EMBEDDABLE AW*-ALGEBRAS AND RELATED TOPICS

東北大理 斎藤和之 (Kazuyuki SAITŐ)

One of the interesting problems in operator algebras is to find the essential condition for a C*-algebra to have a faithful representation as an embeddable AW*-algebra, where "embeddable" means that it is embedded as a double commutant in a type I AW*-algebra, with the same centre.

In [15], the final conclusion of the above problem was given by showing that

<u>AW*-algebras with a separating family of centre-valued states,</u> which are completely additive on projectins, are embeddable.

(See also [6], [18], [14], and [5]).

In this note, we would like to make a survey of the development of the problem of embeddability of AW*-algebras, with an outline of their proofs. We also would like to give an application of our result to the type determination problem of regular completions. (See [13] for details).

Let us recall that a C*-algebra A is an AW*-algebra if

- (1) each maximal abelian *-subalgebra of A is generated by its projections,
- (2) each family of orthogonal projections $\{e_{\alpha}\}$ in A has a supremum $\sum_{A} e_{\alpha}$ in Proj(A) (the set of all projections in A).

Kaplansy introduced AW*-algebras and obtained their theory.

In particular, by an elegant algebraic methods, he extended the Murray-von Neumann's type theory, classification of von Neumann algebras to these more general C*-algebras.

(*) Are all AW*-algebras embeddable ?

In 1970, Takenouchi and Dyer, independently, showed that there is an AW*-factor, which is not a von Neumann algebra and Saitô showed that their AW*-factors are of type III. Maitland Wright also gave an example of a non embeddable AW*-factor of type III. [19], [16] and [22].

So our next problem is this.

(**) Are all type II AW*-algebras embeddable ?

Since every embeddable type II₁ AW*-algebra has a centre-valued trace ([4]) and every semi-finite AW*-algebra A, with a faithful finite projection e in A such that eAe has a centre-valued trace, is embeddable ([3]), the question (**) is equivalent to the following, well-known, long standing open problm:

(***) Have all AW*-algebras of type II got centre-valued traces?

Several authors ([4], [7], [12], [13], [21], [23]) have considered this question. Maitland Wright, above all, proved that every II₁ AW*-factor with a strictly positive functional is a von Neumann algebra (and so has a trace) ([21]).

Recently, Ozawa established a transfer principle from to von Neumann algebras in Boolean-valued set theory to embeddable AW*-algebras. This transfer principle will, then suggest the following:

Theorem 1. Let A be an AW*-algebra with the centre Z.

Suppose that A is finite and has a faithful Z-valued state.

Then A is embeddable and has a centre-valued trace.

Corollary 1. Let A be a semi-finite (in particular, type II) AW*-algebra such that A has a faithful Z-valued state. Then A is embeddable.

We can apply Corollary 1 to the following solution of the problem of type determination of the regular completions of separable C*-algebras.

Theorem 2. Let B be a separable C*-algebra and let B be its regular completion. Then B has no type II direct summands.

Theorem 3. If B is NGCR, then B never be embeddable (B is of type III also).

Definition 1. Let B be a C*-algebra. We say that B has a countable order dense subset if, there is a countable subset $\{a_n\}$ in the hermitian part B_h of B, such that,

$$x = LUB_{B_h} \{ a_n | a_n \le x \}$$

for every $x \in B_h$.

The lemma which links our Corollary 1 with Theorem 2 and Theorem 3 is the following:

Lemma 1. Let A be an embeddable AW*-algebra. Suppose
that A has a countable order dense subset. Then A is of
type I.

1. Outline of a proof of Theorem 1.

We can do this by using standard methods of set theory.

Main idea is to use Widom's theory of embeddable AW*-algebras

and generalized GNS-construction relative to centre-valued states

(See [20]).

Let A be a unital C*-algebra and let Z be the centre of A. A centre-valued state ϕ on A is a positive Z-linear map from A into Z such taht $\|\phi(1)\| \le 1$.

Recall that a Kaplansky-Hilbert module M, over an abelian AW*-algebra Z, has a Z-valued inner product < , > such that

$$\xi \longrightarrow \|\langle \xi, \xi \rangle\|^{1/2}$$

defines a Banach space norm on M. If M is faithful (in the sense that if $z \in Z$ satisfies $z\xi = 0$ for all $\xi \in M$, then z = 0), then the set $L_Z(M)$ of all bounded module endomorphisms of M is a type I AW^* -algebra with centre Z. Conversely given a type I AW^* -algebra B, with the centre Z, one can construct a faithful Kaplansky-Hilbert module M, over Z, such that $B \cong L_Z(N)$. In this case, for every non-zero $A \in L_Z(N)$

there is $\xi \in N$ such that

<
$$a*a\xi$$
 , $\xi > \neq 0$.

