By the same

way, we can show that A<T> is right Noetherian. gq.e.d.



Let (A, {A(n)3) be a D-ring. For each n € Z, we denote by
g, the natural surjection of A(n) to grn(A). By definition, |
Ker o = A(n-1). If a € A(n)NA(n-1), then n 1is called the order
of a and is denocted by ord a. On the otHer hand, if a € N A(n),
then the order of a 1is -, Now define a surjection o ofn A to
gr(A) by o(a) = on(a) if ord a = n. It is clear from the
definition that o(ab) = og(a)o(b) for any a, b e A.

An element of gr(A) is homogeneous if it is contained in
grm(A) for some me Z and in this case m 1is called the degree
of it. An ideal of gr(A) 1is called homogeneous if it is generated
by homogeneous elements of gr(A). It is known that if 1 1is a
homogeneous ideal of gr(A), then I = z'(l n grm(A)).

If ae€ A(m) and b € A(n), then define

‘ {am(a), an(b)} = om+n_1(Ea,~b]). Since o, is surjgctive‘for each
ne g, {f, g s well-defined for any f € grm(A), g € grn(A).
Similarly as in the case of gx, { , } 1is called the Poisson
bracket on gr(A). The Poisson bracket { , 3> extends to a
Z-bilinear map of gr(A) x gr(A) to gr(A) and has the following

properties:

(2.1.1) {f, fYy = 0 for any f € gr(A).
(2.1.2) {f, gh} = {f, g)h + g{f, h}Y for any f, g9, h € gr{A).
(2.1.3) {{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0.

Let (B, {B(n)3) bé another D-ring and let & be an algebra
homomorphism of A to B satisfying that @(A(n)) C B(n) (?/n € D
and that ¢(1) =1. Let { , }A and { , }B be the Poisson
brackets on A and B, respective]yf Let ¢ denote the algebra

.*7;7__
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homomorphism of gr(A) to gr(B) induced from &. Then it follows

that &, 9),) = {&(f), &(@ g for any f, ge gr(A).

We give here some elementary properties of a D-ring.

Lemma 2.6. Let A be a D-ring. Assume that each element of
1 + A(-1) 1is invertible in A(0). If a € A 1is such that g (a)
is invertible, then a 1is invertible, that is, there exists a

be€ A such that ab = ba = 1.

Proof. Assume that ord a = k. Since ok(a) is homogeneous

of degree k, the inverse f of ak(a) is homogeneous of degree

-k. Take b1 € A(-k) such that U—k(bl) = f. This implies that

ab1 € A(0) and ao(abl) = 1. Then ab1 = 1+c for some c € A(-1).
From the assumption, 1+c 1is invertible and therefore |
b = bl(1+c)—1 is a right inverse of a. Similarly, there exists a

left inverse b* of a. Then b’ = b’ (ab) = (b’a)b = b. q.e.d.
Lemma 2.7. Let A be a D-ring and assume the condition in
Lemma 2.6. Let N be a finitely generated left A(O)-module. 1If
A(-1)N = N, then N = 0.
Proof. From the assumption, A(-1) ié contained in the
Jacaobson radical m of A(0). Hence, if A(-1)N = N, we have
mN = N. Then Nakayama’s lemma implies that N = O. q.e.d.

We are going to give some examples of D-rings.

Example 2.8. Stalks of the sHeaF QX’

—/0 —



Let X be a complex manifold and let QX be the sheaf of
differential operators on. X. As in the provious section, put
Dx(m) = {P e Dy ordP < m¥ for each me€ N. Now take x € X and
fix it once for all. Then the stalk gx’x is a D-ring with the
filtration {A(m)}mez, uﬁere Alm) = gx(m)x (m 2 0) ~and A(m) =0
(m < 0). In this case, gr(A) = A(O)[El,...,fn] and A(0) is the
stalk gX’x'

Example 2.9. Stalks of the sheaf EX'

Let X be a complex manifold and let T*X be the cotangent
bundle over X. Let EX be tbe sheaf of microdifferential
operators on T"X. As in the previous section, put
Ey(m) = (P e Ey; ordP < m) for each m e Z. Take p e T*X and fix
it once for é]l. Now put A = Ex’p and A{m) = gx(m)p for any
me Z. Then it follows from Theorem 1.10 that (A, {A(m)3}) 1is an

MD-ring. In this case, gr(A) = gr (AXL,07!

] and grO(A) is
isomorphic to the ring of convergent power series of

(2n—-1)-variables and grm(A) = grO(A)Cm for every me€ Z.

Example 2.10. The universal enveloping algebra of a Lie

algebra.

Let g be a Lie algebra defined over € and let U(g) be the
universal enveloping algebra over g. Let Uk(g) be the linear
subspace of U(g) spanned by the elements of U(g) whose degrees
are < k. Put A =U(g), Alm) = Um(g) if m> 0 and A(m) =0 if
m < O. Then it is clear that A 1is a D-ring with the filtration

{A(m)?. In this case gr(A) coincides with the symmetric algebra

over. g.

— /=
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Example 2.11. The Weyl algebra C[xl,...,xn,Dx ,...,Dx J.

1 n
Let us consider the polynomial ring C[xl,'--,XHJ of
n-variables x,,---x_ and put D =9— (i =1,...,n). Then the
n- Xi Bxl 5

algebra A generated by Dx ,...,Dx over C[xl,...,xn] is called
1 n
the Weyl algebra. Put A(m) =0 if m < 0 and

A(0) = t[xl,...xnj. If m > 0, then A(m) 1is inductively defined

n

as follows: A(m) = A(m-1) + 2 A(m—l)Dx . Then A 1is a D-ring
k=1 k

with the filtration {A(m)}. In this case,

gr(A) = H"l"“”‘n’fl"”'fnj'

2.2. The homogeneous spectrum of gr(A).

In what follows, (A, {A(n)})) 1is a D-ring unless otherwise

stated.

Definition 2.12. The homogenecus spectrum of 4gr(A) 1is the
set of all homngeneoué prime ideals of gr(A) and is denoted by

‘ Spech{gr(A)).

Remark 2.13. Spech(gr(A)) 1is analogous to Proj(S) for a

graded ring S with a_graduation {Sm}m>0' But there exist some
differences between Spech(gr(A)) and Proj S. The most crucial
one is this: gr(A) has negative grades in spite that Sm =0

(m < O0).

In the sequel, Spech(gr(A)) is denoted by X wunless otheruwise

stated. In order to introduce a topology on X, we first give a

,,//2 —_—



"lemma. For its proof, see [ J.

Lemma 2.14. For each homogenecus ideal 1 of gr(A), put
VI = {(f e gr(A); f" € I for some n > 0 3. (VI is called the
radical of 1.) Then

VI= N p.
peX, p21

In particular, VI 1is also a homogeneous ideal.

For any homogeneous ideal I of igr(A), define

V(I) = { pe X;s p2 13} and for any homogeneous element f of
ar(A), define WV(f) = V(gr(A)f). Then the fo]]nuing'properties are
easily proved: | |
(2.2.1.1) V(O) = X, V(1) =8 .
(2.2.1.i11) Let I and I® be homogeneous ideals of gr(A).

VI CVI* & V') € V(D).

V(I N I) = WII*)

V(I U w(iry.
(2.2.1.111) If {Il; A € A} 1is a set of homogeneous ideals of

) = NV,

gr(A), then V(2 I 1
AEA

2en A

Now we define a topology on X by taking the subsets of the
form V(I) to be fhe closed subséts. For each homogeneous element
f of gr(A),vue define D(f) = { pe X3 f¢ p 3 = X=-V(f). Then we
find the following: o | |
(2.2.1.iv) { D(Ff); f € gr(A), Bdmogeneous} Form$ a’basis of open
subsets of X.

(2.2.1.v) For each Hcmogeneousﬁélement f e gr(A), D(f)Y is

= /3 =

13
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quasi-compact.

(2.2.1.vi) D(O) =8, D(1) =X,
D(fg) = D(f) N D(g). *

(2.2.1.vii) For any subset Y of X, we define I(Y) = [1 p.
peY

Then I(V(I)) = VI for each homogeneous ideal I of gr(A).

2.3. Good filtrations on finitely generated left A-modules.

Let M be a finitely generated left A-module. In this
subsection, we introduce the notion of a "good filtration” on M.
This is used in the definition of the chacteristic variety Ch(D
of M which will be done in the next subsection.

First we recall the definition of filtrations on a left
A-module. Let M be a left A-module. Then the’sequence {M(n)}nez

of sub-Z-modules of M 1is called a filtration on M if the

following conditions hold for {M(n)}:

(2.3.1) M(n) € M(n+l1), M=UnmMm, A(m)M(n) € M(m+n).
- n
Let N be a sub-A-module of M. Then, putting
N(n) = NN Mn) ( n e Z), we obtain a filtration {N(n)> on N.
This is called the induced filtration on N. Similarly, let N be
a left A-module and let ¢:M > N be a surjective A-homomorphism.
Then, putting N(n) = d(M(n)), we obtain a filtration <{(N(n)} on

N. This is called the image filtration on N.

If {(M(n)} 1is a filtration on M, we define

gr (M =@ M(n)/M(n-1). ~ §
n

— /Y —

|
:
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Definition 2.15. Let M be a finitely genérated left A-module

and let {M(n)}nez be a filtration on M. Then {M(n)} 1is called

a good filtration on M if M., =e M(MTY is a finitely

n
generated left A<T>—modu]e‘

Lemma 2.16. Let M be a finitely generated left A-module.
(i) There always exists a good filtration on M.
(i1) Let <{(M(n)} be a good filtration on M. Then

gr(M = M(n)/M(n-1) 1is a finitely generated gr(A)-module.

n

Proof. (i) Let CPERER L € M be a system of generators of

r
M over A. Then define M(n) = X A(ndu, for each n e Z. It is
i=1
clear from the definition that {M(n)3} is a good filtration on M.
(i1) It follows from the definition that gr(M) 1is identified

with M<T>/T”<T>’ Since ”(T) is a finitely generated left
A<T>—module, this implies that gr(M) 1is a finitely generated

gr (A)-module.

