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§1. Introduction

This report deals mainly with the Lévy Brownian motion {X(A), A GE’Rd),
vhich serves as a guiding model throughout the theory of Gaussian random fields.
A new method of the study of the Brownian motion is illustrated in the following

three steps.
I. Ve first restrict the parameter to a curve C in a class € of C™-curves

in RZ space, then we are given one parameter Gaussian process, { X(t)=X(A(t));
A(t)E C)}, when the parameter A(t) goes along the curve C where t is taken
to be the arc length along C. The canonical representation theory can be appli-
ed to see the structure of X(t) such as the Markov propert&.
I1. Since the way of dependency of the BrowniAn motion is our main interest, we
study the conditional expectation E[X(P)/C] ( = E[X(P)/X(t); A)E C] ) and
further discuss the behaviour of the kernel function of E[X(P)/C], expressed as
a linear functional of X(t), A(t)EC.’
ITI. VWe see from II that the conditional expectation can be viewed as a random
functional of the curve C and hence the variation of which should be studied.
By observing its variation, when the curve C ‘changes, Qe might be able to see
the way of dependency.more clearly. Having been motivated by the expression of
the variation 8 E[X(P)/C], we discuss the normal derivative of X to observe
the singularity of particular type.

To see the profound characteristic properties of Lévy’s Brownian mofion, ve
compare it with other typical Gaussian random fields, namely Wiener process and

Ornstein Uhlenbeck process, from our view points.,



§ 2. Canonical representation and conditional ‘expectation

In this section we discuss the canonical representation of the Levy Brownian
potion on a smooth one dimensional manifold C in Rz‘which is taken to be a

simple curve of Cg-class, passing through the origin and then obtain the -
conditional expectation when the Levy Brownian motion is,given on the curve C .
Denote the Brownian motion X(A(t)) at the point A(t) on C by X(t), t being
taken to be the arc length along C with A(0) = Of Then we are given one-
dimensional parameter Gaussian process {X(t)/ A(t) € C) with X(0) = 0. First
ve consider the particular case where C is a circle and so the process can
be written as {X( 6)/0 = 6<2xn}. The covariance function of‘X( 0) is express-

ible as

/

(2.1) T( 8, 6)= sin( 8/2)(1-cos(072))+(+cos(8/2))sin( 672), 020

which tells us that if there exists the canonical representation, the kernel
function has to be a Goursat kernel of order 2. Then we can prove the following

‘theorem by using the canonical representation theory (see [6]).

Theorem 2.1 The Brownian motion X(08) on acircle is a double Markov

Gaussian process and has the canonical representation
0 . , o : . N :
X(0)=[ {sin( 8/2) (cosec(8 '/2)- C°t(92' 74 h( 8))* cos?(0/4)h( 8))dB( 6)
0

vhere h(8) = {1+ ( 8/8)tan( 6/8)) 1.

Ve then take a curve C, starting from the origin, in a class C of C3 S

curves in RZ  and obtain an infinitesimal equation y
% o
(2.2) dX(t) = dB(t) + dt JG g(t,u)dX(u) + o(dt)

by using the fact that a part of C can be locally'apprdximéted” by an aré of

the osculation ¢ircle since the curvature of'C%is'Iocélly bOuhded.lThé’follbﬁihg
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theorem can be proved by using (2.2).

Theorem 2.2 The Brownian motion on C &€ € has the canonical representation

. . )
(2.3) | X(t) = fo F(t ,u)dB(u)

vhere
T t

. T
(2.4) . F(z,u) =1+ fg_(t,u)dt + fdtfdulg(t,ul)g(ul,u) + ...
u u “u

in which g 1is the solution of the Fredholm integral equation

t

(2.5) 7 (s) =f ¥ (s;u)g (u)du - g (s), 0<s<t,
: . 0

vith gt(u)‘ and )ft(s) denoting g(t,u) and ¥ (t,s), respectively for fixed t.

The kernel function ¥ (s,u) in the expression (2.5) is symmetric and can be

determined by

2
i3 (s’l_l) y (s,u) - & (s-u),

vhere I'(s,u) is the covariance of X(s) and X(u), and wvhere 8§ is the delta

function.