Just as a numerical state on a C*-algebra, if A is an AW*-algebra and ϕ is a centre-valued state, then one can construct a Kaplansky-Hilbert module ${\it M}_{\dot{\varphi}}$, a unital *-homomorphism ${\it m}_{\dot{\varphi}}$ from A into $L_Z({\it M}_{\dot{\varphi}})$ and a vector $\xi_{\dot{\varphi}}$ in ${\it M}_{\dot{\varphi}}$ such that

$$\phi(x) = \langle \pi_{\phi}(x)\xi_{\phi}, \xi_{\phi} \rangle$$

for all $x \in A$.

Let $S_Z(A)$ be the set of all Z-valued states on A. Let $\pi_A(x) = \# \{ \ \pi_{\phi}(x) \ | \ \phi \in S_Z(A) \ \},$

and

$$M = \Theta \{ M_{\phi} \mid \phi \in S_{Z}(A) \}$$

as a Kaplansky-Hilbert module. Then M is a faithful Kaplansky-Hilbert module over Z and π_A is a faithful Z-representation of A in $L_Z(M)$. In fact, if A is an AW*-algebra, then one can easily check that there are sufficiently many elements in $S_7(A)$.

Let $A = \pi_A(A)$ in $L_Z(M)$ and let A'' be the double commutant of A in $L_Z(M)$.

Definition 2. A projection p in A is called open if there exists an increasing net $\{a_\alpha\}$ of non-negative elements in A such that

$$< a_{\alpha} \xi, \xi > \uparrow < p\xi, \xi > in Z_h$$

for every $\xi \in M$.

A projection q in A'' is called <u>closed</u> if 1-q is open.

Lemma 2. Any projection p in A has the smallest closed projection in A which dominates p.

Definition 3. Any given projection p in A'', the above smallest closed projection which dominates p is called the closure of p and denote it by \overline{p} .

Definition 4. A projection p in A is called nowhere dense if there is a decreasing net L of projections in A such that $\pi_A(q) \geq \overline{p}$ for all q in L and $\Pi_A(q) \neq 0$ in Proj(A).

Lemma 3. Let A be a finite AW*-algebra with the centre Z. Let $\{p_n\}$ be a sequence of nowhere dense closed projections in A". Then, $\overline{\sum_A}$ " p_n (in A") is also nowhere dense.

Let, for each n, L_n be a decreasing net of projections in A such that $\pi_A(q) \geq \overline{p_n}$ for all $q \in L_n$ and $\Pi_A\{q \mid q \in L_n\} = 0$.

The key point of the proof is to construct a decreasing net $\{q_{\alpha}\}$ of projections in A such that $\pi_{A}(q_{\alpha}) \geq \overline{\sum_{A} \|p_{n}\|}$ for each α and $\Pi_{A}\{q_{\alpha} \mid \alpha\} = 0$ via $\{L_{n}\}$. See the details for [13].

Next we shall sketch the proof of Theorem 1. Let $\,\varphi\,$ be a faithful centre-valued state. Then by our construction of (π_A , M) there is a $\,\xi_\varphi$ in M such that

$$\phi(x) = \langle \pi_{A}(x) \xi_{\phi}, \xi_{\phi} \rangle$$

for every $x \in A$.

Let ψ be a <u>normal</u> Z-valued state on A'' defined by $\psi(x) = \langle x\xi_{\phi}, \xi_{\phi} \rangle$ for every $x \in A''$, then $(\Psi \mid A) \circ \pi_{A} = \phi$

Let \mathcal{P} be the set of all closed nowhere dense projections in $\mathbf{A}^{"}$ and let

$$m = LUB \{ \psi(p) | p \in P \}$$
 in Z

(Note that $\{ \psi(p) | p \in P \}$ is a bounded subset of Z). Then one can find an increasing net $\{ p_{\alpha} \}$ in P such that $\psi(p_{\alpha}) \uparrow m$ (in Z). In fact, if p_1 and $p_2 \in P$, then, by Lemma 3, $\overline{p_1 \lor p_2}$ \in M, and so P is an increasing net. Take any non-zero projection z in Z and any positive number ε , one can choose an element $p(z) \in P$ and a non-zero subprojection z_1 in Z of z, such that

$$\|(m - \psi(p(z))z_{\gamma}\| < \epsilon$$
.