Remark 2.17. It is clear that good filtrations on M are not

unique. In fact if {ul,.., ur} CM is an arbitrary system of
generators of M, then as in the proof of Lemma 2.16,{(i), we can
define a good filtration on M. For the sake of convenience, such a

?iTtration on M 1is called a good filtration induced from a finite

set of generators (ul,...,ur}.

Since the Noetherian condition is stable by the procedure of

taking subquotient modules, the next proposition follows from the



16

definition of a good filtration.

@ ¢
Proposition 2.18. Let O > M > M > M > 0' _be an

exact sequence of left A-modules. Assume that ™M has a filtration

{M(n)}n Let (M'(n)}n (resp. {M"(n)}n ) be the induced

ez’ ¥ 4 eZ
filtrations on M’ (resp. the image filtration on M™). 4Then M is |

finitely generated over A and {M(n)} 1is a good filtration on M H

if and only if both M and M" are finitely generated over A
and (M’ (n)} (resp. {M"(n)} 1is a good filtration on ™M (resp. H").f

Furthermore, in this case, we obtain the exact sequence of
finitely generated left A<T>—m0dules

)\Mn

<T>

0O — M — N

<T>

TS > 0
and the exact sequence of gr(A)-hodu]es

0O — gr(M*) — gr(M) — gr{M”) — 0.

Definition 2.19. Let M be a finitely generated left A-modu]ef

and let {M(n)3} and {M (n)} be good filtrations on M. Then
{M(n)> and {M(n)} are equivalent if there is an integer k > O
such that HM(n) € M’ (pn+k) and ™M’ (n) € M(n+k) hold for each

neZ.

Lemma 2.20. Any two good filtrations en M are equivalent to

each other.

Proof. Let {Ni(n)}neZ (i =1, 2) be two good filtrations onf




M. Define MéT) = M (M)T". Then what ue must prove is to show

n
. . kyl 2
the existence of an integer k > O such that T H<T> c MeTs and
k2 1 , '
Ty & Moy
First assume that M'(n) € M°(n) for each n e Z. Put

Lk = G(Mz(n)ﬂnl(n+k))Tn. Then (Lk; k =1,2,...) 1is an increasing
n

' A - 2 ol
sequence of left sub A(T) modules of ”(T) and L0 = M(T)’

° _ N 2 .
kgo Lk = ”(T)' It follows from the assqmptlon that N<T> is a

finitely generated left A<T>—module and that A(T) is left

o

nocetherian. These imply that {Lk} is stationary. Hence there

exists an integer k > O such that Lk = ”%T)' This means that
M2 mmMia+kd = M2 (Yn e Z), or equivalently that

MZ

(m € nlnrkd (¥n e 2). Therefore M1(n)3 and (MP(n)3  are
equivalent. ‘

Next consider the general case. Since U(Nl(n)ﬂmz(n)) =M, it
n

follows from Proposition 2.18 that {Ml(n)ﬂmz(n)} is a good

filtration on M. Therefore applying the previous discussion to the

two filtrations (M'(MZ)) and (M?(n)), we conclude that there
exists an integer k > O such that M2(nm) C Mlcn+kOMMZ(n+k) for
each n € Z. Since Nz(n) c M2(n+k), it follows that

Hz(n) - Ml(n+k) for each n € Z. By changing the roles of Hl(n)

and Mz(n), we conclude the existence of k* > O such that
nlcny € M2n+k?’)  for each n e Z. Hence (M(n3 and (M2(n)3

are equivalent. q.e.d.

17
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2.4. The characteristic variety of M.

Let M be a finitely generated left A-module. Ue are going to

define the characteristic variety Ch(M) of M.

Definition 2.21. Let {M(n)}neZ be a good filtration on M.
Define gr(M) = M(n)/M(n-1). Then Ch(D = V(Anngr(A)gr(M)) is

n
called the characteristic variety of M. Here

Anngr(A)gr(H) = {a € gr(A); asgr{M = 0 3. (It follows from the
definition that Anngr(A)(gr(H)) is a homogeneous'idea].)
As was already shown in Lemma 2.16, there always exists a good

filtration on M and therefore Ch(M) 1is defined for it. Although

‘the definition of Ch(M) depends on the choice of a good

filtration, the following holds.

Theorem 2.22. Let M be a finitely generated left A-module.

Then the characteristic variety Ch(M) does not depend on the

choice of a good filtration on M.

To prove Theorem 2.22, we first give a lemma which is easy to

show.

o] 0]
Lemma 2.23. Let O > N? » N > N » 0 be an exact

sequence of graded gr{(A)-modules. Assume that ¢ and ¢ preserve

the graduations. Then

V(Ann Y = V(Ann N’*) U V(Ann N').

ar (N ar (N ar (A)

—/8—



1 2
Proof of Theorem 2.22. Let (M (n)}neZ and M (n)}nez be

(1)
r

D =8 M /Min-1)
n
(i =1, 2>, Then it suffices to show the following:

two good filtrations on M. Define g

(2)

(1) _
M) = V(Anngp(A)gr

(2.4.1) V(Ann (M.

gr(A)gr

Define M, =@M (T (i =1, 2). Remark that

n .
M/ = ar 0 (=1, 2). Since ¢n!

(n)ﬂM2(n)} is also a good

filtration on M, it suffices to prove (2.4.1) when Ml(n) C Mz(n)

(Y n € Z) or equivalently when Ml c M2. Hence we assume that

2+t (=0, 1, 2,...). Then

ml C M2. Define LJ = i M
{L.; =0, 1, 2,...Y 1is an increasing sequence of left
sub—A<T>—m0dules of H2 and M2 = JBO Lj’ Therefore by the

argument as in the proof of Lemma 2.20, we find that there exists an

integer k > O such that L, = N2. On the other hand, it follows

k
from the definition of Lj that for each j > O, we have

. C TL. C L. CL.
TL TL CL;CLy,

J = T+t 1’

This implies the following two exact sequences of gr(A)-modules

(2.4.2) 0 — TLJ+ /TLj — LJ./TLJ — LJ/TLJ._’_,1 — 0

1

(2.4.3) 0 — L./TL.., — L.
J J+

| STLiyp = Ly /L — 0.

J+1 J+1
Applying Lemma 2.23 to these exact sequences, we find that

V(Anngr(A)Lj/TLJ)

—/ f__



V{(Ann

TLJ+1/TLJ) U V(Ann L./TLJ+1)

gr (A) gr(A)—j

V(Ann L /LJ) U v(Ann )

ar(mbEj+1 L;/TL

gr(A) J i+l

V{Ann ).

H

ar(mbj+r1” T4

(Here we used the isomorphism TLj+1/TLj = LJ+1/LJ') Therefore it

follows that

V(Anngp(A)LJ/TLJ) = v(Anngr(A)LJ+1/TLJ+1) C - Jj 2> o,
In particular

V(Anngr(A)Lo/TLo) = V(A"ngr(A)Lk/TLk)'
Since L. =M, and L, =M, and since L./TL. = ar‘12(M  and

0 1 k 2 0 0
L /TL, = ar 22 (M), we have shown (2.4.1). q.e.d.
From now on, we are going to show some elementary properties

Ch(M.

Proposition 2.24. Let O > M » M > M > 0 be an

exact sequence of finitely generated left A-modules, then
Ch(M = Ch(M*) U ChM™.

This follouws from Lemma 2.23 and Proposition 2.18.

Proposition 2.25. Let M be a finitely generated left

— 20—
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A—moéule and let Upseeesug be a systém of generators of M over

A. Then for any p € X, the following conditisns are équivalent.
(i) p ¢ Ch(MD |
(ii) There exists - an ‘a € A such that au, = 0 (i =1,000,r),

g(a) ¢ p.

Proof.  The implication "(@ii1) é?(i)“ is clear from the
definition of Ch(M.

We show the part "(i) = Gi)". By definition, u = (Ul”°’ur)
r

is an element of ‘?1 Auj. Befine N = Au. Then there exists a
left ideal I of 1; such that N = A/I. It follous from
Proposition 2.24 that
’ r . r
Ch(M) = U Ch(Au,) = Ch( ® Au,) D Ch(Au).
i=1 ! i=1 *
Now induce the filtrations oan I and N from that on A. Then
they are good and gr(N) = gr(A)/gr(I). This implies that
Ch(N) = V(gr(I)). Let p € X be such that p ¢ Ch(M). Then by the
remark above,vg ¢ Ch(N) = V(gr(I)). This implies that B;é gr(l.
Therefore there exists an element a of 1 such that g(a) ¢ p.

