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Abstract

Potential responses of a squid giant axon under normal physiological en-
vironments were experimentally studied when the axon was stimulated by a
train of periodic current pulses. The responses fell into three categories; phase-
locked, quasi-periodic and chaotic. A bifurcation structure of the rcsponse pat-
terns was obtained as a function of two bifurcation parameters, I/I; (the current
pulse intensity normalized by threshold current) and T (current pulse
intervals). It was found that the firing rate in the periodic response changed in
a stepwise fashion as a function of I/I; or T and took a limited number of the v
Farrey series. In other words, the firing rate does not entirely take the form of
a Cantor function. Furthermore, scaling properties were found in a series of the
bifurcation parameter (I/I;), above which the firing rate of a periodic response
was kept constant until thc; other mode of the response appeared. By comparing
the experimentally determined scaling coefficients with those theoretically ob-
- tained for the map, Xpn4+1 = Xy + € + A xp%, by Kaneko (Prog.Theor.Phys. 69 (1983)
403), it was found that the periodic responses appeared through either the tan-
gent bifurcation or the type III bifurcation, dependent on the bifurcation
parameters of I/I; and T. Presence of chaos in the response pattern in a limited
region of the bifurcation parameters is a peculiar characteristic. ~The intermit-
tent chaos appeared through the type III bifurcation, indicating that the bifur-
cation structure is homologous between both some parameter regions of the pe-
riodic response \and the region of the intermittent chaos. These characteristics
of the response patterns and the bifurcation structure could be qualitatively ex-
plained by considering double effects of periodic current input on normal
axons; oné is to exert as a periodic external force and the other is to induce the

self-oscillation that the axon inherently retains. Both response and bifurcation
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characteristics could be ascribed to a specific nonlinear interaction between the

induced self-oscillation and the periodic input.
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Introduction

Nonlinear and nonequilibrium oscillatory systems have exhibited phase-
locking, quasiperiodic and chaotic behaviors when they are periodically driven.
The systéms well studied to date are the Rayleigh-Benard convection systeml»z,
the barium-sodium-niobate (BSN) conductor3, the physical system of the charge
density wave#, the Belusov-Zhabotinsky reaction ‘systcms’(’,‘thc chicken heart,
the squid gfant a‘xon8 and so on. The phenomena found in these varieties orf in-
herently oscillatory and  externally periodically driven systems shared some
commonality so that some physical properties could be reduced to a universal
function?. |

It has been suggested that squid giant axons are understood as a nonlinear
and none:cjuilibrium system and that nerve excitation (impulse production) is
grasped as a transition from a fixed point (the resting state) to a limit cycle (the
repetitive firing state), assisted by an outwardly directed current stimulationlO,
In order to study the dynamic structure of the squid axon in more detail from a
physical viewpoint, we have long been engaged in studying potential response
characteristics of spontaneously repetitive firing axon to the periodic current
stimulation and found that the response characteristics are quite analogous to
those of other physical systems with inherent rhythml which are4subject to pe-
riodic stimulill.12; three types of responses (phase-locked, quasi-periodic and
chaotic responses) and also three kinds of route to the chaos (successive period-
doubling, intermittency and collapse of the quasiperiodicity) were found. At the
same time, chaotic potential responses to periodic current pulse inputs have
been observed recently in normal (quiscent) squid giant axons under normal
physiological conditions bathed in natural sea waterl3.14, |

The present paper is intended to describe a global bifurcation structure in

periodically stimulated giant axons of squid to obtain a deeper physical insight.
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to electrical excitation. The bifurcation structure observed here is compared

with those of other physical and chemical nonlinear systems.



Materials and Methods

Materials Experiments were performed on isolated giant axons of squid
(Doryteuthis bleekeri), captured in Sagami Bay and maintained in a special
aquarium tank in the Electrotechnical Laboratory at Tsukuba Cityl5,16.17  Each
giant axon, 400 - 600 um in diameter and 60 - 80 mm in length, was carefully re-
sected under a dissecting microscope. The axon thus prepared was placed in a
chambcr filled with natural seawater (NSW). The temperature of the axon was
kept constaﬁt by controlling the temperature of the chamber within +0.1°C in
the temperature range 4 through 18°C.
Experimental procedures In order to monitor the elccfrophysiological re-
sponses of the axon, membrane potentials were measured at two locations
independently; one (Rz) was placed to measure the membrane potential at the
.current stimulation site and the other (R3) was placed to measure it about
' 30- mm away from the stimulation site (Fig.1). For this, we inserted two potential
electrodes, Rj and R3 (glass pipette electrodes of the Ag - AgCl type, filled with
0.6 M KCl solution), inside the axon from the ends cut open on both sides,
respectively. A reference potential electrode (Rp) bathed in NSW was used to
give the reference potential for both these two internal potential electrodes.
The . current stimulation was delivered through an internal current elec-
trode (S) which was electrically connected to a pulse generator (Nihon-Koden
Co. Ltd., type SEN 7103) through a 470 kQ resistor. The current electrode was
made of platinized-platinum wire of 5 mm in length. In order to measure the
potential response characteristics of the axon to the periodic current
stimulation, a train of periodic current pulses was delivered, where the pulse
width was fixed at ’300 psec but the pulse intensity I and the time interval be-
tween neighbouring . pulses. T were changed as bifurcation paramétcrs. In order

to avoid axon fatigue, the number of current pulses involved in a single train
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for one trial of the experiments was limited to 500 or less. There was a two-min-
ute rest period after each train of periodic current pulses had stimulated the
axon. AfterA the rést, the resting potential usually recovered to the initial (or
control) level. If the resting potential was not recovered or when the total
number of current pulses given to an axon exceeded 30,000, we stopped using
the axon for the experiments. Under these experimental conditions, the ex-
periments could be stably performed for axons of >450 pm in diameter until
30,000 current pulses had been administered. This may have been because these
axons possessed large buffering capacities against -electrolysis accompanied by
current stimulation!8,

The external Ag - AgCl wire coil of 200 pm in diameter and 12 mm in coil
length (G) was placed in the chamber 51 mm wide, in parallel with the longitu-
dinal direction of the axom, in order to ground the NSW.