So, we can choose an orthogonal family of central projections $\{z_{\lambda}\}$ such that $\{z_{\lambda}\}$ and a family $\{p_{\lambda}\}$ in P such that

$$\|(m - \psi(p_{\lambda}))z_{\lambda}\| < \varepsilon$$

for all λ . Let $p = \sum_{A} p_{\lambda} z_{\lambda}$, then

$$||m - \psi(p)|| < \varepsilon$$
.

Next, we shall show that $p \in P$. Let L_{λ} be a decreasing net of projections in A such that $\pi_{A}(q) \geq \overline{p_{\lambda}}$ for all $q \in L_{\lambda}$ and $\Pi_{A}\{q \mid q \in L_{\lambda}\} = 0$ for each λ . Let Z be the set $\{\sum_{A} z_{\lambda}q_{\lambda} \mid q_{\lambda} \in L_{\lambda} \text{ for each } \lambda\}$. Then Z is a decreasing net of projections in A such that $\pi_{A}(\sum_{A} z_{\lambda}q_{\lambda}) \geq \overline{p}$. Since we can easily check that

$$\Pi_{A} \{ \sum_{A} q_{\lambda} z_{\lambda} \mid (q_{\lambda}) = q \in \Pi_{\lambda} L_{\lambda} \} = 0 ,$$

I meets all the requirements for the nowhere density of p. Because p is closed, p ϵ P follows.

Thus one can find a sequence $\{p_n\}$ in P such that

$$\|\psi(p_n) - m\| \rightarrow 0 (n \rightarrow \infty)$$
.

Let $d = \sum_{A} p_n (\epsilon A)$, then, by Lemma 3, $d \epsilon P$ and so $m \ge \psi(d) \ge \psi(p_n)$ $(n = 1, 2, \cdots)$, which implies that $m = \psi(d)$. Put

$$\eta : A'' \to Z$$

bу

$$\eta(x) = \psi((1 - d)x(1 - d)) \quad x \in A'',$$

then η is a normal Z-valued non-zero state on A''. Since $\eta(1) = \psi(1-d) = \psi(1) - \psi(d) = \phi(1) - m$, if $\eta(1) = 0$, then $m = \phi(1)$. On the other hand, 1-d is open, there is an increasing net $\{a_{\alpha}\}$ in A^{+} such that

$$<\pi_{A}(a_{\alpha})\xi$$
 , $\xi > \uparrow < (1-d)\xi$, $\xi >$ for all $\xi \in M$

and so

$$\phi(a_{\alpha}) = \langle \pi_{A}(a_{\alpha})\xi_{\phi}, \xi_{\phi} \rangle \uparrow \langle (1 - d)\xi_{\phi}, \xi_{\phi} \rangle,$$

thus, the faithfulness of ϕ tells us that $a_{\alpha}=0$ for all α . Thus it follows that d=1. This is a contradiction. Hence $\eta(1)\neq 0$.

Let $p \in P$ and let $r = \overline{p \vee d}$, then $r \in P$ by Lemma 3. Since $(1-d)p(1-d) \le r-d$, $\eta(p) \le \psi(r-d) = \psi(r) - \psi(d) = m-m=0$.

Let $\{q_{\lambda}\}$ be any downward directed subset in Proj(A) with $\Pi_A\{q_{\lambda}\mid \lambda\}=0$. Then, $\Pi_A\{\pi_A(q_{\lambda})\mid \lambda\}\in P$, which implies that

$$\text{GLB}_{\lambda} \ \eta(\pi_{A}(\textbf{q}_{\lambda})) = \eta(\Pi_{A}\pi\{\pi_{A}(\textbf{q}_{\lambda})\big|\lambda\}) = 0$$
 because η is normal on A'' .

Hence, if we put $\phi_0 = \eta | \pi_A(A) \circ \pi_A$, then ϕ_0 is a <u>non-zero</u> Z-valued state of A and normal on Proj(A). Considering the complement of the support of ϕ_0 if necessary, one can construst sufficiently many Z-valued states $\{\phi_\alpha\}$, each of which is completely additive on Proj(A). Thus, by a theorem of Widom [20], A is embeddable and so A has a centre-valued trace by [4].

In [3], Elliott, Saitô and Wright showed the following:

Let A be a semi-finite AW*-algebra with the centre Z

and let e be a finite projection in A whose central cover

is 1. Then A is embeddable if, and only if, the finite corner

eAe has a centre-valued trace.

So our Corollary 1 is a direct consequence of the above result.

