DDDDDg EDD
0 676 0 198s U 262-283

Max-Min Energy Theory for the Time Optimal Control of
Rotating Rigid Body
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In this paper, we first formulate the equation of the motion- of
a rigid body suspended from a fixed point by a light wire and as an
external force, uniform wind is blowing to the rigid body from some
direction, which is then allowed to rotate in a horizontal plane. The
equation is a nonlinear double integral plant. Secondly in order to
control the rigid body we propose a practical control method by the
bang-bang control strategy and then several properties of the problem
are discussed from the energetic point of view, termed here as max-min
energy theory, by which the switching point can be obtained analytica-
l1ly without applying the maximum principle by Pontryagin. Algorithms
to transfer the rigid body from an initial state to the origin in the
minimum time or in a finite number of switchings, and then to hold it
at the origin are also given. Lastly several numerical examples are
solved to show the effectivenesses of the present methods.

1. Introduction

From an engineering point of view, it is very important to control
or to suppress the mechanical vibrations as can often be seen in crane
systems [9,10]. '

In Section 2, we first consider the motion of a rigid body which
consists of a rectangular prism. As shown in Fig. 1.1, the rigid body
is suspended from the fixed point P by a light wire whose torsional
factor is k. Taking practical applications into account, it is also
assumed that uniform wind is blowing to the body from some direction.
The torsional system of equation of the rigid body around a fixed
point 0 which is slightly perturbed from the true center of gravity
0 can be expressed by a second-order nonlinear ordinary differential
equation. Several properties of the system of equation are discussed
from the energetic point of view, and it is shown that the system of
equation has periodic solutions [4].

To control the motion of the rigid body, a power system is nece-
ssary. In Section 3, we propose a practical air or water jet control
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Fig.1.1. Rotating rigid body. Fig.2.1. Rotating rigid body in wind.

system, and then we formulate a time optimal control problem which
transfers the rigid body from an initial state to a final state ( the
origin ) in the minimum time and after then holds it at the origin. It
is interesting to show that the conservation of energy principle also
holds for the time optimal control problem [5,6].

In section 4, several properties of the present control system of
equations are discussed. According to the energy theory, the optimal
control without switching is obtained easily without using the maximum
principle of Pontryagin [1,8]. Secondly, the direction and the swi-
tching point of one switching control can be easily obtained analyti-
cally from an energy theory, termed here as max-min energy theory.

By the max-min energy theory, the time optimal control problem can
ultimately be reduced to a set of two point boundary value problems,
which can easily be solved by the initial value adjusting method with
interval decomposition proposed by Ojika et. al. [13-17]. ‘The outline
of the method is given in Section 5.

In Section 6, the time optimal control problem is solved numerica-
11y, and the effectivenesses of the present methods are also shown.

2. Dynamical Model of a Rotating Rigid Body

2.1 Polar Moment of Inertia

As shown in Fig. 2.1, consider the rectangular rigid body with a
base 2ax 2b and a height of c whose mass is M. Let the center of gra-
vity 0; be the origin. Then the moment of inertia about any point 0O
whose coordinate 1is given by (& ,6 ), termed here perturbed centroid,
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is obtained as follow [2,4,11,12]:
J = M{a2+b2+43 (& 2+6 2)}/3. (2.1)

2.2 Torsional System of Equation

Suppose now that the rigid body is suspended horizontally from a
fixed point P by a light wire and the anothor end is held fixed to the
perturbed centroid O of the rigid body. As an external force, uniform
wind whose pressure per unit area is F is blowing to the rigid body
along the X axis (see Fig.2.1). Then the rigid body is allowed to ro-
tate in a horizontal plane.

Note here that, in the subsequent discussions, the perturbed cent-
roid 0 is taken to be the origin.

Let & be the inclination of the rigid body to the X axis at a
certain instant and consider first the torque T produced by wind pres-
sure. From Fig. 2.1, the torque T about 0 is obtained to be [4]

T ='-20F(s sin® +5 cos@ )(a sin@ +b cosf ). (2.2)

It is well-known that the sum of the mass moment of the rigid body
and the twist moment of the wire is equal to the external torque T,
and we finally have the following torque equation about the perturbed
centroid 0:

JO +k6 + 2cF( & sin6 +& cos6 )(a sin6 +b cosd )=0, k#0 (2.3)

which denotes the second-order nonlinear differential equation, where
- denotes d2/dt2, and we here after call (2.3) as the perturbed rota-
ting equation ([3,4].