Response pattern classification and data analysis ' anpropagating and prop-
agating potential responses of the giant axon to periodic current pulse stimula-
tioﬁs were obtained by the experimental procedures described above. Three
typical experiments are illustrated in Fig.2, where the current intensity, I, of
periodic stimulation pulses was a co.nstant 1.5 times the current threshold, Ii,
while the time intevaal, T, between adjacent pulses was changed; 6.4, 6.2 and
5.6 msec for records A, B and C, respectively. I; was obtained experimentally as
the pulse intensity just enough to evoke the action potential when a single cur-
rent pulse was applied. In record A, obtained when T was 6.4 msec (longer than
a refractory period!8:19.20) it is seen in the figure that one impulse regularly
corresponds to one current pulse whether it is nonpropagating or propagating.
This does not hold in records B and C. In record B, obtained when T was

6.2 msec, a pattern of the potential response is periodically repeated such that
nine impulses are produced in succession and then one impufse is missed. This

is caused by the refractory effect. A similar response is observed in record C
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obtained when T was S5.6msec. In record C, the pattern is qualitatively the same
as that observed in record B but its period is shorter; that is, two impulses are
evoked in succession and then one is missed. In order to characterize these
response patterns, we adopted a notation originally developed by Harmon2! ;: 1m
on denofcs a periodic sequence of firing pulses in which 0 (failure of action po-
tential production by current pulse stimulation) appears consecutively n times
after 1 (presence of action potential) has appeared - consecutively m times.
According to this notation, each periodic firing patiern in Fig.2 is 1 (record A),
190 (record B) and 120 (record O), respectively.  An alternative notation to char-
acterize response patterns ié the firing rate, m/(m+n), defined as m impulses
produced by (m+n) current pulses when the n/umbcr of (m+n). is quite large.
The firing rate can be conveniently used to characterize not only periodic but
also aperiodic potential responses, while the notation 1m0 can only be used for
periodic potential responses. For the responses of Fig.2, the firing rates are 1
(record A), 9/10 (record B) and 2/3 (record C), respectively.

‘In order to analyze these potential' responses in more detail, we have de-
veloped two simple but effective methods : one of the methods is to measure
latency, tp, between a current pulse and the impulse evoked by it, in succession
(see upper inset of Fig.3), and to obtain 1 as a function of the impulse sequence
number n. Typical examples of these analyses are illustrated in records A, B
and C of Fig.3, whose representative samples of potential responses were shown
in records A, B and C of Fig.2, respectively. In record A, it is clear that 1p's are
unchanged for all n. This means that thisi periodic potential resp‘onsc of firing
pattern 1 is phase-locked. For firing pattern 190, it is easily seen in record B of
Fig.3 that this periodic response is also phase-locked. However, the response of
the firing pattern 120 does not retain the simple periodicity of 110. This can be
seen in record C of Fig.3 where 1p's are constant for odd numbers of n but those

for the even numbers are frequency-modulated as a function of n. This
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indicates that the response is quasi-periodic. The quasi-periodicity of the
response could bé further confirmed by plotting the tp4+2 vs. Tty (Fig.4-1) or by
obtaining f;equency spectra calculated by the maximum entropy method (MEM)
(Fig.4-2). The MEM was developéd by Burg22 in 1967 to calculate frequency
spectra from limited temporal data, by maximizing the information entropy,
more precisely than those obtained by conventional methods. In Fig.4, the
quasi-pe_riodicity is characterized by the formation of a closed circle of data
points in the tp4+2 vs. Ty relation (Record 1) and, at the same time, by the
appearance of shoulders around central peaks in the power spectral density
(Record 2). The frequency difference between the center and. shoulder of ;hé
épectra corresponds’to the modulation freqﬁency.

The othcf method of analyzing the temporal patterns of potential re-
sponses is to measure time  intervals, t;, between neighbouring impulses (see
upper- inset Fig.5), and to pl(;t a diagram of the ‘tn-versus-n._' Typical examples of
these are illustrated in records'A, B and C of Fig.5, where the data of temporal
potential responses used for these analyses were the same as those used for ob-
taining records A, B and C of Fig.3, respectively. From these records, it is clear
that the response patterns of 1 and 190 are both phase-locked (records A and B)
but that the pattern of 120 is not phase-locked (record C). For the analysis of
periodic or quasi-periodic patterns, it is well understood, by comparing the re-

sults of the Tty vs. n (records of Fig.3) with those of the tn vs. n (records of Fig.5),

‘that the former analysis provides greater insight into detailed characteristics of

the pattern than the latter one. One of the advantages of the former analysis is

demonstrated in Fig.3C, where the modulation is clearly visible only in t4's with
even numbers of n, while it was weakly visible in t,'s with both odd and even

numbers in Fig.5C. However, for the analysis of aperiodic patterns where it is

often difficult to define t,, the latter analysis will give us additional information

on response characteristics.