2. Outline of proofs of Theorem 2 and Theorem 3.

Let \hat{B} be the regular completion of a given separable C*-algebra B. Then \hat{B} has a countable order dense subset and so \hat{B} has a faithful centre-valued state. If \hat{B} has semifinite direct summand $\hat{B}e$, then $\hat{B}e$ has a faithful centre-valued state and so $\hat{B}e$ is embeddable. Thus by Lemma 1, $\hat{B}e$ is of type I and hence Theorem 2 follows.

If B is NGCR, then \hat{B} has no type I direct summand ([17]). So the claim in Theorem 3 follows from Theorem 2.

An example. Let A be $F \otimes_{\alpha} C[0,1]$, the tensor product of

100

the Fermion algebra by the C*-algebra of all complex-valued continuous functions on [0,1]; then one can easily show that A is a separable NGCR algebra such that \hat{A} is not embeddable. Moreover, the centre Z of \hat{A} is *-isomorphic to D[0,1], the abelian: AW*-algebra obtained from the regular completion of C[0,1].

3. Appendix. Towards the additivity of traces in finite AW^* -algebras.

In this section, we shall give a sufficient condition for the additivity of traces, which, we hope, will play a role in solving this problem.

Let D be the unique dimension function on a type II $_1$ AW*-factor A. Let a ϵ A with a = $\Big | \lambda de_{\lambda} \Big |$. Put

$$Tr(a) = \int \lambda dD(e_{\lambda}),$$

then Tr satisfies the following properties:

- (1) Tr(u*au) = Tr(a) for all $a \in A_h$, $u \in A_u$,
- (2) $Tr(a) \ge 0$ for all $a \in A^+$
- (3) $Tr(\lambda a) = \lambda Tr(a)$ for all $\lambda \in R$ and $a \in A_h$,
- (4) Tr(x+y) = Tr(x) + Tr(y) if $x, y \in A_n$ and xy = yx.

(****) Can we conclude that

$$Tr(x + y) = Tr(x) + Tr(y)$$

for any pair x and y in A_h ?

Proposition 1. Let A be a type II₁ AW*-factor and let

Tr be the above defined restricted trace on A. If Tr satis
fies that

(5) $\text{Tr}(e_1 + e_2 + e_3) = \text{Tr}(e_1) + \text{Tr}(e_2) + \text{Tr}(e_3)$ for every triplet $\{e_1, e_2, e_3\}$ in Proj(A), then the answer to (****) is positive.

Lemma 4 (T. Ono). If Tr satisfies (5), then, for any projection e and any pair $\{e_1, e_2\}$ of orthogonal projections in A. $Tr(e(e_1 + e_2)e) = Tr(ee_1e) + Tr(ee_2e)$.

Let $e_3 = 1 - e_1 - e_2$ and let ω be the primitive root of $x^3 = 1$. Take $v = e_1 + \omega e_2 + \omega^2 e_3$, then v is a unitary in A such that $e + v*ev + v^2*ev^2 = 3(e_1ee_1 + e_2ee_2 + e_3ee_3)$ and so $Tr(e + v*ev + v^2*ev^2) = Tr(e) + Tr(v*ev) + Tr(v^2*ev^2)$ = 3Tr(e).

Hence it follows that $\operatorname{Tr}(e) = \operatorname{Tr}(e_1 e e_1) + \operatorname{Tr}(e_2 e e_2) + \operatorname{Tr}(e_3 \hat{e} e_3)$. On the other hand, the fact that $\operatorname{Tr}(e_i e e_i) + \operatorname{Tr}(e e_i e)$ for each i, tells us that $\operatorname{Tr}(e) = \operatorname{Tr}(e e_1 e) + \operatorname{Tr}(e e_2 e) + \operatorname{Tr}(e e_3 e)$. Observe that $\operatorname{Tr}|eAe$ is a restricted trace, it follows that

$$Tr(ee_3e) = Tr(e(1 - e_1 - e_2)e)$$

= $Tr(e - e(e_1 + e_2)e)$
= $Tr(e) - Tr(e(e_1 + e_2)e)$.

Thus it follows that $Tr(e(e_1 + e_2)e) = Tr(ee_1e) + Tr(ee_2e)$.

Since A is of type II, there are four orthogonal equivalent projections f_1 , f_2 , f_3 and f_4 such that $f_1 + f_2 + f_3 + f_4 = 1$. By using this system, one can canonically construct 4 by 4 system of matrix units $\{e_{ij}\}$ in A such that $e_{11} = f_1$.