It follows from the definition of 1 that (aul,...,aur) = au = 0.

‘q.e.d.

Proposition 2.26. Let A be a D-ring satisfying that each

element of 1+A(-1) has an inverse in A(0). If M 1is a finitely

generated left A-module such that Ch(M) =8, then M = O.

Proof. Assuming that M # 0O, we lead a contradiction. Hence

—2)—
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take uvu e M with u # 0. Then it follows from Proposition 2.24
that Ch(Au) = #. There exists a left ideal I of ‘A such that

Au = A/I. Induce the filtration on I from that on A. Then,
since Ch(Au) = V(gr(I)), it follows that gr(I) = gr(A). Therefore
we obtain A(0) = INACO) + A(-1). Since 1 A(O0), there exist

a € INAO) and b € A(-1) such that 1 = a+b. From the
assumption, 1-b is invertible in A(O) and therefore

1

1 = (1-b) “a € INA(O). This implies I = A. Hence u = 0. This

contradicts the assumption u # O. G.e.d,

2.5. The ring of left fractions and the module of left fractions.

The purpose of this subsection is to define the ring of left
fractions and the module of left fractions for a non-commutative
ring and its module. The reader is refered to [Stenstroml for the
details.

For the present, let A be a ring with the unit 1. Let S
be a multiplicative subset of A. This means that 1 € S and that
if s, t €S, then st € S. Furthermore, we assume that S
satisfies the conditions |

(m.1) If s € S an& a € A, there exist t € S and b e A
such that bs = ta.

(m.2) If as = 0 with s € S, then ta = 0 for some t € S.

Now we define a relation '"~" on S x A as follous:
For (Sl’al)’ (52,a2) € S x A, (51’31) ~ (52,32) if and
only if there exist t,, t, € A such that t;s, = t,s, € S

and tlal = t232'



Then it is easy to check that "~" is an equivalence relation on

1

s x A. Let S A denote the quotient space of S x A by the

equivalence relation '"~" and let s_la denote the equivalence

class of  (s,a) € S x A,

For each (sl,al), (52,32) € S x A, we define the sum

1

- -1 -1 -1
59 al+52‘32 and the prnduct Sy 3;°S, 8, as follows:

Sum ¢ By the condition (m.1), there exist bl’ b2 € A such

that b,s, = b

151 255 € S. Then

= —1
51 al+s2 32 = (blsl) (b1a1+b232).

Product : By the condition (m.1), there exist b € A and

t € S such that bs2 = tal. Then

- _ -1
51 al~52 32 = (tsl) (baz).

1

In this way, S "A has the ring structure.

Definition 2.27. The ring S_IA is called the ring of left

fractions of A by S.

In by o¢a> = 171a.  Then

We define amap & of A to S
is a ring homomorphism and has the following properties:
(2.5.1) ®(s) is invertible for each s € S.
(2.5.2) Each element of S—lA is expreésed as the form
d(s) loa) (ses, ae M.
(2.5.3) Let a € A. Then ¢(a) = 0 if and only if sa = O for

some 5 € S.

Proposition 2.28. Let B be a ring with 1 € B and let

23
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¢:A > B be a ring homomorphism such that ¢(s) 1is invertible in B
for each s € S, there exists a unique Homomorphi5m o:SqlA - B

K

such that o0-¢ = ¢.
For a proof, see [St],

Proposition 2.29. Let A and S be as above. Then for every
1

Jeft ideal I' € s la (1* # 5
-1

A), there exists a left ideal I of

A such that S "1 = I’* and that 1 NS =¢g.

Corollary 2.30. Let p be a prime ideal of A such that

pNS=0. Then S 'p is a prime ideal of S 'A. Furthermore,

1

every prime ideal of S A is expressed as S—lg for some prime

ideal p of A such that pMnN s =4g.

Proposition 2.29 and Corollary 2.30 are easy to show ahd
therefore we omit their proof (cf. [B]),
Let S be a multiplicative subset of A satisfying (m.1),

(m.2) and let M be a left A-module. Then S—IH is defined by the

way similar to S_IA and- it has the structure of left S—lA—module.

To explain this, first define an equivalence relation '"~" on

Sx M as follows:

For (Sl’ul)’ (SZ’UZ) €. S x M, (Sl’ul) ~ (52,u2) if and

only if there exist t,, t2 € A such that t,s, =t S

151 252 €

and tlu1 = t2u2.

1

Let S M dennté the quotient space S x M/~. The sum of two

elements of S~1M and the product of an element of S—lA and that

1 1

of S 'M are defined by the way similar to the case of S “A.



‘Hence we do not repeat them. At any rate, s_lm has the structure

of left S lAa-module.

Definition 2.31. S—IN is called the module of left fractions

of M bY S.

Proposition 2.32. Let A and S be as above. Then for any

left A-module M, we have

sTin=slag, n

Furthermore S 1A is right flat over A, that is, if

0> M -»M->M"> 0 1is an exact sequence of left A-modules, then

1 1 1

0+ S M - S '"M>S 'M"> 0 1is an exact sequence of left

S_1A~modules.

The proof of this proposition is similar to the commutative_

case. Hence we do not give it (cf. [B]),

2.6. The ring of left fractions of a D-ring.

We return to our situation, namely, let (A, {A(n)}nez) be a
D-ring. The purpose of this subsection is to study the ring of left

fractions of A.

Theorem 2.33. Let (A, {A(n)3}) be a D-ring. Let S be a

multiplicative subset of gr(A) consisting of homogeneocus elements.
Then S = {s € A; o(s) € S} 1is a multiplicative subset of A

satisfying the conditions (m.1), (m.2).

ot
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Proof. It is clear that S 1is a multiplicative subset of A.
We are going to show that S satisfies (m.1) and (m.2). For
this purpose, put S(n) = SN A(n) (Vn e Z).

First show that (m.2) holds. Assume that as = 0 far

«

a€ A (ord a =%k), s €S (ord s = m). Define a left A-endomorphism

Ps of A by rs(b)

bs. Then a € N Ker(rs). Also define

i

N(n) = NN A(n) (V“\e Z) and gr(N) = & N(n)/N(n-1). Then
o0(s)gr(N) = 0. 1In fact, for each n € Z? since  N(n)s = 0, it
follows that sN(n) = [s, N(n)] C N(m+n-1). Therefore
V(AnngP(A)gr(N)) C V(o (s)) = X-D((s)). On the other hand, since
Aa C N, it follows that Ch(Aa) C V(g (s)). Define é left
A-endomorphism ra for a as we did for s and put I = Ker(ra).

Then we obtain an exact sequence

r
a-

0O0—1 —>A—A— 0.

Define the induced filtration <{I(n)} on I by I¢(n) =110 A(n)

and put gr(l) =& I(n)/I(n-1). Since Ch(Aa) = V{gr(l)) C V(aﬂs)),’
n

it follows from (2.1.1.vii) that o(s)" =0(s™ e gr(I) for n >> 0.
Now fix such an n. Then s" € I(mn) + A(mn—-1) and there exist

t € Itmn) and b € A(mn-1) such that s” =t + b. Since

o(t) =a(s™ =0(s)" €S, we have t € S. Moreover ta = 0. Hence
we find that (m.2) holds for S.

| Next shdw (m.1). Take a € A (ord a = k) and s € S

(ord s = m). Define the image filtration on N = A/As. By
definition, Ch(N) = V(o (s)). Next define M = Aa/(AalAs) and

M(n) = A(nda’(A(nmNAs) (V n e Z). Since M= (AatAs)/As, M is
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" regarded as a left sub—A;module of N and {M(n)} 1is a filtration
on - M induced from that on N. Then it fof]ous from Proposition
2.24 that Ch(M) € Ch(N) = V(g(s)). This implies that there exists
p > O such that o(s)Pgrm = 0. This means that

sPM(n) C M(n+mp-1) (¥ n € Z). Now we consider the case n = O.
Since M(mp-1) = (A(mp-1)a+As)/As, it follous that

sPa € A(mp-1)a+As. Then there exist b e A and c e Almp-1) such
that sPa = catbs, or equivalently, that (sP-cda = bs. Since

o(sP-c) = a(sP) = 0(s)P € 5, we conclude that

(sP-c)a = bs € As N Sa. Hence (m.1) is shoun. q.e.d.

Let S be a multiplicative subset of gr(A) consisting of

homogeneous elements and put S = {s € A; og(s) € S}. Then in virtue

of Theorem 2.33 and the discussion in subsection 2.5, the ring‘of

left fraction S_lA is well—-defined.

For each element s la e s}

A (s € §, ae A), define
ord(s—la) = grd(a) - ord{(s). Then ord(s_la) is independent of the

choice of the representatives. Noting this, we define

s lay (i = ts7la e s7lA; ordsTla) <y (Vne 2.
Then ((S!A)(m)3 ., is a filtration on ST'A and it is easy to
show that
-1 -1 -1 |
testmm, sImmic sTmmin-1 (W, ne D).

1

As in the case of A, we put gr(s 'A) = e grn(S_lA), where

n

1 1 1

grn<s‘ A) = (S "A)(n)/(S "A)(n-1) and denote by a§ the natural

,ﬂ;Z7.__
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- surjection of (ST!AY(n) to grn(S_lA). Then we obtain the
surjection ¢° of s!la to ars 1Ay by putting
08(5_1a) = oi(s—la) when ord(sala) = n. On the other hand, since

S is a multiplicative subset of gr(A), §'1gr<A> is well-defined.