The conditional expectation E[X(P)/C] can be written as a linear functional

of X(s)

(2.6) EX®/cl = [ £@5)K(s)ds
C

in which fc ‘may involve some generalized functionms. However, it can also be

exp;essed in the form

(2.7 EX@)/C] = [gc@9)bis)ds
C

vith an L2 ~kernel function £ in terms of the white noise ﬁ(s) which comes

from the canonical representation of X(t). We give explicit expressions for

J



some simple cases in the following examples.

Example 2.1 Let C be a line segment [0,al. Then the kernel function f,
in the expression (2.6), can be decomposed into two parts in the form,
fc = fl + fz 9
where
flﬁp—:} and f2= caSa s
vhere p - denotes the distance between the point P and a general point A(s) on

c, & a being the delta function at the boundary point a and c_ is a constant

a
depending on a and_ P. However, if we change to the second form, the kernel

function gc is obtained as an Lz—function,

gc(P,u) = Zfl(s)ds e,

Example 2.2 (A. Noda) Let C, be a half line {(x,1); x = a), not pass-

ing through the origin O. Then the Lévy Brownian motion restricted to C is a
double Markov process taking X(0) = 0 and we can compute the conditional ex-

pectation
EX(0,2)/X(x,1); x = a] = f £(s)X(s, 1)ds
Ca

in vhich f (s) is obtained as

fs) =b(s?+ D¥% 5,

wvhere b and ’ca are constants depending upon a.
Example 2.3 Let C be a circle segment [a,8], a= 0<B < 2x. Then the
conditional expectation E[X(P)/C] can be written in terms of Z(s) which is a

strictly double Markov process such that X)) =B (Z) ( see [6]) as follows:
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(2.8) EDXP)/C) = [ £(P,s)Z(s)ds
c

vhere
fo= fut*fp*iy
in which
-3
flloc o
o being the distance between P and a point 6 on C and f12 is indepndent

of p and where
/

/
fg = ca1%a * cp10p*tcerdy *cprlp
Cui and ¢ Bi being constants. As in the above example, we can also find the

kernel g which is an Lz-function.

Remark In Example 2.1, if "a" tends to infinity then fZ (& -function at

the boundary point "a") will disappear. Similarly in Exaﬁple 2.3, if the curve
is Cldsed, i.e. a circle (a=0, B=2=), we do not need &-functions (see [6], .

§ 3, Example 2).

§3. Variation of the conditional expectation

As was discussed in the previous section the conditional expectation

E[X(P)/C] can be viewed as a functional of the curve C. We are now interested

in its variation when the curve C varies in a class € of C™-curves. The
variational calculus of random functionals (of a curve C) has not been much
discussed yet, however; the S-transform, in Hida’s calculus ([3],[41), carries
them to ordinary functionals on a function space, so that we can appeal to the
classical variation theofy of ordinary functionals.

Ve know that the Levy Brownian motion X(A) can be expressed by
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@G0 X@) = c(@) [ D2 y@aw; werd,
~S(A)
in terns of white noise W ,'where
(3.2 S() = {u; (u,04) = tu1?)
and o |
(3.3) c(d) = ( 2D ’3? sind™ 20 db}VZ.'
A o s |

The S-transform of X(&) is
G @ = @ fr @D g wa.
S(4)
Now we can rewrite the higher dimensional version of the expfession 2.7,

for fixed P, in terms of white noise W and so the S-transform of E[x(p)/C],
denoted by U(C, £), is obtained as follows. |

(3.5) b, £) = fdsf(c,s)fg(s,a) £ (udu,
C rd |
vhere
() @072

3.6 yu) =
(3.6) Ag(SU) ¢(d)xS(A(s)) |

By appealing to the Lévy variation formula (see [1]), the variation of U(C, &)

can be expressed by
SU(C, &) =fds{ 3 f(C,s) —xf(C,é) ) n(s)?[g(s,u) £ (u)du

3.7 P ‘ .
+ fd;f(c,s) 8n(s)f_a,_ﬁ g(s,u) & (u)du,

vhere d/ dn and Jn(s)- denote the normal differential operator and the dis-
tance between C and C+ §C at the point A(s) respeétively, and where 8 f(C,s)
is the variation of tﬁerkernel f and 'k is the curvature of a curve C (see
[7]). This formula would guarantee the existence of the stochastic version
SE[X(P)/C] which is expressed in the form

{



SEIX(P)/C] = f (6£(C,5) - x£(C,s)8n(s))X(s)ds
(3.8) C |
+f f(C,s)i__X (s) 8 n(s)ds.
C aﬂ

The normal derivative dX/dn, appeared in this formula, suggests us to think of
 its probabilistic structure, and then, in the simplest case of a circle C, we

obtain the following proposition.