Results

Global bifurcation diagram for patterns of firing potential responses

Potential responses of the sQuid giant axon to a train of periodic current pulses
were experimentally studied to determine the bifurcation structure of the re-
sponse pattern as a function of two bifurcation parameters, I/I; and T. In the
experiments, the isolated axon was bathed in NSW at 14°C and stimulated with
periodic current pulses of I/I; between 1 and 2.1 with a minimum step of 0.001
and of T between 2.6 and 6.5 msec with a step of 0.1 msec. For each mea-
surement, I/I; was first changed (increased and/or decreased between 1 and 2.1)
while T was fixed at a given value. This expeﬁrﬁental procedﬁre was then re-
peated when T was reset, for the same (or different if necesSary) axon.

Periodic and aperiodic firing responses were found!3.14. The global bi-
furcation diagram of the firing pattern thus obtained is illustrated in Fig.6 as a
function of two dimensional bifurcation parameters, I/I;; and T, where periodic
firing responses of types> 1, 1m0 (m =1, 2, ..., 11), and (10)®-1100 (0 = 1, 2, ....., 12)
were observed with chaotic firing responses (dotted parameter regions). The
notation O in the diagram represents a region where no firing response was ob-
served after only. a single impulse response to the first pulse in a train of peri-
odic current pulses. Periodic firing responses of the type 1m0 were found in the
bifurcation parameter region with large T (over 5 msec); that is, the firing
patterns found in right half of the diagram. In this parameter region, the fir-
ing pattern 1MQ rather abruptly bifurcated to the m+1q pattern as I/I; was in-
creased with a fixed T or vice versz; (i.e. when T was changéd for a fixed I/Ty),
until the 1 pattern emerged. Therefore, weq can identify this parameter region
as one involving firing patterns of a simple period-adding sequence or a
period-adding sequence region. The detailed bifurcation characteristics be-

tween the 1m0 and Im+10Q patterns in Region I will be analyzed below.
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The periodic firing responses of the type (10)2-1100 were found when T
was small (less than 3.0 msec) but I/I; was large (larger than 1.7); that is, these
types of responses are observed in the upper left of the bifurcation diagram. In
this case, thé firing pattern (10)2-1100 also rather abruptly bifurcated to the
pattern (10)2100 with the increase of I/I; and T. We identified this region as’
one involving firing patterns of a period-adding sequence or simply a period-
adding sequence region. The detailed bifurcation characteristics in Region II
will be also analyzed below.

Two different characteristics of chaotic firing responses were fOundf One
is between the (10)2-1100 and (10)2100 firing patterns (band regions with ran-
dom dots in the diagram), where n = 1, 2, 3 and 4, when T was small (smaller than
4 msec) but I/I; was intermediate (less than 1.7); that is, this region (Region III)
is visible in the lower half of the bifurcation diagram as bands. It is seen that
the bandwidth becomes narrower as nl increases and is clearly discernible in
the region between the (10)2-1100 and (10)1100 patterns for n of 1, 2, 3 and 4 in
the experiments. Thus we refer to these regions alternating between chaotic
and periodic patterns as functions of I/I; and/or T. We will study the detailed
bifurcation characteristics of these regions in Region III below. The other type
of chaotic response patterns was found between the 10 and O responses when T
was large (larger than 3.8 msec) but I/I; was small (smaller than 1.25), as
shown as the band (with regular dots) in the bifurcation diagram. When T
and/or I/I; decreased, chaotic responses in this band bifurcated to other chaotic
ones until the 0 response pattern appeared. Therefore, we call this the continu-

ous chaotic sequence region. The bifurcation characteristics in Region IV will

_ be described below.

Detailed bifurcation characteristics

ft
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Region I (the. simple period-adding sequence region) Firing rates of the 110
firing responses changed in a stepwise fashion as a function‘ of the bifurcation
parameters, I/I; and T. A typical experiment is illustrated in Fig.7A, where I/I;
changed from 1.0 through 2.1 while T was fixed at 5.0 msec. As I/I; increased, it
is seen in the figure that the firing rate, n/(n+1), of the In0 ‘rcsponse was un-
changed for certain values of I/I;, forming a plateau, uﬁtil it changed abruptly
to (n+1)/(n+2) at a critical value of (I/I{)n+1. In order to investigate the
bifurcation structure, particular attention was paid to firing response behaviors
around the critical point of (Ifl)p+1 . Figure 7B shows the behaviors at the
critical points, with a control response of the 10 pattern (record a) when applied
to the 1, vs. n relations. Records b through f were obtained ffom non-
propagating potential responses for I/I; of 1.75 (b), 1.76 (c), 1.86 (d), 1.87 (e) and
1.96 (), respectivgly. Among these values of I/I;, critical values of (1/I;)3,
(I/1y)3 and (I/I;)g were 1.76, 1.87 and 1.96, respectively. In the transition be-
tween the 10 and 120 responses, we cannot see any critical behaviors in the po-
tential responses; that is, the 10 response at I/I; of 1.75 does not contain any
critical behavior as far as the T vs. n relation is concerned (b), and is un-
changed compared with the control at I/I; of 1.43 (a). At the same time, the 120
response at I/I; of 1.76 (c) does not show any critical behavior either, since the
Tn obtained here oscillated regularly against n at a period of 2 (¢). By analyzing
the T, vs. n for potential responses at I/I; of 1.86 (d) and 1.87 (e), we did not see
any critical behaviors, within the experimental accuracy, in the transition be-
tween the 120 and 130 states either. This also holds for the transition behavior
from the 180 response (see record f). It is noted that tys in records, d, e and f,
oscillate regularly against n at periods of 2, 3 and 8, respectively. These indicate
that the periodic firing responses of the 170 patterns are phase-locked, and that
the phase-locking is well preserved even in the vicinity of transitions between

the 170 and 1°+10 responses.

