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EMBEDDABLE AW¥-ALGEBRAS AND RELATED TOPICS

AwX 72 Fy iR de z_

( Kazuyuki SAITO)

One of the interesting problems in operator algebras is to
find the essential condition for a C¥-algebra to have a faithful
representation as an embeddable AW¥-algebra, where " embeddable "
means that it is embedded as a double commutant in a type I AW*-
algebra, with the same centre.

In [15], the final conclusion of the above problem was given

by showing that

AW*-algebras with a separating family of centre-valued states,

which are completely additive on projectins, are embeddable.

( See also [6], (18], [14], and [5] ).

In this note, we would like to make a survey of the develop-
ment of the problem of embeddability of AW*-algebras, with én
outline of their proofs. We also would like to give an applica-
tion of our result to the type detefmination problem of regular
completions. ( See [13] for details ).

Let us recall that a C¥-algebra A 1is an AW¥-algebra if

¥ _subalgebra of A is generated

(1) each maximal abelian
by its,prqjections;

(2) each family of orthogonal projections {e } in A has
a supremum J,e, in Proj(A) ( the set of all projections in
A ). |

Kaplansy introduced AW*-algebras'and obtained their theory.
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In particular, by an elegant algebraic methods, he extended
the Murray-éon Neumann's type theory,iclassificatibn of

von Neumann algebras to these more general C¥-algebras.
(¥) Are all AW*-algebras embeddable ?

In 1970, Takenouchi and Dyer, independently, showed that
there is an Aw*-factor;'which is not a von Neumann algebra and
Saitd showed that their AW¥-factors are of type III. Maitland
Wright élsovgave an example of a non embeddable AW¥-factor of
type III. [19], [16] andv[22];

So our next problem is. this.
(¥*)  Are all type II AW¥-algebras embeddable ?

Since every embeddable type IIl AW¥_-3]1gebra has a centre-
valued trace ( [4] ) and’every‘semi-finite AW¥-algebra A, with
a faithful finite projection "e in A such that eAe has a
centre-valued trace, is embeddable ( [3] ), the question (¥*¥)
is equivalent to the following, well-known, long standing open

problm:

(¥¥#%) Have all AW*¥-algebras of type II

1 8ot centre-valued

traces ¢

Séveral authors ( [4]1, [731, [12], [13], [21], [23]) have consid-
ered this question. Maitland Wright, above all, proved that
every II, AW*-factor with a strictly positive functional is a

von Neumann algebra ( and so has a trace ) ( [21]1 ).
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Recently, Ozawa established a transfer principle from .
von Neumann algebras in Booléan—valued set theory to embeddable
AW¥*-algebras. This transfer principle will, then suggest the

following:

Theorem 1. Let A be an AW¥-algebra with the centre 2.

Suppose that A is finite and has a faithful Z-valued state.

Then A 1s embeddable and has g'dentre4valued'trade;.

Corollary 1. Let A be a semi-finite ( in particular,

type II_ ) AW*-algebra such that A has a faithful Zz-valued

state. Then A 1s embeddable.

Py

We can apply Corollary 1 to the folldwing solution of the
problem of type determination of the regular completions of

separable C¥-algebras.

Theorem 2. Let B be a separable C*-algebra and let B

be 1ts regular completion. Then ﬁ"haS‘gg'tyoe IT direct

summands.

Theorem 3. If B 1is NGCR, then B never be embeddable

( B 1s of type IIT also ).

Definition 1. Let B be a C¥-algebra. We say that B
has a countable order dense subset if, there is a countable

subset { ay } in the hermitian part B of B, such that,

h

x =;LUBBé,an | a_ < x }



for evefy X € Bh'

Therlemma which links our Corollary 1 with Theorem 2 and

Theorem 3.is the following:

Lemma 1. Lét A be an embeddable AW*-algebra. Suppose

that A has a countable order dense subset. Then A is of

type I.