2.3 Conservation of Energy
It is interesting to show now that the conservation of energy pri-

nciple holds for (2.3). 1In fact, since 0= 9.(d9'/d9), the equation
(2.3) becomes

9.(d9'/d9 Ytw20+7 (esinf +46 cosP )(a sinf +b cos O )=0, (2.4)
where
w = J k/J, T = 2¢F/J, (2.5)

and w #0 is called the natural frequency. By integréting (2.4) with
respect to 6, we have : :

E(0,0) = (82+w202)/2+7 [2(ac +bd )6
+(bd -a¢& )sin 260 -(ad +be )cos 26 ]/4 (2.6)

for all t, where E(0,©), ©=(6, 6') is a constant -and denotes the
total energy’of the system ( refer also to (3.8) in Section 3 ). In



addition, it is easily seen that E(0,®) = E(0,©®’), where ©’'= (6,
-6).

The above discussions can be summarized in the form of a theorenm.

Theorem 2.1. If the initial condition, C)g; df the perturbed ro-
tating system of equation (2.3) is given, then the unique total energy
E(0,®q) is given by (2.6) and is constant -independently to the time
t, which shows that the system is energy conservative. MWoreover, the
energy constant contour of E(0,®) is symmetric with respect to 0 -
axis. ' ‘ ‘

3. Time Optimal Control of Rigid Body
3.1. Control System of Equations

Let us first relabel 6 and 6 as Xx; and x,, respectively, called
the state variable x(t)=(x,(t), x,(t)). Then, (2.3) can be rewritten
in the form ofthe first-order systenm

).(1 = XZ’
iz = _ﬁ)exl"f(xt)" (3.1a)
where
f(x,)=7 (& sin x;+8 cos x;)(a sin x,+b cos x,). (3.1b)

In order to transfer the rigid body at a given initial state to a
final state against wind pressure, it is obvious that a power systenm,
termed as control u(t), is necessary. For that, taking practical
applications into account, we introduce an air or a water jet system
with two sets of nozzles which are connected to an air or a water
compressor with enough capacity via pipes, as shown in Fig.1.1. Here
the set of nozzles V,, and V,., or Vo, and V.. works at the same time
and can generate control torque about the pertubed centroid 0. More-
over air or water pressure is assumed to be adjustable by a pressure
control valve. Then (3.1) can be formulated to the following optimal
control system of equations: ‘

)'(1 = Xo, ' X1(0) X108,

(3.2)

Xo -w 2xy-f(x,)+Ku, X2(0) = Xgze,

where x(0)=(X,0, Xze) is the given initial state at t=0, wu(t) is the
control variable, and K (> 0) denotes the magnitude of air or water
pressure set by the pressure control valve and is called a control
gain. Let us here consider the time optimal control problem whose
‘dynamical system of equations is given by (3.2), and suppose that the
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control variable wu is constrained in magnitude by the relation
lu(t) ] s 1 (3.3

for all t. In general, the magnitude constraint comes from physical
limitation on the torque which is generated by air or water jet.under
some given pressure. However, as will be seen in the subsequent discu-
ssions, it can be considered that u(t) simply shows the direction of
control and takes +1 or -1.

Then the time optimal control problem is defined as follows: given
the dynamical system (3.2) with the constraint (3.3) and a given gain
constant K, find the optimal control u*(t) which minimizes the transf-
er time t, from the initial state x(0)=(X,0, X20) to the final state
(0, 0)[1,8]. :

For the n-th order linear ordinary differential equations with a
control u, it has been proved that the maximum number of switchings is
at most n-1, if the control system of equations is completely control-
lable [1,8]. However, for nonlinear time optimal control problenms,
there is in general no guarantee that the maximum number of switchings
is at most n-1. In the following, we will discuss from the energetic
point of view that, wunder appropriate conditions, it also holds for
the present nonlinear problen.

3.2 Conservation of Energy of the Time Optimal Control System

In Subsection 2.3, it has been shown that the conservation of
energy principle holds for the system of equation (2.3). Let us show
that the principle also holds for the system of equation (3.2). For
that, define the following new coordinate system defined by

yi(t) = x, () - v(t), y2(t) = x.(t), (3.4)
where

v(t) = (K/w 2)u(t), (3.5)

and v is termed here as normalized control. Substituting (3.4) -and
(3.5) into (3.2) yields
Yi = Yo, y1(0)=x,0-v(0),
. 3.6
Yo = w2y, ~f(y,+v), y2(0)=Xsq. ( , )

As seen in Subsection 2.3, we also have a constant energy E(v,y),
¥y=(y:, y2) for the new system of equation (3.6):

ECv,y)=(y2%+w 2y,2)/2+ T [2(a& +bd )(y +V) .
+(bd -ae )sin 2(y,+v) -(ad +be Jeos 2(y.+v)1/4, (3.7)

for the time .interval such that v is constant. Substituting (3.4) and
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(3.5) into (3.7), we can rewrite E(v,y) by use of the original coor-
dinate system as

E(v,x)=[x2§+a)2(x1-v)2]/2+r [2(ae +b& )x,
+(bé -a&)sin 2x, -(ad +b& )cos 2x,])/4. (3.8)

Similarly to Theorem 2.1, the above discussions for the optimal
control system of equations (3.2) can be summarized as follow.