Prop_o»sition 3.1 Let {X(8) = X(A(8)), 0 £ 0= 2x) be the Levy Brownian

motion on a circle C ( C R2 ) with radius t. Then the normal derivative

dX/odn on C is neither an ordinary process nor a generalized process, however

it is well defined as a generalized process over RZ.

This proposition can be easily extended to the cases of C being taken as
(i) a straight line and (ii) a general curve in the class €. In addition, we

can prove a more general result which is described in the following theorenm.

Theorem 3.1 Let X(4), A € Rd, be a Gaussian random field such that
(3.9 E[X(A)] = 0, ELX(A)-X(B)1% = cpo (4,B) + ¢ (p(A,B)), c >0,

vhere p is the Euclidean distance in RY and vhere ¢ is_:a‘ CZ(O, oo )-function

vith ¢(0) = ¢/(0) =0. Let S be a (d-1)-dimensional surface in R4 which

is an ag&\ytic manifold. Then y »
(i) for d = 2, BX/an[S is not well defined, wvhile @X/dn is well defined

as a generalized Gaussian random field over Rz,

(ii) for d > 2, akX/ ank_

g » k = (d-1)/2, exist as generalized Gaussian

random fields over S where d9X/dn

S denotes the restriction of dX/dn to

the manifold S.



The most interesting process satisfying (3.9) is the Lévy Brownian motion.
Another interesting example is obtained by taking
o0

2 0
¢ (1) = fo(l—e' 246 ( 2) with’fo_x do( 2) < o,

§4. Comparison with Wiener and Ornstein Uhlenbeck processes‘

Ve wish to compare Lévy’s Brownian motion with other Gaussian random fields
in aspect of the results obtained in the previous sections. For this purpose we

are going to discuss Wiener process and Ornstein-Uhlenbeck process.

(1) Viener process
let Y= (Y(u); u-= (ul,...,ud)EE (R+)d}, d = 2, be d-dimensional VWiener

process. Namely, Y is a Gaussian random field such that

(4.1) E[Y()] = 0, EY(WY¥Y(M] = TI @ A v );
1 1

i
vhere u = (ul,..,ud) and v = (vl,..,vd).

Let P be a fixed point in Rz, and let C be a curve in the class €,
introduced in §1. Then, we are given one dimensional Gaussian process
{(y(t) = Y(A(t)), A(t)EC). The conditional expectation of Wiener process is

discussed in the following examples.

Example 4.1 Let C be a line segment in R2 vhich is parallel to coordinate
axis. Then
E[Y(P)/C] = Y(M), P

vhere M is the base point of the

normal line of C passing through C
the point P. M
' n
Example 4.2 Let C be L{ Ci’ where each Ci is a line segment parallel

to coordinate axis and assume that C is continuous monotone decreasing. For

computation, we let the process starts from the point A on the u-axis.

0
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@D EMO/C) = Lo YO ¢ g,

vhere A}s are the vertices of C and B, | __—;L___L__—_b
i
A

i=l,..,k, k =2, are the base points of the

normal line of C passing through P, and P

vhere c; = f(P)/f(A;) and d; = £(P)/£(B;), _ )

in which f(A) denotes the area of the rectangular with the vertices including
the point A and the origin .

In a similar manner, we can discuss the case when C is increasing.

Comparing Example 2.1 with Example 4.1, we sce a big difference between the
Levy Brownian motion and Wiener process, Now take C as in Example 4.2. If the
conditional expectation is expressed in the form (2.6), then it is observed that

the kernel function for VWiener process is a very simple one consisting of only

§ ~functions but it would be complicalted for L&vy’s Brownian mbtion.-
Proposition 4.1 Let C be given as in the above Example 4.2 . Then the

Gaussian process {Y(t); A(t)EC) is simple Markov.

Concerning normal derivative we can prove the following proposition.