1. Outline of a probf of Theorem 1.

We can do this by using standard methods of set theory.
Main idea is to use Widom's. theery of embeddable AW*-élgebras
and generalized GNS-construction relative to centre-valued stétes
( See [20] ).

Let A be a unital C*-algebra and let Z be the centre of
A. A centre-valued state ¢ on A 1is a positive Z-linear map
from A into Z such taht Il¢(1')ll~%=1'.

Recall that a Kaplansky—Hilbert'module M, over an abelian

AW¥*-algebra Z,‘has é Z-valued inner product < , > such that

£ — d<g,e>1172

defines a Banach space norm on M. If M 4is faithful ( in the
sense that if 2z e Z satisfies 2Z = 0 for all E € M , then

z = 0 ), then the set LZ( M ) of all bounded module endomor-
phisms of M 1is a type I AW¥-algebra with centre Z. <Conversely.
given a type I AW¥-algebra B, with the centre Z, one can con-
struct a faithful Kaplansky-Hilbert module N , over Z, such

that B = LZ( N). In this case, for every non-zero a € LZ( N)



there is & € N such that
< a*¥af , £ > # 0.

Just as a'numerical state on a C¥-algebra, if A 1is an AW*-
algebra and ¢ 1s a centre-valued state, then one can conStruct

a Kaplansky-Hilbert module M, , a unital *-homomorphism

.’ﬁ‘¢
in M¢ such that

®
from A into LZ( M¢ ) and a vector £¢

,¢(X) =< w¢(x)6¢, £¢ >
for all x € A.

Let SZ(A) be the set of all Z-valued states on A. Let

Ty (x) = ¥ ﬂ¢(x)_| ¢ € S,(A) 1},

and
M=o { M¢ | ¢ € SZ(A) }

as a Kaplansky-Hilbert module. Then M 4is a faithful Kaplansky-

Hilbert module over Z and w is a faithful - Z-representation

A
of A in LZ( M). In fact, if A is an AW¥-algebra, then one
can easily check that there are sufficiently many elements in
.SZ<A)'

1"

Let . A = WA(A) in LZ( M) and let A be the double
commutant of A in LZ( M).

"

Definition 2. A projection p 1in A is called open if
there exists an increasing net ‘{aa }  of non-negative elements
in A such that

<ag,g>*t<pg,e> in 7,
for every £ e M .,

"

A projection q in A is called closed if 1 - q 1is open.

'



"
Lemma 2. Any projection p in A " has the smallest

" :
closed projection in A  which dominates p.

m”w
Definition 3. Any given projection p in A , the above

Ssmallest closed projection which dominates p 1s called the

closure of p and denote it by Dp.
. 7"

Definition 4. A projection p in A is called nowhere
dense if there is a decreasing net L of projections in A
such that m,(q) 2P for all q in L and T,{ alqgqel}=0
in Proj(Aa). p

Lemma 3. Let A be a finite AW*-algebra with the centre

n ——— "
in A . Then, )," p, (in A ) is also nowhere dense.

Let, for each n, Ln be a decreasing net of projections

in A such that w,(q) 2D,

, forall qe L and My{a | qe L }=0.

The key point of the proof is to construct a decreasing

net {q,} of projections in A such that T (qy) 2 ZA"pn for
each o and M,{q | a}=0 via {L }. See the details for
[13].

Next we shall sketch the proof of Theorem 1. Let ¢ be a
faithful centre-valued state. Then by our construction of
( "A’M ) there is a €¢ in M such that

o) = em (0g, £y

for every x € A.



o -

"

- Let ¢ Dbe a normal Z-valued state on A  defined by y(x) =
n
< xEy > &y > for every x e A, then ( ¥ | A )e Ty =9
Let P be the set of all closed nowhere dense projections
n

in A and let

m=LUB { ¢(p)|peP } in %

( Note that { y(p)|p € P} 1is a bounded subset of Z ). Then
one can find an increasing net { Py } in P such that w(pa)frn
(in Z ). 1In fact, if p, and p, € P, then, by Lemma 3,};5&5
€ M, and so P 1is an increasing net. Take any non-zero projec-
tion z 1in Z and any positive number €, one can choose an
element p(z) € P and a non-zero subprojection z4 in Z of

z, such that

tm - yv(p(z))z 0l < e .