By direct calculation, we find that

os(s_1 1a(a) € §“lgr(A) when s € S, a € A.ﬂ This implies

1 -1

a) = og(s)

a natural isomorphism gr(S "A) = S “gr(A).

Theorem 2.34. Let A, S and S be as in Theorem 2.33. Then

the fllowing statements hold.

1 1

(i) (S A, {(S A)(n))nez) is a D-ring.

(ii) There exists a natural isomorphism gr<s“1A> ~ §’lgr(A).

1

(iii) Each element of 1 + (S "AY(-1) is invertible in

s ay o).

Proof. From the remark before the theorem, (ii) follows. On

the other hand, (iii) 1is clear from the definition. In fact, each

1A)(—-l) is expressed of the form t—lt’ with

-1

element of 1 + (S~

t, t* € S such that o(t) =o0(t*). Then t’
1

t 1is its inverse.

Hence it suffices to show that S “A 1is actually a D-ring. We

are going to prove the conditions (11)-(iv) of Definition 2.1'h01d

1

for S “A.

The condition (ii).

It is clear that (S_IA)(O) cqntains 1. Hence it suffices to

1

show that (S "AY(0) is left and right Noetherian.

1

Let I be a left ideal of (S "AY(0). Define

-1

Tn) = (ae A; s lae 1e (g1

A)(n) for some s € S}
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and T= o T()T". Then T is a left ideal of A<T>'
neZ

1

CIf I is

énother left ideal of (S "A)(0), we also define T1° similarly. - By

definition, I = I' is equivalent to I =T1’. Since A is left

<T>
Noetherian, this implies that every increasing sequence of left

1 1

ideals of (S "AX(0) is stationary. Therefore (S

1

AY(0)Y 1is left
Noetherian. Similarly, we can show that® (S "AY(0) is right

Noeiherian.

The condition (iii).

Since gr(S—lA) ~ 35!

gr(A) 1is commutative, this is well-known

—

(cf. [B]).

The.condition (iv) .

Define & = U (NAGKITY. Then ¥ 1is a multiplicative subset
keZ
of A(T) satisfying the conditions (m.1), (m.2) and therefore

§_IA<T> exists. On the other hand, it follows that

1 k

A (k) TK = (571

¥ly -8 (s

A)
K <

™°

Since A<f> is left and right Noetherian, this equality implies

IS

that so is (S <T>

We have thus shown that S—lA is a D-ring. q.e.d.

We now give examples of the ring of left fractions of A which

will be used later.

Example 2.35. The case phere S = {fn; n > 0} (f e gr(A),

homogeneous) .

— 27—
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For the sake of convenience, denote by §f’ Sr and Af, the

multiplicative sets S, S and S_IA, respectiveiy.
In particular consider the case where S =1 (that is, f = 1).

In this case, S = 1 + A(-1). By definition, we figd that

1 1

AY(n) = §
1

(S~ A(n) for any n € Z,

gr(S 'A) = gr(A).

If each element of 1‘+ A(-1) has its inverse in A(0), then

s 1a = a.

Example 2.36. The case where S = gr(A)-p (p is a homogeneous

prime ideal of gr(A)).

In this case, S

I

{f ¢ gr(A); f ¢ p}. For the sake of
s71a. |

convenience, put Ap
Lemma 2.37. Let f € gr(A) be homogeneous and let p be a
homogeneous prime ideal of gr(A). Assume that f ¢ p. Then

(A _g™1

p7Sp R P

Proof. It is not clear whether 3 = AF—S;IE is a
multiplicative subset of VAF or not. But this follows from the
primeness of p. On the other hand, it is easy to check that 3
satisfies the conditions (m.1) and (m.2). The rest of the claim is

shown by an argument similar to the commutative case. q.e.d.

Let S and S be as in Theorem 2.33 and let M be a left

1

‘A-module. Then the module of left fractions S *M is well-defined.



-As in Examples 2.35 and 2.36, we can define MF and Mp for a

homogenecus element f of gr(A) ‘and for a homogeneous prime ideal

p of gr(A), respectively.

Lemma 2.38. Let M be a left A-module and let f, g € gr(A)

be homogenecus. Consider an element s_lu € Mf with ¢ € Sf

(g (s) = f™ and u e M. Then for any t, t’ e Sg such that

1 1

o(t) = o(t’) = g™, we have (ts) “tu = (t’s) *t’u in Meg

Proof. It follows from (m.1) that there exist p € Sg and

gn, we take a q € S

p € A such that pt = p’t’® € Sg. If o(p) ¢

such that o(q) = f".  Then

qpts = qp’t’s € ng, qptu = gqp’t’u.

1

This means that (ts)_ltu = (t's) “t'u in Nfg. qee.d.

This lemma implies the following propositian.

Proposition 2.39. Let ™M, f, g be as in the previous lemma.

fq as follows. Let s_lu be an

Define a map @ of M to M

f,fg f
oM -1 _ -1
e If o(s) = f7, then ¢f,€g(s u) = (ts) “tu for

some t € Sg such that g(t) = gm. Then @

'F,fg 15 an

element of M

Ar—homomorphism.

The following proposition is also shown by an argument similar
to the case of commutative rings. Hence we do not give here its

proof.

— 3
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Proposition 2.40. Let M, f, @ be as above.

(i (”F)g = Mfg;

(ii) Mf = Mfm for any m € N, -

Let M, f and g be as above. Assume that D(f) > D(g).
Then g™ = fh for som h € gr(A), homogeneous and m > O. Then it
follows from Propositions 2.39 and 2.40 that there exists a natural
left Ag—homomorphism ¢F,§ of M. to 'Mg. The Fo]louiﬁg relations

are consequences of Propositions 2.39 and 2.40.

(2.6.1) If D(f) = D(g), then M; = Mg.

(2.6.2) If D(f> D D(g) O DB(h), then ¢F h oo ég h°¢f q*

Proposition 2.41. Let M be a left A-module and let

f € gr(A) be homogeneous. If u € M satisfies the condition that

u =0 in NP for each p € D(f), then u =0 in Mf.

Proof. Define I = AnnAu and introduce the induced filtration
on I from A. Show that WV(gr(l)) C V(f). Take
p e D(f) = X-V(f). Since u =0 in ”E’ there exists a t € A
such that tu = 0 -and that o(t) ¢ p. Since o(t) € gr(I), we find
that p ¢ V(gr(l)). Hence V(gr(I)) CV(f). This combined with |
(2.1.vﬁ)vimp1ies that f™ € gr(I) for some m > O. Then there
exists a t € I such that o(t) = f". This means that u =0 in

N¥. q.e.d.

Corollary 2.42. Let M and f be as in the proposition. If
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: HB = 0 for each p € D(f), then M. = 0.

This is an easy consequence of Proposition 2.41.

2.7. Sheaves on. Spech(gr(A)).

Let (A, {A(n))) be a D~ring and let X denote Spech(gr(a)).
We are going to define sheaves on X associated to A and left
A—modu]es.‘ In particular, the sheaf of rings A associated to A
is regarded as the structure sheaf on X in comparison with the
case of commutative rings.

Since gr(A) is Noetherian, it follows from the definition of
the topology on X that every openbéUbset of X is expressed of
the form D(?) for some homogeneous f € gr(A). Noting this, we
define a presheaf A on X as follows. For any homogeneous
f e gr(A), put AT(D(F)) = Ap. If DG D D(g), then the
restriction map pf’g:A“(D(F)) -+ A" (D(g)) 1is defined by
Pe,g = ¢f,g (cf. subsection 2.6). Let A be the sheafication of
A" .

Theorem 2.43. The following properties hold for the sheaf A.

(0) A is a sheaf of rings on X.
(i) .KE = A, for each p e X. | |
(i) T(H, B = AF~ for each f € gr(A), homogeneous.

Gii) T, %) = S71A, where S =1 + A(-1).

Proof. The claims (0) and (i) are nearly obvious from the

defihition. On the other hand, (@ii) is a special case of @i).

—_— 33 —
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We are going to prove (i). Define a map 9F:Af - I(D(F), r:9)

by the correspondence: If u € A (u) € T(D(F), R) is

g+ then P
defined by &d.(uw) = wu in AE for each p € D(f). Then what we
must prove is the bijectivety of b,

First show the injectivity of 9?' Take wu € Af and assume

that 9F(U) = 0. This means that v =0 in AE for any p e D(f).
Then Proposition 2.41 implies that u = O.

Next show the surjectivity of @ Take v € T(D(f), R). Then

f'
there exist Fl""’fm € gr(A), homogeneous and u; € Af for each
i

m ;
i such that D(f) = U D(fj) and that pf £ (v) = uj - For any i,
i=1 ' '
js consider the elements pfi’rifj(ui) and pfj’fifj(uj) of
Af P It follows from the definition that
i’

pfi’fifj(ui) = pfj,rifj(uj) in AB for any p € D(fifj). Then
Proposition 2.41 implies that pfi,f.f.(ui) = PF Jf f.(“j)' Now we

1 Jtig
need a lemma.

Lemma 2.44. Define

ju s
]

m ! "‘ . »
{(zi) € glAf'; ¢F.,f.¥.(zi) = ¢f. F.f.(zj) 7 i, i)}
= 1 1 1) J 1

X
1l

' m
{(zi) « MA.; ze€A, s.t. 2z, = (z) (Y i)} .

f i ¢¥,fi
Then H and K are left Ar—modules and H = K.