Theorea 3.2. If the initial state of the optimal control system
of equations (3.2), say, x(0)=(X;9, Xz20) and Ku(0)=w2v(0) at t=0 are
given, then the unique total energy E(v,x(0)) is given by (3.8) and
is constant for the time interval such that v is constant, which shows
that the system is energy conservative in the time interval. Moreover,
the energy constant contour of E(v,x) is symmetric with respect to x,-
axis.

As for the relation between the dynamical system (3.2) and the
energy (3.8), the following theorem holds.

Theorem 3.3. Suppose that the energy of the time optimal contr-
ol problemis given by (3.8) with a constant normalized control v defi-
ned by (3.5). Then the following relations hold:

aE(v,x)/ 3x., (3.9a)
-3E(v,x)/ ax4, « (3.9b)

X

Xo
for all t.

The proof of the theorem is obvious. The theorem shows that prope-
rties of the dynamical system of equations (3.2) can be explained by
examining those of the static energy equation (3.8).

4. Determination of Optimal Trajectory by Energy Theory

4.1. Control Without Switching )

In the following, it is assumed that (i) the control Ku(t) is kept
constant for all t, and (ii) our object is to find the optimal control
Ku and its trajectory which transfers the rigid body from a given
initial state x(0)=(x10, X20) to the origin (0, 0) without switching
the control u, and then to hold it to the origin. It is interesting to
consider the conditions for transferring the rigid body from a given
initial state to the origin without switching. For this, itis essen-
tial to discuss the relation between energy at the initial state and
“that of the origin.

From the energetic point of view, the following theorem holds.
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Theorem 4.1. Suppose that the normalized control v* given by
(3.5) at the given initial state x(0)=(X,e, X20), X107 0 at t=0 sati-
sfies

v ={2(X.e2+w 2X,02)+ T [2(a € +bJ )X 0t(bd -ae )sin 2Xx.0

-(a§+b£)(cos 2)(13"1)]}/(4(02)(1@). (4.1)

Then we have .
ECv,x(0))=E(v",0), (4.2a)
where
E(v',0)=w?2v2/2-7 (ad +be ) /4, (4.2b)

which shows that the energy at the initial state is equal to that at
the origin.

Proof. From (3.8) with v* and x=x(0), we have
E(ve,x(0))=w 2v*2/24[X20%+w 2(X102-2X10V°)]/2+ 7 [2(a & +b S )X1 0
+(bd -ae)sin 2x,9-(ad +be )cos 2x,01/4

=E(v*,0). (4.2¢)
0

It is worth mentioning that v* defined by (4.1) is a unique
control gain K'=w?2 | v*| which can transfer the rigid body from an
initial state to the origin without switching. However, depending on
the initial state, it is not always possible to transfer to the origin
with the normalized control v-. '

Further discussions will be seen in [7].

Theorem 4.2. Let the initial state be x(0)=(0, X,s), X20# 0, and
suppose that - the normalized control v (#0) is given by (4.1). Then
E(v:,x(0))#E(v:,0), and it is impossible to transfer the rigid body
from the initial state to the origin without any switching. ‘

Proof. Suppose fhat the energy E(v*,x(0)) at the initial state
is ‘'equal to E(v:,0) at the origin. Then, from (3.8), we have Xx,q2=0,
which contradicts with the assumption. O

Corollary 4.1. Suppose that all the conditions in Theorem 4.1
hold. Then the solution x,(t) of (3.2) with x(0)=(x,e, X28), X12# 0
and v© (#0) satisfies one of the following conditions: '

(i) if X,9>0, then x;(t)20 for all t, (4.3a)
(ii) if %1240, then x,(t)S0 for all t. ‘ (4.3b)
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~Proof. Since QE(v-,x)/ 9x.=0 at the origin, the energy curve E(
v',x) is tangent to the x.-axis at the origin. From this fact and Theo
rem4.2, it is obvious that there is no energy constant curve E(v',x(t
))for all t (20) which intersects the x.-axis at (0,x,), x, #0. O

4.2. Control With Switching

We pointed out that properties of the time optimal control problenm
(3.2) can be explained by the energy E(v,x) given by (3.8). The solut-
ion (x,(t),x2(t)) of (3.2) with the given initial state x(0)=(x;eo,
X2e), | X101 +1 X201 # 0 at t=0 and the given normalized control v
is periodic with period, say, T(20). Similarly to linear time optimal
control problems, let us now consider the conditions for transferring
the rigid body from a given initial state to the origin with one
switching. For the present nonlinear ordinary: differential equation
given by (3.2), the following Lemma plays an important role in the
subsequent discussions.