So, we can choose an orthogonal family of central projections

{z,} such that zxzx =1 and a family {p,} in P such that
H(m - y(py))z, 0 < ¢

for all A. Let p = ZA" P,Zy » then
Im - y(p)l < €.

Next, we shall show that p e P. Let Lx

net of projections in A such that m,(q) 2 p, for all q € L,

be a decreasing

and T,{q | q € Ly} = 0 for each A. Let I be the set
{1, zqu|gk € L, for each A}. Then I is a decreasing net
of projections in A such that WA(ZA ZAqA) > p.. Since we

can easily check that

M

HA{ ZA Q)\Zk lr(qA) = q € H)\L)\ } 0 s

I meets all the requirements for the nowhere density of p.

Because p 1is closed, p € P follows.



Thus one can find a sequence '{ph} in P such that

lw(ph) -ml » 0 (n-+w=) .,

Let 4 = ZA"pn (€ A"), then, by Lemma 3, d € P and so
m > ¥(d) > ¢(p, ) (n = 1,2,--- ), which implies that m = P(d).
Put

"

by

1"

n(x) = ¢((1 -~ d)x(1 -4d)) x€e A,

then n 1is a nofmal Z-valued non-zero state on A". Since
n(l) = 9(1 - @) = P(1) - ¥(d) = ¢(1) -~ m, if n(l) = 0, then
m= ¢(1l). On the other hand, 1 - d is open, there is an

increasing net faa} in A% such that
<my(a)g, £>1 <(1-aE,E> forall £e M

and so

0(ay) = <my(ay)gy » &> 1 <(1 - d)E,, E4>,
thus, the faithfulness of ¢  tells us that a, = 0 for all a«a.
Thus it follows that d = 1. This is a contradiction. Hence
n(l) # O.

- Let p e P and let r = pyd, then r € P by Lemma 3.
Since (1 - d)p(l - d) 2r-4, nlp) £ v(r - d) = y(r) - y(d)
=m-m= 0,

Let '{ql} be any downward directed subset in Proj(A)
with ‘HA{qA fl} = 0. Then, HAn{KA(qA)]A} € P, which implies
that

GLB, n(m,(q,)) = n(HAn{wA(qx)[A}) =0

. "
because n 1is normal on A .



Hence, if we put ¢, = n]wA(A)ow then ¢, 1is a non-zero

A?
7-valued state of A and normal on Proj(A). Considering the
complement of the support of ¢0 if necessary, one can construst
sufficiently many Z-valued states {¢d}, each of which is
complétely additive on Proj(A). Thus, by a theorem of Widom

[20], A 1is embeddable and so A has a centre-valued trace by

[4].

In [3], Elliott, Saitd and Wright showed the following:

is 1. Then A 1is embeddable if, and only if, the finite corner

eAe has a centre-valued trace.

So our Corollary 1 is a direct consequence of the above

result.

2. Outline of proofs of Theorem 2 and Theorem 3.

Let B8 be the regular comp%etion,of a given separable
C¥-algebra B. Then B has a countable order dense subset and
so B has a faithful centre-valued state. If B has semi-
finite direct summand Be, then Be has a faithful centre-
valued state and so Be is embeddable. Thus by Lemma 1, ﬁe
is of type I and hence Theorem 2 follows.

If B 1is NGCR, then B has no type I direct summand ([17j)3

So the claim in Theorem 3 follows from Theorem 2.

An exampie. Let A be Féh ¢c[0,1], the tensor product of
0



the Fermion algebré by the,C*—algebravof all complex-valued
continuous functions on [0,1]; then one can easily show that A
is a separable NGCR algebra such that A 1is not embeddable.
Moreover, the centre Z of A is ¥*-isomorphic to D[0,1], the
abelian: AW¥-algebra obtained from the regular completicn of

clo,1].