The proof of this lemma will be given later and we continue the
proof of (iii). By the argument before the lemma, we find that:

(Ui) €e H. It follows from Lemma 2.44 that there exists a wu € Af

pr £ (u))  for each 1i. This implies
, .
i

such that u; = ) (u) (=

f,f.
i




that GF(U) = Ve Hence 9f is surjective.

We have thus shown Theorem 2.43. q.e.d.

Proof of Lemma 2.44. It is clear from the definition that H

and K are left Af—modu1es and that K C H.
In virtue of Corolarry 2.42, it suffices to show that KP = Hp
for each p € D(f). Take p € D(f) and fix it once for all. By

definition, we have the following.

m
H = {(z.,)¢ T (A, ) : & (2.,) = ¢ (z.)
p 172 Fi P fi,fifJ. i fj’fifj‘¥J
in (AF.F.)E (¥i, i)
1 J
m Lo
KE = ((zi)eiEI(Afi)E; z € AB Sete z, = ¢f’fi(zi)
in  (Ag )E (Vi) } .

Here we wrote (Af )B for (AF.)S-IE y, etc. We may assume without

i i ~f.,
i
loosing generality that p 1is contained in D(fl). Then it follows
that (Afl)B = AE, (Aflfi)g = (A{.i)E for each 1i. Take
(Zi) € HE. Then put 2z = zy € (A{.l)E = AE. It follows from the
assumption that @, (z,) = ¢~ (z.)Y in (A ) -« Since
fl’Flfi 1 Fi’rlfi i Flfi P
¢f.,f ¢ = id(A y » we conclude that z;, = ¢€’¥_(z) in
i’1i Fi P i
(Afi)g (= (Aflfi)g). Then (zi) € KE and therefore the lemma is
shown. qe.e.d.

Remark 2.45. Assumé that each element of 1 + A(-1) is

invertible in A(0O). Then Theorem 2.43, (ii1) is‘réuritten in the
Foi]ouing form.

(iii*) T (X, &) =~ A.
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Similar to the construction of &, we can also define a
subsheaf A(n) of A for each ne Z as follows. For each
homogeneous element f of gr(A), put A (M) D(F)) = (Af)(n). It
follows from the definition that for homogeneous f, g € gr(A) such

that D(f) D D(g), @
(]

f,g:Af - Ag preserves the filtrations, that is,

(A M) € by (A M) (Vme Z). Hence A (n) defines a

f,g
presheaf. Let A(n) be the sheafication of A~ (n). From the

definition, each A(n) 1is a subsheaf of &A.

Theorem 2.46.

| (A>3 5 is a filtration on A&, namely, the following
relations hold:
AmA(n) € Am+nd), A =U B,
Furthermore, "

CA(m), An)1 C Atm+n-1).

Rn)_ =~ (A )X(n) for each p € X.
P P =

Theorem 2.47. Define gr(R) = e B(n)/A(n-1).
n

(1) gr(%) is the sheaf on X associated to gr(A).
(i1) (gr(?ﬁ))E = gr(A,) for each p e X.

(111> T(DH, gr(Z)) >~ gr(A.) for each f € gr(a),

f
homogeneous.

(iv) T(X, gr(A)) = gr(A).
Theorem 2.46 follows from the argument before it except the

last eqaulity whose proof is similar to that of Theorem 2.43. On

the other hand, since gr(A) 1is commutative, Theorem 2.47 is proved
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.by an standard argument for the case of commutative rings (cf.

CH

Let M be a left A-module. Then as in the case of A, we can
define a sheaf M of left A-modules. If M has a filtration

(M(n)3 then the sheaves M(n) (V¥ n € Z) and the sheaf gr(™

nezZ’

associated to gr(M) = M(n)/M(n-1) are defined similarly. UWe do
; n ,
not repeat the definition of them.

Definition 2.48. Let M be a left A-module. Then M is

called the left A-Module on X associated to M.

Similar to Theorem 2.43, we also obtain the following theorem

for a left A-module. Hence we omit its proof.

Theorem 2.49. Let M be a left A-module. Then the following

hold for the left A-Madule M.

(i) ﬁg.: ”P for each p € X.

Gi1)y T, M = MF for each f € gr(A), hombgeneous.

Gii) TX, ™ =~ ™M, where S =1 + A(-1).

Corollary 2.50. If M is a left A-module, then T =& ® Al
This follows from Theorem 2.49 and Proposition 2.32.

lRecall that for each sheaf

fien

on X, its support Supp(g) is

defined by Supp(8) = {p € X; §E # 03.

Proposition 2.51. Let M be a finitely generated left

—_37—
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A-module. Then Ch(M) = Supp ().

This is a direct consequence of Proposition 2.25 and Theorem

2.43, (i).

Remark 2.52. Since A 1is Noetherian, A is a coherent sheaf

of rings on X. Hence if M 1is a finitely generated left A-module, |
then ™ 1is a coherent A-Module. In this way, we can develop the
general theory of coherent sheaves for a D-ring. But this will be
not necessary in the subsequent discussions, we stop the‘arguments

at this stage.
2.8. MD-rings.

In this subsection, we always assume that (A, {A(n)2}) 1is an
MD-ring (cf. Definition 2.4). Then, by definition, there exist
u € A(-1) and v € A(1)  such that wuv = vu = 1. Define
£ =0(v) e gr,(A). Then o(u =§ ' e gr_ (M. By definition, we

obtain

aAln) = AOWVY, Aac-n) = au" (Va > 0.

1]. Then the natural

This implies that gr(A) = gr (AXL{,&
inclusion grO(A)C; gr(A) induces a homeomarphism of Spech(gr(A))
to Spec(grO(A)). defined by p — p(0) = gﬁgro(A). Its inverse is
defined by p(0) — @ g(O)fn. Now put X = Spech(gr(A)) and

X0 = Spec(grO(A)). ?n the sequel we frequently identify X with

XO by the above homeomorphism.
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For each homogeneous element f of gr(A), we find that

DCF) = D(EF) = DY), Noting this, we can take

{D(f); f € grO(A)} as a basis of open subsets of X = XO.

If f e gro(A), then 'Sf is contained in A(O) and therefore

(A () = S;l(A(n)) holds for each n € Z.

Definition 2.53. Let N be a left A(O)-module. Then

N = B0) N 1is called the left A(0)-Module on X associated to
A(O) :
N'

Theorem 2.54. Let N be a left -A(O)-module. Then the

following properties hold for the left A(0)-Module N.

~

(i) NP(O) ~ (Ap(o))(O) ® N for any p(0) € XO.
4 B ACO)
Gi) T, N = N, for each f e gr (A).

(iii) F(XO, N) = N.

Since the proof is similar to that of Theorem 2.43, we omit it.

Remark 2.55. If N is a left A-module, then A(0) ® N
ACO)

coincides with A GAN.

Proposition 2.56. If N 1is a left A(0O)-module such that
‘Supp(N) =@, then N = O.

Proof. Since the procedure of left fractions and that of
inductive limits are commute to each other, we may assume from the
first that N 1is finitely generated over A(O).

~

Define N = N/A(-1)N. Then N is a gro(A)-module. Let (N)

'"Q37—‘
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"be the gro(z)—-r’lodule on Spec(grO(A)) associated ta N. Since
Supp((N)™) C Supp(N), it follows that Supp((N)") =#. Then N =0
or equivalently, N = A(-1)N. We conclude from Lemma 2.7 that

N= 0' q-eodo
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'§3. Gabber’s theorem on the characteristic variety.

The purpose of this section is to prove a theorem on MD-rings

which is an algebraic version of Theorem 1.14.

3.1. A theorem on non—-commutative rings.

() »
Theorem 3.1 (0. Gabber). Let B be a left and right

Noetherian ring containing @ and satisfying the following
conditions (i) and (@i):

(i) There exists an element w e B such that w commutes
with every element of B, that u2 = 0 and fhat B = B/WB is a
commutative local ring.

(ii) There exist f, g € B such that w = [f, g] and that

fuB and 4guwB are contained in the maximal ideal of B.

Under the condition, if Q@ 1is a'left B-module of finite length

such that w@ = { u € Q; wu 0 2}, then Q@ = O.

Proof. (1) Let p:B - B be the canonical projection and let

n be the maximal ideal of B. Define m=p l(m). The assumption

that B is commutative is equivalent to saying that [B, B] is
contained in the left and right ideal wB of B. On the other

hand, since u2 = 0, wB 1is contained in the center of B. In fact,

(3.1.1) wB, Bl C wEB, Bl € w(wB) = O.

It follows from the assumption that Q = Q/w@ is isomorphic to wQ.

Then we find that @ has the structure of B-module of finite

._¢$/;_
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length.

(2) We now show that B is assumed to be left Artinian.
Since @ is a B-module, consider its annihilator ideal

{ae€ B; a@ = 0} of B. On the other hand, since @

I:= AnnB(Q)

is a finitely generated B-module, so is Q. Taking a system
{ul""’uN} of generators of Q@ over B, we definé a mapping

B> a- (adi)T=1 e @V. By (3.1.1), I is the kernel of this mapping

and we obtain an injection B/I - EN. Since 1 1is a bi-ideal of
B, this is a left B/I-homomorphism. On the other hand, v is of

finite length over B and is also of finite length over B/I.