Lemma 4.1.  Suppose that y(t)=(y,(t), y.(t)) and z(t)=(z,(t), z,
(t)) be the solutions of (3.2) with the initial state y(0)=z(0)=x(0),
| X901 +| X201 # 0,and with the constant controls (i) Ku(t)=w 2v, and
(ii) Ku(t)=-w?3v, t20, v#0, respectively. Then the following relat-
ions hold, respectively:

(1) EC-v,y(t))=E(v,x(0))+2w 2vy, (L), (4.4a)
(ii) E(v,z(t))=E(-v,x(0))-2w 2vz,(t). (4.4b)

Proof. From (3.8) with the solution =x=y(t) of (3.2) and v=Ku/
w2, we have

E(-v,y(£))=E(v,y(t))+2w 2vy, (L). | (4.5)

Since E(v,y) is constant for-all t by the conservation law of energy,
E(v,y(0))=E(v,y(t)) holds for all t such that v=Ku/w? is constant,
and hence we have (4.4a). Similarly, from (3.8) with x=z(t) and v=-Ku/

o

w2, we easily obtain‘(4.4b). : a

Analogously to linear time optimal control problems of double
integral plant, it will be in general necessary to change the control
Ku to -Ku at a switching point, say, x(ts)=(x:(ts),x2(ts)), ts20 for
transferring the rigid body {from a given intial state to the origin.
Here the instance t; of switching the control 1is called switching
time. For determining the switching point of the rigid body, the
energies given by (4.4) will be of great help.

Theorem 4.3.1. Suppose that, for the given initial state x(0)=
(X1e, X20), the normalized control v.*=K"u*/w?2 satisfies the follo-
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wing condition:

X10Vs" S [2(X202+®32X10%)4Co]l/ (4w ?), (4.6a)
where

Co=7 {2(a & +bd )X ,0+(bd -a& )sin(2x,4)-(ad +be ){cos(2x,4)-11}.

, (4.7a)
Then (i) the energy E satisfies the following inequality:
ECv. ,x(0)) 2 E(-v.",0), (4.8a)
where
EC-v.*,0)={2(wv.*)2-T (ad +tb&e)]/4, ' (4.9)
(ii) there exists y;°(tsy) at t=t,, such that
YQ ‘(t51)=[E(‘V+.,0)"E(V+',X(0))]/(2w 2V+.)- (40103)
Moreover, (iii) if v.* also satisfies the following inequality:
Vi'(ta v, S [-20 2y, " (tsy)2-Csy 1/ (4w 2), (4.11a)
where '
ca =7 {[2(a& +bd )y, (ts1)+(bd ~ae )sin(2y, " (ts1))
-(ad tbe)[cos(2y,"(ts1))-111. (4.12a)
Then d, defined by
: di=-2w?2y, " (ta )y (te1)+2v."J-cq,y (4.13a)
satisfies
di20, (4.13b)
and there exists y.'(ts;) such that
yo' (ter)=% 4/ d, /2. (4.10b)

Proof. (i) From (3.8) and (4.6a), we easily have
E(v. ,x(0))-E(-v.",0)= -w 2X,9V."+[2(X202+w 2X;92)4Cp]/4
e 0. (4.14)
(ii) From (4.4a) and (4.14), there exists y,"(t,;) such that
ECG-v. vy (1s1))=E(v. ", x(0))+2w 2V, "y, " (tsy)
= E(-v.*,0) (4.15)

holds at t=ts,, which proves (4.10a).

(iii) Since E(v.*,x(0))= E(v.",y"(t.,)), substituting Yt (tsy) into
(3.8) and taking the condition (4.11a) into account yield d,20. Fron
the relation E(-v.",y"(ts,))= E(-v.*,0) in (4.15), (4.10b) can be eas-
ily obtained. - O
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‘ Similarly,)consider (3.2) with the control Ku=-w 2v. Then we have
the following.

Theorem 4.3.2. Suppose that, for the given initial state x(0),
the normalized control v_."=-K'u*/w? satisfies the following condi-
tion: _

X1o0V-"2-[2(X20%+w2x,92)4ce]/(Aw ?). (4.6b)

Then (i) the energy E satisfies the following inequality:

ECG-v_*,x(0)) 2 E(v--,0), . (4.8b)
(ii) there exists z,"(ts;,) at t=t,, such that
21 (ts2)=[EC-v_",x(0))-E(v_",0)]/(2w 2v_"). (4.10c¢)
Moreover, (iii) if v.* also satisfies the following inequality:
217 (ts2)v-" S [-20 2217 (t52)%-C521 /(4w B), (4.11b)

where

Cao=T {2(ag +bd )z, (ta2)+(bd -a&)sin(2z,°(tsn))

~(ad +be )[cos(2z,"(ts2))-11}. (4.12b)
Then d, defined by
do=-2w 22" (to2) [z, " (ta2)+2v_"]-cs2 (4.13c)
satisfies

d.2 0, (4.13d)
and there exists z.°(ts2) such that |
2" (ts2)=2 ./ da/2. (4.10d)

It is worth mentioning that once the initial condition x, and
control gain K are given, then all the possible candidates for the
switching point can be analytically obtained in advance from (4.10).