[ 2
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These structural analyses of the bifurcation characteristics were simi-
larly performed in Region1 for different Ts. The above conclusions, that the
170 responses are periodic and phase-locked for all I/I; when T was fixed, were
further confii‘med as T increased to 6.5 msec, except those responses observed
for T around 6.0 msec (Fig.8).

Figure 8 shows the firing rate of nonpropagating potential responses as a

~function of I/I; (Fig.8A) which were obtained as I/I; changed from 1 through

2.1 while T was fixed at 6.0 msec, and the t, vs. n relations (Fig.8B) for six repre-
sentative responses. It should be noted in Fig.SA that, at two values of I/I;, a and
b, the firing rate takes intermediate values between 1/2 (corresponding fo the
10 response) -and 2/3 (corresponding to .the ‘120 response) although, with these
exceptions, it changes vﬁth I/I; in a stepwise fashion. The 1t vs. n analysis on
the responses for a and b revealed that the 120 response, which initially ap-
peared on application of a train of periodic current pulses, became more and
more unstable as the number of current pulses increased until finally the 10 re-
sponse stably appeared (see records a and b in Fig.8B). When the 120 response
was still preserved, tp with even numbers n (upper branches of 1, in records a
and b) was frequency-modulated with n. It is clearly seen in records a to e that
the modulation ainplitude becomes smaller and, at the same time, the lasting
number of even n increases as the 120 responses become more stable. Lack of
stability in the 120 response with the stimulation number can be also chaf—
acterized by delaying 1, with n; more rapidly the upper branch of 1, is delayea
in records a and b compared with records ¢ and d (Fig.8B). Based on these con- |
siderations, the firing responses ‘at I/I; of c through d, which are classified as
the 120 responses (see Fig.8A), might transform to stable 10 responses with
further stimulation. However, the 120 response at I/I; of e looks extremely sta-
ble as estimated from the stability criteria of the T, vs. n analysis. However, the

130 response at I/I; of f, which was classified after 375 current pulses were |

3
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given, might transit to stable 120 response if we continued stimulation. This in-
dicates that, even if the periodic but phase-unlocked 1n+10 response emerges
initially, it will finally transform to a stable phase-locked 170 response.
However, we observed that thg: phase-unlocked 120 response was steady when
periodic current pulses with T of 5.6 msec and I/I; of 1.5 were given (see Fig.2).
In this case, the respbnse was classified into the quasi-periodic 120 'pattern
(Figs.3 and 4). This can be identified as the stabilized 120 quasi-periodic pattern
and those seen in records a to d in Fig.8 as transient 120 quasi-periodic patterns.

Region II _ (the period-adding sequence region)

This region was defined as the bifurcation parameter region where only
(10)2-1100 responses (n = 1, 2, 3, ..., 12) were elicited; that is,rthe region in the
bifurcation diagram (Fig.6) surrounded by I/I; lafgcr than 1.25 and T smaller
than 2.8 msec. The firing rate of the (10)2-1100 response changed to that of the
(10)2100 one in a stepwise fashion as a function of the bifurcation parameters,
I/I; and T. A typical experiment showing this is illustrated in Figs.9A and 10A,
where I/I; was changed and T was fixed at 2.6 and 2.8 msec, respectively. It is
seen in these figures that the firing rate, n/(2n+1), of the (10)2-1100 response
was unchanged for certain values of I/I;, forming a plateau, until it changed
abruptly to (n+1)/(2n+3) at a critical value of (I/I{)y. The detailed bifurcation
characteristics were further investigated both by the t, vs. n analysis (Figs.9B
and 10B) and by calculating the MEM power spectral density (Fig.11). Particular
attention was paid to firing response behaviors around the critical point of
(I/1y)n. Some of the transitional behaviors of responses obtained for T of

2.6 msec are shown in Figs.9B and 11A: For the transition between 100 and
10100 responses, even the 100 response just below point a was quite stable and
phase-locked (record a in Fig.9B) but the 10100 response just above (I/I;) was
steady but phase-unlocked; that is, qﬁasi-periodié (record b in Fig.9B). The

quasi-periodicity can be also confirmed by the MEM spectral analysis (record b
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in Fig.11A). It was observed that the quasi—périodic character of the 10100 re-
sponse was still preserved in the response observed at ¢ away from the critical
point of (I/I;)2, although the modulation frequencies in the upper branches of
Tnp with n w‘ere found to be higher than those at b (compare records ¢ with b in
both Figs.9B and 11A). For the transition between the 10100 and (10)2100
responses, responses in both patterns in the vicinity of the critical point of
(I/1)3 were quasi-periodic (records d and e in Figs.9B and 11A). This was also
true for the (10)3100 response for the transition between the (10)2100 and
(10)3100 responses (record f in Fig.9). By contrast, the (10)2-1100 responses
obtained for T of 2.8 msec were all found to be phase-locked, even in the transi-
tional regions of responses (sée Figs.10B and 11B). Therefore, as T increases
while I/I; is fixed at‘ a definite value larger than 1.25, the quasi-periodic
(10)2-1100 response, where n = 2, 3, ..., 12, bifurcates to the phase-locked one at
a critical value of T, Tc. Furthermore, it can be expected that thevtransition takes
place at Tc simultaneously for all (10)2-1100 responses. As T increases further,
chaotic responses appear between the (10)7-1100 and (10)2100 responses (n = 1,
2, 3, ...), as will be shown below,

Region III  (the region alternating between chaotic _and periodic responses)