Therefore B/1 1is left Artinian. This combined with that I/I2 is

finitely generated over B/I implies that I/I2 is also Artinian.

2

Then in virtue of the exact equence 0 - I1/1° - B/l2 - B/1 » 0 we -

find that B/IZ is also Artinian. Since 18 C w@, it follows that

2 2

129 ¢ 1ug € w2q = oO.

Hence Q 1is regarded as a left B/Iz—module. Replacing B with

8/12, we may assume from the first that B 1is left Artinian.

(3) Before continuing the proof, we need a lemma.

Lemma 3.2 (Cohen). Let C‘ be a commutative Artinian local

Q-algebra and let m be its maximal ideal. Then there exists a

subfield F of C such that C=F @ m.

Proof. The totality of the subalgebras R of C such that

RM m= {0} 1is an inductively ordered set. Therefore there exists
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a maximal element R of this set containing @ (by Zorn’s lemma).
Let =:C - C/m be the natural projection. Since RN m = {03,
x!R:R » C/m 1is injective. This implies that R 1is an integral

domain.

(a) R is a field.
Take an a € R (a # 0). Since a¢ m, a 1is invertible in C.

_13. Let b = a_nc € Ra (c € R) and

Consider the ring Ra = RCa
assume that =zn(b) = 0. Then =x(c)= 0. This implies that ¢ = 0
and therefore b = 0. Hence we find that Ra Nm={0}. The

maximality of R implies that a—1 € Ra = R.

(b) R+ m=C.

First note that there exists an isomorphism =#x:R = z(R).

Let x € C. Assume first that =(x) 1is algebraically
independent over the ?ield R(R). Then we have an isomorphism

between the polynomial rings
RExJ = n(RYIr(x)].

It follows from the maximal condition on R that x € RIxJ] = R.
Let x € C and next assume that =x{(x) 1is algebraic over

#(R). Let f(X) be the minimal polynomial of =m(x) over xn(R):

(Here we idenitified a; with x(ai).) Define inductively € C

(k = 1,2,3,...) such that
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Xk = x (mod m)

(3.1.2)k K
F(xk) = 0 (mod m ).

First put x1 = %x. Assuming the existence of X\ satisfying
(3.1.2)k, Wwe prove the’existence of X1+ satisFying (3'1’3)k+1’
Let f*(X) be the differential of f(X). Since R 1is of
characteristic O, it follows that

n(F’(xk)) = P (r(x,)) = f'(x(x)) # O. Namely, f’(x

k
therefore F’(xk) is invertible in C. Put

K ¢ m and

o "1
= -f (xk) f(xk)‘

k

x <

Then by the hypothesis of induction, f(xk) € m. Hence y € nm and

y e mk+1 (j > 1>. Now put Xeep = X T Ve Then X141 = X1 = x

(mod m). Taking the Taylor expansion, we find that

k+1

f(xk+1) = f(xk) + f’(xk)y = 0 (mod m ).

We have thus shown the existence of LI satisfying (3.1.3)k+1.
On the one hand, since C€C 1is an Artinian ring, it follows that
mk = 0 for a sufficiently large k. Take such a k and fix it

once for all. Then F(xk) = 0 and we have R(xk) = (R (X)),

Since R C R(xk), the maximality of R implies that

"k
Therefore x € R + m.

i

Putting R F, we obtain the lemma. q.e.d.

(4) Since B = B/wB is a commutative Artinian local ﬁ—algebra,}

we apply Lemma 3.2 to B. Then it follows that there exists a

subfield F of B sch that B=F®m. Since B is Artinian, we

find that B, @ and ék/@k+1 are finite dimensional vector spaces -

e R(x,) = R.!

%
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" gver F.

Take an F-basis 51""’Er of Q (we denote by Ei the class

of e, € Q@ in Q) as follouws:

= =k _
"y < ro < o0 < Py =M Mo = 0

s L o.., o e 2@ form an F-basis of mia/mitla
r.+1 r. = = =
i i+1
(6 < i < k-1).

Then it follows that
nl@= S Fe. (0 <i<k-1).

Now fix 1 and consider fei. By definition, there exist

=

ji € B such that fe; z FJ Then fe, - z FJ € w@. As

itj’ 17

was noted before, w@ is identified with Q. Hence there exist

1 _ _ 1
FJi € B such that e1 Z FJl j = Z F..uej. By the same reason,
, 0 1
there exist Gji’ Gji € B such that ge, % Jl J Z G
Hence we obtain rxr matrices FO = (F?i)’ F1 = (Fj.i GO = (G:.),
G1 = (Gji). These matrices are so taken that the following

conditions hold.

0

i) The entries of p(F7) (= (ﬂ(F?i))), p(F1

0

y, 2%, ach

are contained in F.

ity F% and ¢°

are zero.

In fact, since f, gem, if r <i<r

- - =
U A then e, €m Q@ and

ng € 5v+1§ = 2 FEJ. Therefore we may take
J>ru+1
fe.= S oF%rs., p(F%) e F,
i iSe Jji’ v ji

are lower triangular matrices whose diagonals
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ji 2 Mo+t

This implies that FO satisfies ii). Since

€ ~ Z FJI j € w@d = Q@ and since 'we‘j (§j = l.f..,r) form an

1

F-basis OF‘ wQ, it follows that F satisfies i).

By direct calculation, we find that

fge, = f(%(@yl y g 6l we )
= E(Gsifeu + 6lufe, + [F, 6O e
= E,J(GSIF?U i+ GSiF}Uuej + GiiF?vueJ) + %[F,G?iJeJ
= E;J(GSIF?UeJ + WFL G e WO, Bl + %cr,e?ijej

(Here we used (3.1.1).). Now put

= Z(G O _ g0 g0

Jl vi Jv vi JU)

o0, _ 0 4 _

Note that (A..) and (Hji) are lower triangular matrices whose

Ji
diagonals are zero and that p(AiJ) € F. Then it follows that

we, = Fgei - gfei

0

I

1
2 Ajiej + 2 (CF*, G

1+ cF%, gli + HY | jue ;.
J

This implies that

> P(Aii)ej = 0.
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Since {Ei} are linearly independent and since p(Aji) € F, we have

p(A..)> = 0. Then there exists an  A’. € B such that A.. = wA’..
Ji Ji Ji Ji
Put B = (Bji) with Bji :\A}i + Hji' Then
ve, =3 + F%, 6l1 + trl, 6% . .e..
1 j J1 J

This combined with Q = wQ implies that

e, I 3(B + tr®, 613 + cF!, GOJ)jieJ (mod wQ).

J

Nouw we show that there exists a lower triangular matrix

B’ = (B..) (B.. € F) such that B’. = 0 (7 i) and that
J1 J1 i1

S B..e. =3 B%.e..
J i v

o Then it follows from the definition of B..
v = ‘p+l Ji

>B..e. = 2 ( 2 B..e.),

. . J1 J
v+
J u=p+1 PM<J£Pﬂ+1

where BJiEJ e m“Q@. On the other hand, since e; € m @, it follows

that

k-1

5 5 Byepe raacwlas 30 Fe.
w=v+1 Pu<J<Pﬂ+1 Mo v J>PV+1

This assures the existence of the matrix B’ with the required

properties.

__¢¢7._
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From the definition, we find that

0 1 1 0

Ei =2(B" + [p(F), p(G)] + [p(F), p(G

; )J)Jle.

J
It follows from the freeness of the basis (EJ) that

1 =8 + 0%, peH1 + toEL, 26 3.

Taking the traces of both sides of this equation, we find that
r = 0. This is a contradiction. This means that @Q = O, that is,

w@ = 0. Since Q@ = Q/uQ, we conclude that @ = O. q.e.d.

3.2. Involutive subsets of Spech(gr(A)).

Let (A, {A(n))) be an MB-ring and put X = Spech(gr(A)).
Following Definition 1.6, we introduce the notion of an involutive

closed subset of X.

Definition 3.3. Let Y be a closed subset of X. Then Y s

called involutive if ({ICY), I(Y)} C I(Y), where I(Y) 1is the

defining ideal of Y.

Let Y be a closed subset of X. Then define an increasing

sequence {Ik}k>0 of homogeneous‘ideals of gr(A) asyfo]]ous:

I. =1, 1

= ' .
k+1 v k+{lk,lk} (k > 0)

Since gr(A) 1is Noetherian, this sequence is stationary and
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'therefore there exists an integer N > O such that In = IN for
any n > N. Define I = Iy . Then, by defnition, VI = 1 and
{I, I> € 1. 1n particular, V(I) 1is involutive. Since V(I)

depends only on Y, we denote it by R(Y) in the sequel.

Lemma 3.4. The.closed subset R(Y) has the follouwing
properties.

(i) R(Y) 1is involutive.

(i1) Let Z be an involutive closed subset of X contained

Y. Then Z is contained in R(Y).

This lemma is clear from the arguments above.
The following theorem is fundamental in,the subsequent

discussions.

Theorem 3.5. Let A be an MB-ring. Let M be a finitely
generated left A-module and let Nv be a sub—-A(O0)-module of M.