Corollary’ 4.2, Suppose that the control gain K=K and its cor-
responding normalized control v=v satisfy the inequality:
K=w?2|v] > maxlw?| X100l ,@? | o0l ,| Tac |, Tad |,
| rbe |, | ba | ], - (4.186)
then the following approximate relations hold:

(i) xi(ts) =x10/2, (4.17a)

(i1)  Xo(t) =+ -X 0w 2V. (4.17b)

-10-
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Proof. It is obvious that E(;,;(t))=E(;,x(0)) for the solution
of (3.2) with the initial state x(0), t=0.

(i) Taking the assumption for v into account, from (4.10a) or (4.10c),
we have

X, (ta)= [E(-v,0)-E(v,x(0))]/(2w 2v)
= th/z. ‘

(ii) Substituting (4.17a) into (4.10b) or (4.10d), (4.17b) can be eas-
ily obtained. ' O

Remark 4.1. Similarly to linear double integral plants, this
corollary guarantees that there exists the control gain ™ K which can
transfer the rigid body given by (3.2) from any initial state to the
origin with one switching.

Let us now consider to determine the sign of y,*(ts;) or Zzo"(tsz)
given by (4.10b) or (4.10d). '

Xa Xa
P
5" /s"
u=-1
Xi X
0
u=-1
u=+] s u=+] 5
P
(a) (x2"(t,) < Xag) (b) (x2°(ts) 2 Xz20)

Fig.4.1. Schematic diagram of switching points .

The trajectory of the solution x*(t)=(x,"(t), x»°(t)) of (3.2)
with a given control K-u* and the given initial state xo, 1is shown
in Fig.3.1(a), where the control sequence is taken to be {-1, +1}. In
‘the figure, the initial state and the switching points are denoted by
P and S, respectively.

Suppose now that Xx,e is positive and x*'(t.)=(x;"(ts), +x2"(ts)),
whose point is denoted by S’ in the figure, 1is chosen to be a switc-

_'11_
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hing point. Then we have to reach the origin along the direction of
the trajectory from the initial state P to the switching point S’ and
then against the direction of the trajectory from S’ to the origin
0. This fact means the motion of the rigid body for negative time.
On the other hand, if we take x"(t.)=(x,"(ts),-x."(ts)) as a switching
point, whose point is denoted by S in the figure, then one can reach
the origin along the trajectory PSO, provided the transition from
control u=-1 to wu=+1 occurs at the point S. It is also obvious that
identical arguments holds for negative X,q.

We can summarize the above results in the following control law
for the switching point S.

Control Law 4.1. For the given initial state x(0)=(X;q,Xz2e) and
the control K*u*, the sign of x,*(t,) at the switching point x°(tg)
is chosen so as to satisfy the following inequality:

sgn{xio}-sgn{x>"(ts)} < 0, (4.18)
where sgn denotes the signum function.

As shown in Fig.3.1(b) in which the switching points x(t.,) are
denoted by S’ and S°’, if the inequality x,°(ts)2 xz2e holds for the
given control K*, then we have to reach from the initial state P to
the switching points S’ and S’’ against the direction of the traj-
ectory. This fact shows that the motion ofthe rigid body 1in the
interval PS’ and PS” is negative in time, and hence, in place of
the control K*u*, it is necessary to adopt the control -K-u°.

Using identical arguments, we can conclude that if x,,<0 and the
inequality x.°(ts) SX20 holds for the given control K°u-, then it is
necessary to adopt the control -K-u-.

From the above discussions, we can establish the following control
law:

Control Law 4.2. For the given initial state x(0)=(X,q,X28) and
the given control K-u", suppose that x,°(t,) is computed from (4.10b)
and the sign of x,"(t.) at the switching point x"(t,) is chosen so as
to satisfy Control Law 4.1. Then the direction of the time optimal
control u at the initial time t=0 is given by

(i) if (a) x1¢20 and x,°(t.)-X20<0, or
(b) x,¢20 and x,"(t,)-%X»0>0, then u=u-,

(ii) if (c¢) X020 and x,'(ts)-X2g20, or
(d) x,950 and x2°(ts)-%x2050, then u=-u’.

and, furthermore, u=u® or u=-u* is unique for the given control gain
K* (>0). Here the uniqueness of the control K°u* or -K°u* can be

-12-
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easily shown from that of the energy constant curve E defined by (3.8)
with v=v" or v=-v-. '

Remark 4.2. The above conditions (i) and (ii) show the conditi-

. ons for (i) maximizing and (ii) minimizing the energy E(v-,x(0)) with

respect to the sign of the given normalized control v* under the given

initial state x(0), respectively and hence the present theory is ter-
med here as max-min energy theory.