This region was defined as the bifurcation parameter region where chaotic and
periodic (10)2-1100 responses were alternately elicited as a function of the bi-

furcation parameters; that is, the region in the bifurcation diagram (Fig.6) sur-
rounded by I/I; between 1.75 and 1.3 and by T between 3.0 and 3.8 msec. Firing
rates of the periodic (10)2-1100 response were n/(2n+1) but those of chaotic re-
sponses changed continuously to exhibit a minimum between the (IO)n-IIOO and
(10)1100 responses, where n = 1, 2, 3, ..., as a function of I/, when T was fixed. A
typical experiment for this is illustrated in 'Fig.12‘, wheré T was 3.8 msec and I/I}
changed from 1.0 throqgh 2.1. Detailed structures of responses obtained for dif-

ferent I/I; but common T of 3.8 msec were further studied by analyzing their
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respective tp vs. n relation (see Fig.5), as shown in Fig.13. Records a through o
of Fig.13 correspond to responses with the firing rates of a through o in Fig.12,
respectively. The tp vs. n analysis showed that the 100 response was phase-
locked at a but period-doubled at b. Further increase of I/I; brought about long-
lasting nonfiring periods intermittently, as seen in records c, d and e of Fig.13.
Each nonfiring period of time was equally close to ST for ¢ and d, and frequen-
cies of the nonfiring period increased with I/I;. Prior to the intermittent non-
firings, the period-doubling was observed to be always unstable.

A further increase of I/I; caused both nonfiring periods to become longer
and more frequent. In record e, obtained from the response with the minimum
firing rate (see Fig.12), nonfiring periods of 5T, 6T, 7T and 8T, except for only
one at 4T, are frequent. It is noted in records ¢ and d that the phase-locked 100
response was stabilized after the intermittent nonfiring bursts. However, in
record e, the intermittent bursts and the 100 period-doubling responses coexist-
ed during the time period of the experimental observation. Thus, the chaos
‘cmerging here as I/I; increased was caused by disrupting unstabilized period-
doubling 100 responses by intermittent nonfiring. Therefore, the bifurcation to
the type IIl intermittent chaos23 can be classified as a subcritical period-
doubling bifurcation24»25,26,

As I/I; increased beyond the minimum firing rate, the 10100 response
transiently appeared at early parts of the responses, followed by responses
period-doubling 100 responses alternating with intermittent nonfiring bursts (f
and g). In other words, the same characteristic of chaos as observed at e ap-
peared after the 10100 response became unstable. The tendency of the instabil-
ity was observed even at h (see record h).v For I/I; between h and i, the phase-
locked 10100 response was observed to be quite stable. At i, the 10100 response
was initially period-doubled but finally phase-locked (recordi). Then, the fir-

ing rate again took a minimum between the 10100 and (10)2100 responses (see

| 6



Fig.12).  Accordingly, long-lasting periods of nonfiring appeared
interrﬁittently, followed by period-doubling instability of the 10100 response
(records j and k). Therefore the chaos also appéarcd through the subcritical
period-doubling bifurcation. At 1, the phase-locked (10)2100 response emerged
although it was initially period-doubled. It is seen in record m that the (10)3100
response appeared initially, followed by ‘the (10)2100 intermittent chaos.
Finally, the stable 10 response appeared for I/I; larger than that at o (see record
0), through complicated responses temporarily mixed with multipatterns of
chaotic and periodic responses (record n). |

All these indicate that the route to the chaos observed in Region III is
commonly through the subcritical period-doubling bifurcation.
Region IV (the region with continuous chaotic segu‘encc) This region was de-
fined as the bifurcation parameter region where chaotic responses were ob-
served between the 10 and 0 responses, that is, the region surrounded by T larg-
er than 3.8 msec and I/I; smaller than 1.4. Firing rates of chaotic responses
changed continuousI}; between 0 (the O response) and 0.5 (the 10 response) as a
function of I/I; (Fig.14A), where T was 4.0 msec. The tn vs. n analysis revealed
that the chaos observed here appeared by interrupting the 10 responses with
long-lasting nonfiring intermittent periods (records b through c¢). In other
words, the 10 phase-locked response (record f) bifurcated to interxﬁittent

chaotic responses (records a through e) until the 0 response appeared.

Scaling propertie& of the firing rate as a function of thé bifurcation

parameter 1/1; In Region I, we observed that the 170 response. changed
abruptly to thé 12+10 response at a critical value of (I/I)p+1 when T was fixed.
As a result, we got a series of critical values, for two of which the firing rate was
kept constant; (I/Iy)1, (Y2, ... WI)11, oo ) oos whére (I/I)oo corresponds to -

the value above which the 1 response appears. Using these experimental
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observables of (I/I))p and (I/I})w, we found that [(I/I)e - (/I),] as a function
of n exhibited a scaling property expressed as n-», where A was found to be 1.8-
for T of 5.0 msec and 2.0 for T of 6.0 and 6.5 msec, respectively (Fig.15).

The scaling property was similarly found in Region II, where the
(10)2-1100 response changed abruptly to the (10)*100 response at a critical val-
ue of (I/l)y. We found that [(I/l))eo - (I/I)n] had a scaling property of n-*,
where A was found to be 1.2 for T of 2.6 msec and 1.3 for T of 2.8 msec, respec-

- tively (Fig.16). It is noted that (I/I})e in this case corresponded to the critical

value of I/I; above which the 10 response appeared.
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Discussion

In the present experiment, it Was found that potential responses of the
squid giant axon under normal physiological environments to periodically
stimulated current pulses fell into three categories : (1) phase-locked, (2) quasi-
periodic and (3) chaotic responses. A global response diagram was obtained as a
function of two bifurcation parameters, I/I; and T, as shown in Fig.6. As a
result, two-dimensional bifurcation structures of the response were studied in
detail. In the study, it was found that the periodic response was limited to two
firing types; the 170 and (10)7-1100 responses, where n = 1, 2, 3, ..., «. The non-
firing response (the -0 response) was the only exception. Furthermore, it was
found that the firing rate took a limited number of the Farrey series (see Fig.17);