We shall show, under the condition (5), that f_1Af_1 is a von Neumann algebra. Let a and b be in $(f_1Af_1)^+$ such that

$$a \le (1/2)1$$
 and $b \le (1/2)1$. Let

$$a \leq (1/2)1 \text{ and } b \leq (1/2)1. \text{ Let}$$

$$\begin{cases}
a & a & (a - 2a^2)^{1/2} & 0 \\
a & a & (a - 2a^2)^{1/2} & 0
\end{cases}$$

$$a & (a - 2a^2)^{1/2} & (a - 2a^2)^{1/2} & 1 - 2a & 0 \\
0 & 0 & 0 & 0 & 0
\end{cases}$$
and
$$\begin{cases}
b & -b & 0 & -(b - 2b^2)^{1/2} \\
-b & b & 0 & (b - 2b^2)^{1/2}
\end{cases}$$

$$q = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
-(b - 2b^2)^{1/2} & (b - 2b^2)^{1/2} & 0 & 1 - 2b
\end{cases}$$

via $\{e_{i,j}\}$, then p and q are orthogonal projections in A such that $f_1pf_1 = a$ and $f_1qf_1 = b$. So, if, Tr satisfies (5), then

$$Tr(f_1(p + q)f_1) = Tr(f_1pf_1) + Tr(f_1qf_1),$$

by Lemma 4, which implies that Tr(a + b) = Tr(a) + Tr(b), and Tr f_1Af_1 is a trace on f_1Af_1 . Hence f_1Af_1 is a von Neumann factor. Thus by the previous arguments before the proof of Corollary 1, we can get that A is a von Neumann factor, that is, Tr is additive. This completes the proof.

References

- [1] G. A. Akemann, The generalized Stone-Weierstrass problem, J. Funct. Anal. 4(1969), 277-294.
- [2] E. Christensen, Measures on projections and physical states, Comm. Math. Phys. 86(1982), 529-538.
- [3] G. A. Elliott, K. Saitô and J. D. M. Wright, Embedding AW*-algebras as double commutants in type I algebras, J. London Math. Soc., 28(1983), 376-384.
- [4] M. Goldman, Structure of AW*-algebras, Duke Math. J. 23(1956), 23-34.
- [5] H. Halpern, Embedding as double commutator in a type I AW*-algebra, Trans. Amer. Math. Soc., 148(1970), 85-98.
- [6] R. V. Kadison, Operator algebras with a faithful weakly closed representation, Ann. of Math. 64(1956), 175-181.
- [7] ______, On the additivity of the trace in finite factors, Proc. Nat. Acad. Sci. U.S.A., 41(1955), 385-387.
- [8] I. Kaplansky, Projections in Banach algebras, Ann. of Math., 53(1951), 235-249.
- [9] _____, Algebras of type I, Ann. of Math., 56(1952), 460-472.
- [10] ______, Modules over operator algebras, Amer. J. Math., 75(1953), 839-858.
- [11] M. Ozawa, A transfer principle from von Neumann algebras to AW*-algebras, J. London Math. Soc., 32(1985), 141-148.
- [12] _____, Boolean valued analysis approach to the trace problem of AW*-algebras, J. London Math. Soc., 33(1986), 347-354.
- [13] _____ and K. Saitô, Embeddable AW*-algebras and regular

- completions, J. London Math. Soc., 34(1986), 511-523.
- [14] G. K. Pedersen, Operator algebras with weakly closed abelian subalgebras, Bull. London Math. Soc., 4(1972), 171-175.
- [15] K. Saitò, On the embedding as a double commutator in a type I AW*-algebra II, Tôhoku Math. J. 26(1974), 333-340.
- [16] _____, AW*-algebras with monotone convergence property and type III, non W*, AW*-factors, C*-algebras and applications to Physics, (Springer) Lecture Note. No. 650, 1978, 131-134.
- [17] _____, A structure theory in the regular σ-completion of C*-algebras, J. London Math. Soc., 22(1980), 549-558.
- [18] S. Sakai, A characterization of W*-algebras, Pacific J. Math., 6(1956), 763-773.
- [19] G. Takenouchi, A non W*, AW*-factor, C*-algebras and applications to Physics. (Springer) Lecture Note. No. 650, 1978, 135-139.
- [20] H. Widom, Embedding in algebras of type I, Duke Math. J., 23(1956), 309-324.
- [21] J. D. M. Wright, On AW*-algebras of finite type, J. London Math. Soc., 12(1976), 431-439.
- [22] _____, Wild AW*-factors and Kaplansky-Rickart algebras, J. London Math. Soc., 13(1976), 83-89.
- [23] Ti Yen, Trace on finite AW*-algebras, Duke Math. J. 22(1955), 207-222.

Mathematical Institute
Tôhoku University, Sendai