Define

Q={peX; N is finitely generated over A(O)

M a neighbourhood of P 2.
Then Z = X-Q is an involutive closed subset of. . X.

Proof. It is clear from the definition that ‘Z 1is a closed
subset of X. Hence it suffices to show that Z 1is involutive.
Let Ugpevns Ul be a generators of M over A, that is,

M=3 Auj. Define L = 2 A(O)uj. Then ¢learly, M = AL.
J J :

— 47—
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Furthermore define N(j) =N M A(jOL. Then
increasing sequence of sub-A(0)-modules of N
N = U N(.

J

{N(J)}Je[N is an

such that

The following two lemmas are easy to shouw.

Lemma 3.6. Let p be a homogeneous prime ideal of grO(A).

Then NE is a finitely generated A(O)B—module if and only if the

sequence {N(J)E} is stationary.

Lemma 3.7. Let w € A(-1) be invertible. Then for every

J € N, the map ﬂu ¢ N(JI/N(j—=1) — N(j-1)/N(j-2) defined by

U~ wu 1is an injective grO(A)—homomorphism.

We return to the proof of Theorem 3.5. Assuming that Z is

not involutive, we ‘lead a contradiction.

there exist
assume that

assume from

f, g€ 1(Z) such that h = {f,

f and g are homogeneous.

the definition of an MD-ring that

Then by the assumption, ﬁ

g} ¢ I(D.

f

and

Furthermore we may also

g

We may

are both

homogeneous of degree O. Hence it follows that h €

the assumption, there exists p € Z such that

with D¢(h), Z with Z N D), A wvith A M wit

h’
is invert

with (Ah)(O)OA(O)N, we may assume that h

Hence we may assume from the first that there exist

ge I(2H) N grO(A) such that h = {f, g} e gr_,(A) i

1

Let (N(j)/N(j—l))N denote the gro(z)—ﬂodulefon

XO = Spec(gro(A))

define

associated to the grO(A)—module

Z; = Supp ((N(jI/NCi-1)0").

. C 7. i . LY. i
ZJ ZJ_1 for every j € N Hence {ZJ}JGN is a de

h ¢ p.

NCGJI/NG-1)

It follows from Lemma 3.7 that

gr_l(A). By

Replacing X

h Mh

ible in

and N

gr(A).

f,

s invertible.

and

creasing




- gequence of closed subsets of XO’ Since grO(A) is Noetherian,

this is stationary, namely, there exists an integer > 0 such

J
0
that Z; = Z; 7> jg)+ On the other hand, we find that
0
Z =N Zj’ In fact, it follows from Lemma 3.6 that p € Q@ if and
J

ognly if (N(j)/N(j-l))P =0 (j 2% jl). This is equivalent to
saying that p ¢ ZJ G 2 Jl).

Let p be a generic point of Z. This means that there exists
a neighbourhood U of p such that ZNU = {p} N U. Now localize

A, M and others at p. Namely, we replace A with AE, M with

My N with (A (08, (N, Aol

Spec(gro(Ap)) and Z with {p}. Hence we proceed with the

L with (AE)(O)® X with
discussion by assuming that Z = {p} and that gro(A) is a lgcal
ring with the maximal ideal p.

In virtue of the above discussion, we assume that p 1is the
unique closed point of X and that Supp((N(j)/N(j=1))") = {p3
J 2 jo > 0). Since N(jI)/N(j-1) 1is a finitely generated
grO(A)—module, we find that EP(N(J)/N(J—I)) =0 for some r > O.
Since gro(A) is a locél ring with the maximal ideal p, it follous
that QPO(A)/BP is a grO(A)—module of finite length. These imply
that N(j)/N(j-1) 1is of finite length as a gro(A)—mudule. Let fi
denote the length of N(j)/N(j-1) as a grO(A)—module. Then it
follows from Lemma 3.7 that {rj; J 2 JO} is a decreasing sequence
of positive integers and therefore is stationary. Hence the
grO(A)—homomorphism £ NCD/NG-1) — NG-1/N(G-2)  is bijective
for a sufficiently large j. Now take Jj >> 0 such that this is
actually bijective and fix it. Define B = A(0)/A(-2), w € B (the
class of w), @ = N(j)/N(j-2). Then the assumptions of Theorem 3.1

hold for B, w, Q. In fact, we have the following:

—§/—
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=2

(a) w® =0, w is contained in the center of B and

B/wWB = gro(A) is a commutative local ring with the maximal ideal

m = p/uB.

(b) Let f and g be the classes of f and g 1in B,

respectively. Then f, ge p and [f, g1 = We

(¢) Ker(@ =5 @) = uaq.

12

() Ker(@ =25 @) =~ {u e N(j); wu € N(j-2)3I/N(j-2)

NCG-1)/NG-2) .

114

On the other hand,

We = (WNCJI+N(j-2))/N(j-2) = N(j-1)/N(j-2).

Hence applying Theorem 3.1, we conclude that @ = O. This
means that N(j)/N(j-1) = 0 and therefore contradicts that
Supp((N(j)/N(j—l))N) = {pl.

We have thus shown that Z 1is involutive. q.e.d.

Corollary 3.8. Let A be an MD-ring. Let M be a finitely

generated left A-module and let N be a Finite1y generated

sub-A(O)-module of M. Let 2Z be a closed subset of X such that
R(Z) =®. Define

N’ é { ue M ¢B(u) € (AE)(O)GA(O)N for any p € X-7Z 2.

Here ¢E is the natural homomorphism of M to ME.' Then N’ is a

finitely generated A(O)-module.

Pboof. As in Theorem 3.5, we define a subset Q of X by

Q=(CpeX; T#fegrgA s.t. (1) pe D

‘—"ETZ —_



(2) (N’)f "is a finitely generated

Teft (A{)(O)—modUYe 3.

- We now.show that Q = X. In fact, if p e X-Z, then it is
clear that 'NE(O) =‘NE(0),1uhere p(0) = gﬂgro(A). This implies
that p € Q. Hence X-Q 1is contained in Z. Theorem 3.5 shous
that X-Q is involutive. But R(Z) = @#. Hence, in virtue of Lemma

3.4, we find that Q@ = X.

Since X ' is quasi-compact and since X = Q, we may assume that

there exist a finite number of elements of grO(A), say f o T

1,... r

r

such that X = U D(fi) and that (N’)f is a finitely generated
o i=1 i

left (Af Y (O)-module for each i. Furthermore we also assume that
i

m -
3 14 ] -
there exist wu,,...,u € N* such that (N ){.i = kEI(AFi)(O)uk._ Now
define N'" = 2% A(O)uk. Then N" is a finitely generated
k

sub-A(0)Y-module of N’. On the other hand, from the assumption, we

have (N’/N“)F =0 (1 <1i<r). Then it follows from Proposition
i » ‘

2.56 that N = N".

We have thus shown Corollary 3.8. q.e.d.
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§4. The characteristic variety of a coherent §X-M0dule.

In this section, we complete the proof of Theorem 1.1 and
discuss the properties of the characteristic variety a little more.
The notation introduced in §1 are used without any comment.

T

4.1. An extension theorem for a coherent gX—Module.

Throughout this section, Q denotes an open subset of T*X

unless otherwise stated.

Lemma 4.1. Let [0 be a coherent g*—ﬂodule defined on Q.

Assume that 1here exists a system {ul,...,um} of generators of [

over §x defined on Q. Define N(k) = gx(k)ui for each

m
i=

/ 1
k € Z. Then Supp(l]) = Supp((0)/P(-1)).

Proof. It is clear from the definition that
Supp (D) O Supp(l(0)/M(-1)). UWe are going to prove the converse
inclusion. Let p ¢ Supp((O)/N(-1)). Since N(-1) = gx(—l)Q(O),
it follows that gx(—l)pQ(O)P = Q(—I)p c Q(O)p. Then Ndkﬁquq@
Lemmqimplies that Q(O)p'= 0. Since [ = E,H(0), we conclude that
DP = 0, whence p ¢ Supp(lD. q.e.d.

This lemma implies the following.

Proposition 4.2. Let @ be a coherent gx—ﬂodule defined on

Q. Then its support Supp(ll) 1is a closed analytic subset of Q.

Proof. The question being local, we may assume from the first

=



: m
that 1 1is generated by sections of T(Q, M), say, I] = < gxu
i=1

holds on Q@ for some uj,..., u_ € T(Q, M. Then

m

Moy = Z’EX(O)Ui is coherent over EX(O). Furthermore, N(O)/M(-1)
- i=1" ' ' I - -

is coherent over Qpsy. Hence Supp(H(0)/U(-1)) 1is a closed
analytic subset of Q. Then Lemma 4.1 implies the proposition. -

q.e-d.

Definition 4.3. Let [ be a coherent gx—ﬂodﬁle defined on Q.

Then a coherent sub—gx(O)—Noudle L of B 1is called a lattice of
B if O =E,L holds on Q. ‘

The next theorem due to 0. Gabber plays a fundamental rale in
the proof of Theorem 1.1 as well as in the definition of a system

with regular singularities whiehwill bedevetloped—in—the—subsequent
(cf. 51)
seetions.— Before state the theorem, we need a .preparation. Let Y

be a closed analytic subset of Q. - Then Y 1is called homogeneous

if there exists a homogeﬁeous closed analytic subset Y of T*X

such that Y =Y nNaq.