Proposition 4.2 (i) Let S be {u= (uy,..,u5..uy) € (R+)d; u;= c),

for 1 =i =d. Then the normal derivative jZY(u) on S is not well defined,
| ) du;
however - f;%f“ is well defined as a generalized Gaussian random field if
k |S :
k # i.

(ii) The normal derivative dY(u)/ dn on a spherical surface Sd_l(C:(R+)d)

is well defined as a generalized Gaussian random field for all d=2.

7
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Remark For d = 2, can be viewed as . a white noise.

d ug up = a
The normal derivative of the Wiener process on a hyperplane always has
gingularity. But the normal derivative of the Lévy Brownian motion on a hyper-

plane is well defined for d > 2.

(2) Ornsteip hlenbeck process

Let .(Um(u); UGERd), d=22 be Ornstein Uhlenbeck process with maés parameter

m> 0. It is known to be a generalized Gaussian random field with characteristic

functional
| C(£) = ELexp(i [ U, (w) & (w)du)]
.3 ' 2 2
4 = exp[- ] £02) " aal,
Zd mls a2

vhere & denotes the Fourier transform of §.

Proposition 4.3 The normal derivative é?Um /dn is again a generalized

Gaussian random field on the,whole space Rd, but it is not well defined when

ve restrict the parameter to a hyperplane.

Rd—l is, as it were, a limit of fields

The normal derivative ou, /dn

expressed as a superposition of mutually independent (d-1)-dimensional known

random fields as follows:

(4.4) aUm/an Rd_1=%l1_m')oo‘/(‘) l_“a(m,l) da,

vhere a(m,1) = /m'z + 2.2 . It can be easily seen.from its characteristic

functional

[0



| | E0(arens Ay )
(4.5 “c(g) = expl- ; f“a ¥ f (2) ; 2 - 2
Rl Rd_] (m +Z’d)+ 1,1+..+ Z’d"l

di

We now take S to be a circle with radius 1. Consider Ornstein Uhlenbeck
process Um(r,G) in R2~space. Then the restriction of the normal derivative

ou, (r,8) ]
on r=1

of Rz-parameter Ornstein Uhlenbeck process to S is denoted by

Its characteristic functional is obtained as

~ 3 ' . - , ’
8  c(F)=ewt- ! fd pf" vy (6, 6) E(6) E( §)do o),
2

m2+p 2 p
vhere
2 = o '
’)’p(ﬂ, 9') =f cos( - ¢)cos( 8- ¢) olp (cos( 8- ¢) - cos(6- ¢)) de
0

and where £ ( 8) is a factor of the original test function £ (r, 8) which

is tak (r) £( 0).
is taken as g(r aUm (r, 8)

Since v (0, 0) 1is positive definite, we can write
o on r=1

as follows:

N

(4.8) dU_ /an| = lim | P Yy (6) d
mn S N_’w‘()\x/ m2+_——p2 p ) o

vhere Yp(B) is a Gaussian process with covariance function ¥ p(B , 0).

Remark The expression (4.8) is obtained by Professor A. Noda’s comment.

It is noted that the singularity of the normal derivative always occurs in

Rd~parameter case for every d =2 2.

Acknowledgement The author is grateful to Professor A. Noda for his help

and suggestion for generalization.

/1



References
[1] P. Lévy, Problemes concrets d’analysis fonctionelle, Gauthier Villars, 1951.
[2] T. Hida, Canonical repreéentation of Gaussian processes and their applicat
-jons, Mem.coll. Sci.Univ. of kyoto, 33 (1960), pp 258-351.
[3] T. Hida, Levy’s fupctionalvanalysis and stochastic analysis, Lecture notes,
Nagoya University, 1986; notes by Si Si. |
[4] T. Hida, Lévy’s functional analysis and stochastic calculus (preprint),
(1987). ;
[5] A. Noda,vGeneralized Radon transform and Lévy’s Brownian motion I, II,
Nagoya Math.J,105(1987),_pp 71-87,89-107.
[6] Si Si, A note on Levy’s Brownian motion, Nagoya Math. J. 108 (1987) bp 121-
130.
[7] Si Si, A note on l#vy’s Brownian motion II, to appear in Nagoya Math J. 114,
[8] Si Si, Gaussian processes and conditional expectations, BiBoS notes,

Nr.292/87, -Universitat Bielefeld, 1987.

/2