0 for the 0 response, n_I:Tfor the 120 response and ’ZﬁnTI' for the (10)2-1100

 response. These results show that the stepwise change in the firing rate, as was

theoretically predicted by Nagumo and his colleagues26-27 was experimentally
confirmed in Regions I and II of the bifurcation diagram (Fig.6). However, it
should be noted that the firing raie experimentally observed does not entirely
take the form of an extended Cantor's function as theory would suggest27,28,29,
Tpe characteristics of Regions I and II could be also studied by our findings
of the scaling law that governs both the bifurcation structure and the stepwise

change in the firing rate :
For Region I; (Mo - II)p o 0719 i (1),

;n d

for Region I, (VMoo - (/Mg & 013 ooooooooeooeooeoeoee ),

where (I/I;)n stands for a critical value of the normalized current pulse inten-

sity above which the responses of 18+10 and (10)2100 appeared in RegionsI and

1T



II, respectively (see Figs.15 and 16). In other words, it was found that the scaling
coefficients averaged 1.9 and 1.3 for the response with the" simple period-adding
sequence  (Region I) and the period-adding sequence (Region II), respectively.
The absolute values of the scaling exponents and the difference between those
observed in RegionsI and II may be basically explained according to the current
theory of critical phenomena for the period-adding sequence of frequency-
locked response developed by Kaneko30:31,  He studied its critical behavior with

use of a one-dimensional map32’33, as follows;
Xn+1 = Xp + A sin 2nxg) + 0.25 (mod 1) .oeceeveecieciininnnenn, 3).

His results can 53 summarized as follows. (1) Frequency locking states with ro-
tation numbers of n/(Sn-1) appear in succession (n = 1, 2, 3, ..., =) at An. (2) A

scaling property that Ae - Ap =< n-2 was obtained and explained by the theory of
intermittency34:35, The same scaling property was obtained in a simulation of
the Belouzov-Zhabotinskii reaction36. Since the locking occurs through a tan-
gent bifurcation, the scaling property was generalized when a tangent bifurca-
tion of the type Xp4+1 = Xp +€ + A Xp? ... @) (f z=2, this czin be reduced to the

above bifurcation type of eq.3) was introduced, followed by the result that

The theoretically predictéd value of the scaling coefficient 2 is very close to 1.9,
the value obtained in RegionI, for the simple period-adding bifurcation
sequence. A typical example of eq.(4) has been observed in the simulation ex-
periment of the Belousov-Zhabotinsky reaction36. The excellent agreement
suggests that the bifurcation between successive periodic orbits in RegionI

takes place tangentially.

20
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However, in the case of the potential response with the period-adding bi-
furcation sequence (Region II), the scaling coefficient, 1.3, was experimentally
obtained. This value could be close to 1.5, which corresponds to the case of z=3

in eq.(4). The difference between the experiment and the theory may be be-

~ cause the scaling law in the theory holds for sufficiently large numbers of n

but the scaling coefficient was experimentally determined for definite numbers
of n with maximum n of 11. The estimated coefficient value will tend to be
smaller than the expected. These points indicate that the bifurcation mecha-
nism is different between the simple period-adding sequence (RegionI) and the
period-adding one (Region II). Further, it is noted that the map, xp41 = Xp+¢€ + A
Xn3, leads to the type III bifurcation in the theory of intermittency?3.34.35 This
is fully consistent with the fact that Region I neighbours Region III where. the
period-adding sequence bifurcates to an alternate sequence between chaos and
phase locking, as shown in Fig.6. It was shown in Results that intermittent
chaos appeared through the type III bifurcation in Region III. This means that
the bifurcation structure is homologous both in Regions II and III while, in
Region I, it appears through the tangent bifurcation.

These characteristics of both the resi)onse and the bifurcation could be
compared with those experimentally observed in the system of the manganese-
catalyzed Belusov-Zhabotinskii reaction in a stirred flow reactor by Maselko and
Swinney5'6. The similarities between their obscrvatior;s and ours are that (1)
some states bifurcate in a staircase fashion, and that (2) both include period-
adding and simple period-adding sequences. The differences are, however, that
(1) any chaos is involved in their system, that (2) our periodic sequences, only
two sequences of period-adding and simple period-adding, are rather simple
while theirs are complicated in such a way that the state sequence can be de-
scribed not only by the Farey tree but also by the Farey triangle, and (3) our

state transition could be modelled by eq.(4) with z of either 2 or 3, but theirs is

2/
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uncertain. Therg:fore, we could say that our squid axon system is simpler as the
frequency locking takes place on a two-torus systerﬁ than theirs involving a
three-or-more torus system. It should be noted here that the bifurcation to
chaos in Region II could be also understood by application of the :circle—map.
theory of Jensen, Bak and Bohr37 to the restricted region of the macroscopic
two-dimensional bifurcation structuré; that is, our quasi-periodic response
obtained for T of 2.6 msec (Fig.9), our phase-locked one obtained for T of

2.8 msec (Fig.10) and our chaotic one obtained for T of 3.0 msec (see Fig.6) may
correspond to their phase-lockéd‘plus quasi-periodic responses for k<1, their
phase-locked response for k=1 and their chaotic one for k>1, respectively.
However, the circle map description is only applicable to a réstrictcd region of
the two-dimensi/onél bifurcation diagram (Fig.6) since only specific scquencés
have been observed in the global diagram, ’as4 seen above.