Assuming now that x,o, of the given initial state x, is positive,
consider here the relation between x,o and x»"(t.) of the switching
point x*(t,), where x2"(ts") is computed from (4.10b) or (4.10d), and
satisfies Control Law 4.1.

Theorem 4.4. Suppose that for the given initial condition x(0)

PPN -

and Ku=K‘u* (=w 2v*), the following equality holds:
x*(ts)-x(0)=0, ‘ (4.19)

where x'(t,)=(x1“(t3),x2‘(t5)). Then the normalized control v° coi-
ncides with -v* given by (4.1), which is the normalized time optimal

control without switching, and moreover the energy E(-v-,x(0)) at the

~

initial state coincides with E(v-,0) at the origin, i.e.,
E(-v~,x(0))=E(v-,0). (4.20)

Proof. Substituting x*(ts)=x(0) into (4.10b) or (4.10d), and
then squaring both sides, we have

-

viEr-[2(X20%+t @ ?X19%)tCa ]/ (4w ?Xy@)=-V". (4.21)
On the other hand, from (3.8), (4.9), and (4.21), we have
EC-v-,x(0))=E(v-,x(0))
=E(v+,0)
=E(v",0). O

4.3. Uniqueness of the Trajectories

Let us now consider the uniqueness of the trajectories x-(t) of
(3.2) with the optimal control K*u'=w 2v* in the intervals [0,t,) and
(ts,te ],

The following theorem holds for the first interval.

Theorem 4.5. Suppose that the initial state x(0) (#0) and the
normalized control v° which satisfies the Control Laws 4.1 and 4.2
are given. Then the solution x-(t)=(x,"(t),x2"(t)), t20, of (3.2)
which passes through the switching point x°(t.") at t=t," is unique,
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where t.=t."+nT,;, 08 t."<T,, n=0,1,-++, and Ty (20) is the period of
the solution curve of (3.2) with the given control Ku=K-u-.

Proof. From the assumptions, the switching point x°(ts) which
satisfies (4.10) and Control Law 4.2 exists. On the other hand, since
the solution x°(t) of (3.2) with initial state x(0)(#0) and K-u‘=
w 2v" is periodic and wunique, it is obvious that there exists the
minimum switching time ts* such that ts=t."+nT,, 085ts"<Ty, n=0,1,
«++. Hence the switching point x*(ts-) is unique. (|

Similarly, the following theorem holds for the second interval.

Theorem 4.86. Suppose that we switch the control from K'u'=w 2v"’
to K'u'=-w?v* at t=ts", where the normalized control v- satisfies
the inequality (4.11). Then the solution of the initial value problen
(3.2) with the initial state (x,; " (t."),x2°(ts")) passes through the
origin, 'say, at t=t,-+nT>, n=0,1,.:., where t,"2te" and To(20) is
the period of the solution curve of (3.2) with the given control
-K*u*. Moreover the trajectory (x,"(t), Xxo."(t)), t&(ts",t "] is
unique.

Further detailed discussions will be given in [7].

4.4. Holding Control ‘

At the practical crane systems, it is important to hold the weight
cargos to the origin after it is transferred from an initial state to
the origin. For the purpose, the following theorem is useful.

Theorem 4.7. Suppose that the rigid body is transferred from
an initial state to the origin (0, 0) at, say, t=t, with a constant
control Ku=Ke-ug” and then the control is switched to the following
value:

Ke ua"(t)=w?3vg" for all t=t, , (4.22a)
where vy is given by
Ve'= 7bd /w2, (4.22b)

which 1is termed here as holding normalized control. Then the rigid
body is held to the origin for all t=1t, and its corresponding energy
E(ve*®,0), termed here as holding energy, is given by

E(vo",0)=[2(T bd /w)2-T (ad +be )]/4. (4.22¢)

Proof. If acceleration i2(=b.) is zero at the origin (x,(t.),
xo(ty))= (0, 0), then there is no force for the rigid body to leave
from the origin and thus, from (3.2), we have
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=0, (4.23)
which proves (4.22a). Substituting (4.22a) at the origin into (3.8),
we easily have (4.22c). ‘ O

In order to hold the rigid body to the origin, this theorem shows
that it is necessary to switch the control to Ku=7 bd at the origin
and the energy of the control system is given by (4.22c¢c). It is also
interesting to point out that (i) the holding control 1is independent
to the perturbation & along X-axis, (ii) if the perturbation ¢ =0,
the holding control is not necessary and the body stays at the origin
even in the constant wind.