3. Appendix. Towards the additivity of traces in finite
Aw*-algebras. |

in this section, we shall give a sufficient condition for
the additivity of traces, whiéh, wé hope,‘will play a role in
solving this problem.

Let D be the unique dimension function on a type II; AW*-
factor A. Let a € A

- with a = flde Put

h A

Tr(a) = JldD(ex),

then Tr Satisfies the following properties:

(1) Tr(u*au) = Tr(a) for all a € A_, u e A
(2) Tr(a) > 0 for all a e At | |
(3) mTr(xa) = ATr(a) for all A e R and a € Ah’

() Tr(x+y) = Tr(x) + Tr(y) if =x, y € Ah and xy = yx.

(¥*%%) Can we conclude that
Tr(x + y) = Tr(x) + Tr(y)
for any pair x and y in Ah ? o

Proposition 1. Let A be a type 11, AW*-factor and let

Tr be the above defined restricted trace on A. If Tr satis-

fies that
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(5) Tr(el + e, +ve3} = Tr(el) + Tr(e,) + Tr(e3)
for every triplet {el, e, e3} ~in Proj(A), then the answer to

(¥x%%) is QOSitive._

Lemma 4 ( T. Ono ). If Tr satisfies (5), then, for

any projection e and any pair {el, e2}‘ of orthogonal projec-

tions in A. Tr(e(e; + ey)e) = Tr(eeje) + Tr(eeye).

e3 =] - e and let w be the primitive root of

1~ %2

x” = 1. Take v = e, + me2 + m2e

1 3?
such that e + v¥ev + v2*ev2 = 3(eleel + e,ee, + e3ee3) and so

then v dis a unitary in A

Tr(e) + Tr(v¥ev) + Tr(vz*ev2)

Tr(e + v¥ev + v2*ev2)

3Tr(e).

Hence it follows that Tr(e) = Tr(eleel) + Tr(ezeez) + Tr(e3ée3).

On the other hand, the fact that Tr(éieei) + Tr(eeie) for each

i, tells us that Tr(e) = Tr(eele) + Tr(eeze) + Tr(ee3e).

Observe that Tr|eAe is a restricted trace, it follows that

il

\Tr(ee3e) Tr(e(l - ey - e2)e)

Tr(e - e(el + e2)e)

Tr(e) - Tr'(e(el + e2)e).

Thus it follows that Tr(e(el + ez)e) = Tr(eele) + Tr(eeze).

Since A 1is of type II, there are four orthogonal equivalent

s

projegtions f f f3 and fu such that f, + £, + £, + fh =

12 ~2° 1 2 3
1. By using this system, one can canonically construct 4 by 4

system of matrix units {eij} in A such that ey = flf

‘We shall show, under the condition (5), that £,Af; is a

+
von Neumann algebra. Let a and b be in (flAfl) such that




Lo d
i
.

a < (1/2)1 and b < (1/2)1. Let

<
, 1/2
( a a (a - 2a°) 0
iy 2 1/2
a a (a - 2a%) 0
p.=-
(a - 2a™): (a - 2a%) 1 - 2a 0
\ 0 0 0 0 J
and ~
_ : : 1/2
( b -b 0 -(b - 2b2)
. 5 172
-b b 0 (b - 2b°)
q = '
0 0 0 0
5 1/2 > 1/2
1-(b - 2b°) (b - 2b7) 0 1 -2b
. )
via {eij}5 then p and q are orthogonai projections in A
such that flpfl = a and fqul = b, So, if, Tr satisfies
(5), then

Tr(fl(p + q)fl) = Tr(flpfl) + Tr(fqul),

by Lemma 4, which implies that Tr(a + b) = Tr(a) + Tr(b), and
so Tr flAf‘l is a trace on flAfl. Hence flAfl is a
von Naumann factor. Thus by the previous arguments before the

proof of Corollary 1, we can get that A 1is a von Neumann

factor, that is, Tr 1s additive. This completes the proof.
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