Theorem 4.4 (Ogéabber). Let Y be a homogeneous closed

2
N

analytic subset of Q. Let . j:Q-Y Q;Q be the natural projection.

Assume that there exist f, g € T'(Q, QT*X(O)) such that

fIY = gl¥Y = 0 but {f, g3(p) # O for any p € VY.
Let M be a coherent (gxIQ)—MOdule and let N be a lattice of
M. Then #UnN j*j_lg is a coherent E,(0)-Module on Q.

Proof. (1) Define N =8N J*j~1y. " Then it is easy to show

that Ey(0) acts on N' and therefore N is an E,(0)-Module.
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Furthermore, define an increasing sequence {gk; k = 0,1,2,... of

left EX(O)—Hodules,~inductively, as follows:

Note that N, = N on Q-Y for every k > 0.

(2) Each Qk is a coherent EX(O)—Nodule.

Proof. Ue prove this by the induction on k. It is clear from
the definition that N, is coherent over E,(O). Hehce'assuhing

that N, is coherent over E,(0), we show that so is N, ,,. Since

O0-—> N —> N

K Niesr 7 Nisy 7ty

—_— 0

is an exact sequence of gx(O)—Modules, it suffices to show that
Ny+17N, 1is coherent over E,(0), or equivalently, is coherent over
Og#y(0). By definition, we have

§k+1/gk = { u e gx(l)gk/gk; supp uCY 3.

Let ; be the defining Ideal of VY in QT*X' Then it follows from
the Nullstellen Satz of Hilbert that

(401-1) gk+1/§k =:dU0 Ed’

where Ey = ( u e E (DN /N5 (INQpwy 00)% = 0 3. Since

‘QT*X(O) is a Noetherian sheaf of rings and since each g& is
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‘coherent over QO (0), it follouws that the
increasing sequence {Ed} is locally stationary. This combined
with (4.1.1) implies that §k+1/§k is coherent over QT*X(O) on

Q. Hence we conclude that §k+1 is coherent over gx(O). q.e.d.

(3) Define Sk = Supp(gk/gk_l). Since each gk/gk_l is
coherent ogver QT*X(O)"it follows that {Sk; k =1,2,...} 1is a

sequence of closed analytic subsets of Q  and that each Sk is

contained in Y. On the other hand, it is clear from the definition

that Sk C sk—l' Hence (Sk} is locally stationary. This implies

that S = N Sk is a closed analytic subset of Q. Since S CY,
k=1
the definition of Y implies that S does not contain any

involutive closed subset.

(4) S = Q’ or equivalently, the increasing sequence {ﬁk} is

locally stationary.

Proof. Assuming that S #sz, we lead a contradiction. Thus

take a p € S and fix it once for all.

Now put A = Ey, » A(m) =E.(m , M=10,N=N, N =

=p’ "k k’p
(Vken and 1 = ;Y’ where 1 is the defining Ideal of Y in

Iz

QT*X' As was noted before, A 1is an MDB-ring, M 1is a finitely

generated left A-module and N 1is a finitely generated A(O)-module
contained in M. Put Z = U(I). Since the germs of f and g at
p afe contained in I but ({f, g} is iﬁvertible. it follows that

k
increasing sequence of finitely generated left A(O)-modules.

R(Z)==¢. On the other hand, it follows that {N, 3} is an

We are going to show that each Nk is cantained in the left

k7
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'A(O)-module N* defined by

N* = {u e M; ¢E(u) € (AE)(O)N for any p € Spech(gr(A))-23,

where ¢B is the homomorphism of M to ”E defined by u -1 "u
for each u € M. For this purpose, define a left Ideal J of

Ex(0)1Q by J = (P e E01Q; 0,(P) € [NQru, (0} and also define

o
J = gp. Since Y is homogenegus, it follows that

Told) = QW(QT*X(O)IQ) and that 1 1is a homogeneous ideal of A.
On. the other hand, it follows from the definition of N, that

u € Nk if and only if wu € A(l)Nk_1 and JMu € Nk—l for some
me N_. Let p e Spech(gr(A)) be such that p ¢ Z. Then there
exists a homogeneous element h of I such that h ¢ p. Take a

P e J such that o¢(P) = h. Then for each u € N it follows that

k’
m , . . v
P7u € Nk—l for some m € N, . This implies that wu e (Nk—l)g = NE.
Hence it follows from the definition of N* that u is contained
in N? .

- Since R(Z) =@, it follows from Corgllary 3.8 that N’ is a
finitely generated left A(O)-module. Since (Nk} is an increasing
sequence, this implies that this sequence is stationary. "Then
Nk—l = Nk for a sufficiently large k. Hence (gk/gk—l)p = 0, or
equivalently, p ¢ Sk for k >> O. This contradicts the assumption

that p € S.

(5) Define N" = U gk' Then it follows from (4) that N"
k=0 . :
is a coherent gx(O)—Modu1e. On the other hand, the equality

N" = Ey (1ON" N J*j—lg” follows from the definition of N, .



Proof. It is clear from the definition that N" € N’. Hence it

suffices to show that N' € N". Since N C N" and since [ = EXQ.
it follows that [0 = gxg“ = U gx(k)g“. This implies that
k
N = U (NN Ex(k)u“)- Therefore if we show that
- k>0 - -

N M E GON" = N N Ey(k=1)N" for every k 2 1, we conclude that

Iz

* = N M ELON" C N". Take p e Q and fix it once for all.
Assume that k > 1 and take wu e (N N gx(k)g”)p. We may assume

that u 1is a section on a small neighbourhood U of p. It

follows from {55K}<1 that there exists P e I'(U, gx(l))
which is invertible at p. Then Pl_ku € Iy, gx(l)g"). On the
other hand, since ul}(U-Y) e I'(U-Y, N) and since Pl_k € gx(O), it

follows that (Pl—k

1‘ku € g;. Hence u € (gx(k—l)g”)p and therefore

wl-Y) € T(WU-Y, N). These combined with (5)
imply that P
(A N EgGOND € (W N Ey(k=DN™ . This holds for every p € Q.
Hence N’ N Ey (kON" C N’ N Ey(k-1)N". UWe have thus shown that

N' C N" and therefore that N' = N'. |

(7) It Follous from (5) and (6) that N* 1is a coherent
Ey(0)-Module.

We have thus proved the theorem completely. q.e.d.

4.2. Proof of Theorem 1.1

Theorem 1.1 1is a cOnsequence of Theorem 4.4,

Theorem 1.1 (repeat). Let [ be a coherent gX—MGdule defined

on Q. Then its support Supp(l]) 1is an involutive closed anailytic

— 57—
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" subset of Q.

Proof. Define Y = Ch(ID. Then it follows from Proposition
4.2 that Y 1is a closed analytic subset of Q.

Assuming that Y is not invelutive, we lead a contradiction.
Then there exist p € Y and holomorphic functions f, g defined in
a neighbourhood of p such that flY = glY = 0 but ({f, g)(p) # 0.
Then replacing Q with a small neighbourhood of p, we may assume
from the first that {f, g}(q) # O for any q € Q. Ue may also
assume that there exists a lattice L of [ defined on Q. If
JMNY G Q is the natural inclusion, it is clear from the definitinnﬁ
that pnN J*jﬁlg coincides with [ itself. Then Theorem 4.4
implies that U 1is a coherent E,(0)-Module. Take q € Y and fix
it once for all. Noting that Y 1is homogeneous, we find from
Efjkﬂ<} that there exists an invertible element
E e Ey(-1) . Hence [ = EE ', CEH, CE (-1 .. Then
Nﬁkﬁyama%L£mwxﬁvimP]ies that Qq = 0. This contadicts that

q €'Y = Ch(g)c q-e.du
Theorem 4.4 is slightly generalized as follows.

Theorem 4.5 (0. Gabber). Let Y be a homogeneous closed

analytic subset of Q. Let j:Q2-YG Q be the natural inclusion.
Assume that for each p € Y, there exist holomorphic functions f, gj
defined in a neighbourhood of p such that flY = glY = 0 but
{f, g3(p) # O. | .

Let [ be a coherent gx—Module defined on Q and let N be aj

coherent sub—gx(O)—Nodule of ¥ defined on Q. Then
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N =8N i '8 is also a coherent E,(0)-Module.

Proof. The question{beiné local, we may replace Q with a
small open subset of it if necesséry. Take a p € Y and fix it
once for all. Then we may assume that there exist holomorphic
functions f, g defined on Q such that flY = glY = 0 but
{f, g} 1is invertible on Q.

We show that N C gxg on Q. In fact, take an element
u€ N . Then we may assume that v € I'(U, 1) for some open subset
U of Q. Since the §x~module L = (Exu + ELN)/EN  defined on U
is coherent over Ey, it follows from Theorem 1;1 (proved just
before!) that Supp(L) 1is involutive. On the other hand, since
ul (U-Y) is contained in T (U-Y, N), it follows that
Supp (L) CUMNY. Noting that Y does not contain any involutive
subset, we find that Supp(L) = g, or equivalently that
Eyu + ExN = E4,N on U. Hence u < E/,N and we conclude ihat
N C Eyly-

From the discussion above, we may replace [l with the
sub—gx—mddule gxg of it. Then g is a lattice of M. UWe find

from Theorem 4.4 that N’ is coherent over gX(O). q.e.d.

G-
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