The preScnce of chaos in Regions III and IV is another characteristic. This
may be qualitatively understood similarly to the case of self-oscillatory systems
exposed to périodic input7-11,38-44 " a5 follows; periodic inputs have double ef-
fects on the axon at rest. One of the effects is, of courSe, that they exert as a pe-
riodic external force. The other is that they induce the axon to behave as self-
oscillatory system. For the experimental evidence supporting the latter, we
recently found that the repetitive firing of action potentials vcould be stably
evoked in the isolated squid giant axon bathed in NSW by externally applied and
outwardly—directcd step current (Hanyu and Matsumoto, in preparation). The
repetitive  firing freql;éncy was dependent on both the current iniensity and
temperature; the higher the current intensity (or temperature) was, then the
higher the frequency became. These show that the oscillatory character inher-
ently retaincd in normal axons could be amplified even by external steady
~ current.  Therefore, chaotic responses in the squid axon at rest could be evoked

through a specific non-linear interaction between externally applied periodic

22
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:~thc Fitzhuoh-Nagumo model48, the Caianiello model27-29:49 and various

input and its induced oscillation. The fact that phase-locked responses were
only concentrated in particular regions (RegionsI and II) in the bifurcation
diagram (Fig.6) could be qualitatively understood in this way; in these regions,
the input, as it is regarded as strong stimulation, could suppress the oscillation
inherent to the axon. Furthermore, the reason why the quegching (or the 0O
response) appéared in a weakly stimulated region of ‘the diagram (Fig.6) could
be also explained in a similar way.

Quantitative analysis for the two-dimensional bifurcation diagram is left
for future studies, although a prelimiflary study has been tried45. For these
analyses, the above qualitative considerations should definitely be of some help.
So far, the theoretical studies have mainly focused on the analysis of response
characteristic of self-oscillatory nerve membranes to periodic input. The re-
sponse characteristic was studied for the Hodgkin-Huxley (H-H) réxodelll-46’47,
integrate-and-fire modelsS0-52, Like others, we have extensively studied the
characferis,tics of sp‘ontanedusly fired axons of squid and quantitati\}ely com-

pared these experiments with those of self-oscillatory H-H axons under periodic

Cinput!1,12,  In both axons, we found three responses; phase-locked, quasi-peri-

odic and chaofic. These are exactly the same responses .as found in the present
experiment. Furthermore, we found three routes to chaos in the H-H axon; (1)
successive period-doublingd3, (2) intermittency23,34.35 and (3) collapse of
quasi-periodicity54»55, ‘among which the former two bifu‘rcations, (1) and (2),
were éxperimentally observed in spontancously fired squid giant axons8.11.12,
Thesgf similarities between the response patterns and the bifurcation routes
found in normal axons and those found in éelf—sustaining ones could be ascribed

to the reasons described in the above paragraph. The simulation experiments to

obtain the bifurcation structure of the potential response pattern as a function

23
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of I/I; and T are now being studied for normal H-H axons when stimulated by a

train of periodic current pulses.
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Figure Captions

Fig.1 :

Fig.2

Fig.3

Schematic diagram of experimental setup. A chamber, temperature-
controlled within +0.01°C in the temperature range 4 through 18°C and
with a width of 51 mm, is filled with natural seawater (NSW). ‘A squid gi-
ant axon (AXON) is bathed in NSW. Stimulating current pulse
(STIMULATION) is given to an internal electrode (S) of platinized-plat-
inum of 5mm in length through a resistor of 470 kQ by a pulse

generator.  Nonpropagating potential responses are monitored with a

- pair of glass-pipette electrodes of the Ag-AgCl type, internal (Rp) and ex-

ternal (Rj) ones, through an amplifier of high input impedance (Vi).
Propagating responses are also measured with a pair of glass-pipettes
electrodes - of ‘Ag-AgCl type, R; and Rj3, through an amplifier of high input |
irﬁpcdancc (V2). The internal electrode R3 is placed about 30 mm away
from the other electrode Ry. G : a Ag-ACl coil to ground NSW,

Propagating (Record 1) and nonpropagating (Record 2) potential re-
sponses of the squid giant axbn to a train of periodic current pulses
(Record 3) where the current intensity normalized by the current
threshold, I/it, is ’kept constant at 1.5 and time intervals between neigh-
bouring current pulses, T, are changed: A; T = 6.4msec. B; T = 6.2 msec.
C; 5.6 msec. Temperature; 14.0°C.

Latency (tp) as a function of sequence number (n) at which the action
potential is evoked. Upper : Schematic drawing to illustrate how 1, is de-
fined in a relation between -nonpropagating action potentials (upper
trace) and current pulses (lower trace). Lower : A; the tp vs. n relation
for the potential pattern 1 corresponding to  Record 2 .in Fig.2A. B; the 1p

vs. n relation for the potential pattern 190 corresponding to Record 2 in

D6
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Fig.4

Fig.5

Fig.6

Fig.7

Fig.8

Fig.2B. C; the 1, vs. n relation for the potent‘ial paftern 120 corresponding
to Record 2 in Fig.2C.

(1) The Tp42 Vvs. Ty plot for the potential pattern 120 corresponding to
Rccord.z in Fig.2C. (2) Nommnalized MEM spectrum as a function of fre-
qucﬁcy for the potential pattern 120 corresponding to Record 2 in Fig.2C.
The frequency spectrum was calculated by the maximum entropy method
(MEM). |

Time intervals, tn, between neighbouring action potentials as a func-

tion of sequence number, n, of the action potential. Upper : Schematic

drawing to- illustrate how t is defined in a train of action potentials

(upper trace) evoked by periodic current pulses (lower trace). Lower : A;
the t, vs. n relation for the potential pattern 1 the t; vs. n relation for the
potential pattern’ 190 corresponding to Record 2 in Fig.2B. C; the ty vs. n
relation for the potential pattern 120 corresponding to Record 2 in Fig.2C.