5. Algorithe for the Time Optimal Control

In the previous sections, we derived conditions for the time opti-
mal control of the rigid body from the energetic point of view.
However, since the ordinary differential equation (3.2) is nonlinear,
it is still impossible to determine analytically the optimal switching
time t.* and the terminal time t(*. Thus, let us now consider the
algorithm for computing these values numerically.

5.1. Two Point Boundary Value Problems

Since (3.2) is a second-order differential equations, we can
expect that there will be at most one switching at the unknown time
ts*. Let us now introduce a new time re [tes, t2] and time scale

factors a ((20) and a 2(20) defined by

(1) subinterval 1: r t/a,, relte, ti),

(2) subinterval 2: r = t/aa., re(ty, ta], ta<t, S <t,. (5.1)

Here te=0, and t, and t, are the prescribed switching and terminal
times, respectively, for the new time system r, and a;, i=1, 2 is
an unknown constant, termed as time scale factors. Substituting (5.1)
into (3.2), we have for interval i:

dx, ¢ /dr=a ;x.‘"’,
dx2 ¢V /dr=a [~ 2x, V0 -f(x D )t 2V ], (5.2a)
where v =-y(2)=y-,

In addition, since a;, i=1, 2, is assumed to be a constant, we
have ‘

=~
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da :/dr = 0, i=1, 2. (5.2b)

On the other hand, the given boundary conditions for (5.2) can be
rewritten as

X1V (ta)=X1a, | X2V (te)=Xz0, (5.3a)
X232 (t2)=0. : (5.3b)

Note here that since the variation of x,‘®2(t) 1in the neighbor-
hood of the origin becomes very slow, which means that the convergence
of the iterative computation also becomes slow, and hence the given
terminal condition x, ‘®2’(0)=0 is not adopted here. Instead, we apply
the following boundary conditions:

X2 ‘U (Lt )=x2"(ts"), (5.3c)
and
Xy (2 (ty)=x,"(ts*), X220 (t)=x2"(ts"), (5.3d)

where x(t.*) is obtained from (4.10).

5.2. Initial Value Adjusting Method

The ordinary differential equation (3.2) with the boundary condit-
ions (5.3) constitutes two sets of two point boundary value problems
which can be solved independently, and it is now possible to compute
the time scale factor a,, i=1,2 and hence the optimal solutions
X199 (t), x2¢2(t), i=1, 2 of the present problem. For this purpose,
initial value adjusting method (IVAM) with interval decomposition
developed by C0jika [13] is very powerful.

For the ordinary differential equations (5.2), the initial states
X1 (te)=(X10,X20) and x2°(t,)=(x;(ts"),X2"(ts")) are given, respec-
tively. Hence, from (5.3b) and (5.3c), we define the following bound-
ary conditions:

gla 1 )=x " (ty)-x,"(ts°)=0, (5.42a)
and ‘
gla »)=x,? (t.)=0, : (5.4b)

for determining a ; in each subinterval.

Start now with prescribing the value of ®a ;, and then solve a set
of three dimensional initial value problems given by (5.2) with the
initial state x‘"’ (tp) or x*2’(t,), respectively, and denote the solu-
tions by x=(*x; "' (t),*x2"?(t)) and a ;=¥a ;, where the superscript
denotes the k-th iteration (k=0,1,.-.). 1Its corresponding boundary
conditions (5.4) can be rewritten as g(xa ;).

For the i-th subinterval at the k-th iteration, consider the pert-
urbed initial value problem:
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dg :/dr=0, Bi(ti-)=fa tu,

dy, " /dr=8 ;y2¢", Vi O (tio)=kxy Y (i),

dy. " /dr=8 i [-w 2y, PV =f(y ")t 2v ], yo(tioy)=*x P (tioy),
ti..Srst, i=1,2, k=0,1,++-, (5.5)

where u is a small perturbation parameter such that 0<u<<1l; and
v =Ku and v‘2°=-Ku. Let us define s*'"’(*a ;; u), termed as adjust-
ing value, given by

s PV (Ma s u)=(1/u)lg P (B)-g" (Y D], i=1,2. (5.6)

Using the adjusting value, we form the following iteration algo-
rithm for the new time scale factor a ;:

k+1a izka i—g(ka i)/s(i)(ka iy M )’ i=1’2’ k:ﬂ,l,'--, (507)

which is termed as the initial value adjusting method (IVAM). The
iteration algorithm (5.7) 1is - expected to have a nearly quadratic
convergence under appropriate conditions. As for details, refer to
[13-171].

6. Numerical Silulations

In the previous sections, the time optimal control problem for
the rotating rigid body about the perturbed centroid 0 has been
formulated and it has been shown that the problem can be reduced to a
set of two point boundary value problems. Let us now solve the time
optimal control problenm. ‘

The data for computer simulation of rotating rigid body are as
follows:

(1) a=3, b=2,
(2) w=0.15,
(3) W=7t e=178=0.02.
In the subsequent computations, the following quantities are used:
(4) the final state: (x; (1), x2(1))=(0, 0),
(5) the integration step size for the IVAM: h=2x10-3,
(6) the number of the integration steps: ,
, n=250 for each subinterval,
(7) the convergence criterion for the IVAM:
G={[g(a )2+g(a 2)2]/2}'"2510"%,
(8) the perturbation parameter: u=10-82,
and to compute the two point boundary value problem, the subroutine
package, revised MPIVID (double precision) developed by 0jika [say,
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13], has been used.

6.1. Control Without Switching 7

Suppose here that we try to transfer the rigid body from the given
initial state to the origin without switching, and let us now solve
the problem. Then, we have the following quantities:

(i) K*=0.34506, v =15.3361, E(v*,x)=2.62096, for 0S5 tsty,
(ii) Ke°=0.04, Ve'=1.777178, E(ve~,0)=0.010586, for teSt,

where t, is computed to be t,=37.95. The time optimal solutions
without switching are shown in Fig.6.1, from which it 1is easily
seen that the rigid body reaches from the given initial state to
the origin without switching, and then it is held to the origin. The
contour lines of the constant energy E(v,x) for various control gains
K are also shown in Fig.6.2.

Ev*,x)

x1,x2 (x8),E(x2/3)

N W &~

(ve', 0)

40 50

E=-0. 0081
K=-0.028 K=0.13

Fig.6.2. Contour lines of the constant energy E(v,x).

-18~



280

6.2. Control With Switching

(I) Let the control gain be K°=0.25 (w?2v-=-0.25). When u=-1 at
t=0, we have x,°(t,)=-0.8758, and since Xx,°(ts) < Xze¢, the condition
(i) in Control Law 4.2 is satisfied. Thus it is easily seen that the
optimal control sequence for the given initial condition and the
control gain is {-1, +1} and the optimal switching point is x"(t.")=
(2.3803, -0.8758). :

Starting from the initial guesses ?a ;=5.0 and ®a »,=5.0, the conv-
ergence behavior of G is shown in Table 6.1. The resulting optimal
trajectory in the state space is given in Fig.6.1, in which the switc-
hing curve S of (x,°(ts),x2"(ty)) for various control gains K is also
given.

Xa,E

3 r Elv*,x)

Table 6.1 Convergence tendencies El=v",x)
of G A

iteration G

.793
.142
.482% 10-2
.204%x 10-6
.160x 10-13

- SR LI —
cC oo oo

Fig. 6.3. The trajectories in
the state space.

The response of the time optimal is shown in Fig.6.4, here a ;-
=10.497, « -"=10.443, t.,-=5.2487, and t,-=10.455. When the rigid
body reached the origin, the control is switched to the holding
control Ko up (t)=w?2ve'= 0.04 (its corresponding holding energy is
obtained to be E(vg*,0) = 0.0106), and hence the rigid body is kept to
the origin after t2t,* [5].

(II) Let the initial state and the control be x(0)=(1, -1) and K-
=0.25 (w 2v*=-0.25), respectively. When u=-1 at t=0, we have X, (t.)=
0.5918, and since x»°(ts) > Xoe, the condition (ii) in Control Law
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- Elv*,x)

x1,E(x0.2)

Elve', 01
1 1 1 t

12 16

Fig. 6.4. The response of the optimal systenm.

4.2 is satisfied, and hence the sign of u must be changed to u=t1.
Thus the control sequence in this case is {+1, -1} and the optimal
switching point is x"(ts")= (-0.6842, 0.5918). The resulting optimal
trajectory in the state space is given in Fig.6.3, here a ,°=13.385,
a »°=4.4450, t,°=6.6925, and t,"=8.9150. |

7. Concluding Remarks

In this paper, (1) the dynamical motion of a rigid body about
the perturbed centroid, which is placed in wind, has been first formu-
lated, (2) then, in order to control the rigid body, a control method
by an air or a water jet system has been proposed, and it has been
clarified that the equation has a periodic solution which is uniquely
determined by the given initial state, (3) several properties of the
system with a constant control are discussed from the energy point of
view, and the constant control which transfers the rigid body from a
given initial state to the origin and the holding control which keeps
it at the origin have been given. (4) According to the max-min energy
theory for the 'solution of time optimal control, the optimal control
sequence, the switching point, and the switching surface can be easily
obtained analytically without wusing the well-known maximum principle
by Pontryagin. Moreover, (5) it is shown that if the control gain is
chosen to be large enough,  then the rigid body is reachable from any
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V)

initial state to the origin within a switching. (6) lastly, the equa-
tion has been solved by a computer, and the effectiveness of the con-
trol algorithms are also justified quantitatively.

It is worth insisting that the max-min enery theory developed here
can be easily generalized to nonlinear double integral plants without
damping terms.
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