A global bifurcation diagram of potential response patterns as a func-
tion of the current intensity normalized by the current threshold (I/Iy)
and time intervals, T, between neighbouring currcrit pulses (Pulse
Interval). See details in the text.

(A) Firing rates as a function of I/I; for the 120 responses where n = 1, 2,
3, .., =. T (time intervals between neighbouring current pulses) is kept
constant at 5.0 msec. (B) 1p vs. n relations for the 170 responses, obtained
when T = 5.0 msec, where I/I; = 1.43 (a), 1.75 (b), 1.76 (c), 1.86 (d), 1.87 (e)
and 1.96 (f), respectively. The values of I/I; at which the respective th vs.
n relations (a, b, ¢, d, e and f), are obtained correspond to those shown
above as a, b, ¢, d, e and f, respectively.

(A) Firing rates as a function of I/I; for the 120 responses obtained
when T = 6.0 msec. (B) T, vs. n relations for the responses obtained when

T = 6.0msec and I/I; = 1.620 (a), 1.625 (b), 1.630 (c), 1.646 (d), 1.688 (e) and

27



Fig.9

Fig.10

Fig.11

Fig.12

Fig.13
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1.719 (f), respectively. Firing rates obtained for these values of I/1; are
shown above as a, b, ¢, d, e and f, respectively.

(A) Firing rates as a function of I/I; for the (10)2-1100 responses ob-
tained when T = 2.6 mseé. (B) tn vs. n relations for the responses obtained
when T = 2.6 msec and I = 1.80 (a), 1.83 (b), 1.87 (c), 1.90 (d), 1.93 (e) and
1.97 (f), respectively. Firing rates for these values of I/I; are shown
above as a, b, ¢, d, e and f, respectively.

(A) Firing rates as a function of I/I; for the (10)2-1100 responses ob-
tained'when T = 2.8 msec. (B) Tty vs. n relations for the responses obtained
when T = 2.8 msec and I/I; = 1.40 (a), 1.66 (b), 1.69 (c), 1.75 (d), 1.76 (e) and
1.79 (f), respectively. | o

Normalized MEM spectrum as a function of frequencies. The spectral
density was calculated with the maximum entropy method (MEM). (A) The
power spectral densities calculated from the data of the (10)2-1100 firing
responses obtained when T = 2.6 msec and I/I; = 1.83 (b), 1.87 (c) and 1.90
(d), respectively. The same data was used as those for Fig.9. (B)-The power
spectral densities calculated from the data of the (10)2-1100 firing re-
sponses obtained when T = 2.8 msec and I/I; = 1.69 (c), 1.75 (d) and 1.76
(e), respectively.

Firing rates as a function of I/I; for the potential responses obtained
when T = 3.8 msec. The firing rates designated as a through o are char-
acterized as the relations of t, vs. n, a through o in Fig.13, respectively.

Relations of t; vs. n for the potential response obtained when T =

3.8 msec. The relations a through o are calculated from the data of the

responses obtained when I/I; = 1.102 (a), 1.142 (b), 1.148 (c), 1.165 (d),

‘1.193 (e), 1.199 (), 1.210 (g), 1.215 (h), 1.233 (i), 1.239 (j), 1.256 (k),

1.273 (1), 1.284 (m), 1.307 (n) and 1.335 (o), reépectivcly.
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Fig.14

Fig.15

Fig.16 :

(A) Firing rates as a function of I/I; for the potential responses ol;-
tained when T = 4.0 msec. (B) The relations of ty vs. n for the poteﬁtial
responses obtained when T = 4.0 msec and when I/I; = 1.212 (a), 1.228 (b),
1.239 (c), 1.252 (d), 1.271 (e) and 1.278 (f), respectively.

Relations of {(I/IP)e - (I/IDn} vs. n for the 110 potential responses ob-

tained when T = 5.0 msec (0), 6.0 msec (A) and 6.5 msec (*), respectively,
where I/I.. and (I/I;)n are defined as the minimum values of I/I; above

which the 1 and 12+10 responses appear, respectively. The relatioﬁs are
best-fitted with lines of n"* where A = 1.8 + 0.1, -2.0 + 0.2 and -2.0 + 0.3 for

the data obtained when T = 5.0 msec, 6.0 msec and 6.5 msec, respectively.

Relations of {(I/I)w - (I/I})n} vs. n for the (10)2-1100 potential re-

sponses obtained when T = 2.6 msec (o) and 2.8 msec (A), respectively,

- where (I/I)eo and (I/I})y are defined as the minimum values of I/It above

Fig.17

which the 10 and (10)2100 responses appear. The relations are best-fitted
with lines of n-* where A = 1.2+ 0.1 and 1.3 + 0.3 and for the data obtained

when T = 2.6 msec and 2.8 msec respectively.

Numbers of a Farrey's series to the 12th order. the numbers of n/(n+1)
. 1 2 3 11 . 1 2 5
(i.e., AR —l-—z-), n/(2n+l) (i.e., 325 e 11 ), 1 and O

corresponds to firing rates for the phase-locked or quasi-periodic re-
sponses of 110, (10)2-1100, 1 and 0 in Fig.6. The chaotic responses are ob-
served between both 0/1 and 1/2 (hatched region) and between n/(2n+1)

and (n+1)/(2n+3) (dotted regions) where n = 1, 2, 3 and 4 (see also Fig.6).
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