Prescribing Gaussian Curvature on s^2

by

Kuo-Shung Cheng*

Institute of Applied Mathematics

National Tsing Hua University

Hsinchu, Taiwan 30043

Republic of China

and

Joel A. Smoller**

Department of Mathematics

The University of Michigan

Ann Arbor, MI 48109

U.S.A.

- * Research supported in part by the National Science Council of the Republic of China.
- ** Research support in part by the NSF under Grant
 No. MCS-830123, and in part by the ONR under Grant
 No. N0014-88-C-0082.

On the two sphere $S^2 = \{ x = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1 \}$ with standard metric $ds_0^2 = dx_1^2 + dx_2^2 + dx_3^2$, when the metric is subjected to the conformal change $ds^2 = e^{2u}ds_0^2$, the Gaussian curvature K(x) of the new metric ds^2 is

(1)
$$K(x) = (1-\Delta u)e^{-2u},$$

where Δ denotes the Laplacian relative to the standard metric. The inverse problem raised by Nirenberg is : which function K on S² can be prescribed so that (1) has a solution u on S²?

We can rewrite (1) as

(2)
$$\Delta u + K(x)e^{2u} = 1$$
 on S^2 .

Let $d\mu$ denotes the standard surface measure on S^2 . Integrating (2) over the whole sphere, we obtain an obvious necessary condition

$$\int_{S^2} Ke^{2u} d\mu = 4\pi.$$

Hence K must be positive somewhere. Kazdan and Warner [5] found some other necessary condition by integration by parts. For each eigenfunction x_j with $\Delta x_j + 2x_j = 0$ (j=1,2,3), the Kazdan-Warner condition state that

Moser [6] was the first to prove that if $K(\cdot)$ is an even function on S^2 , that is, K(x) = K(-x) for all $x \in S^2$, then

(2) has a solution. Recently, many sufficient conditions were discovered. We refer the reader to Hong [4], Chen and Ding [3], Chang and Yang [1,2].

In this paper, we consider the case that K is rotationally symmetric, that is, K is a function of \mathbf{x}_3 only. Hong [4] considered this case and established some existence theorems. The method used by Hong is the variational method. In case K is a function of \mathbf{x}_3 , if we are looking for solutions u depending only on \mathbf{x}_3 , then (2) becomes an ordinary differential equations. It is the purpose of this paper to treat (2) by using the standard techniques of ordinary differential equations.

We assume that K is a function of x_3 only and we are looking for solutions u depending only on x_3 . Let $x_3 = z$. Then (2) becomes

(5)
$$\frac{d}{dz}[(1-z^2)\frac{du}{dz}] + K(z)e^{2u} = 1, \qquad z \in [-1,1].$$

Let $z = \frac{r^2-1}{r^2+1}$ and $K_1(r) = K(\frac{r^2-1}{r^2+1})$. We consider the following initial value problem

(b)
$$\begin{cases} v''(r) + \frac{1}{r}v'(r) + K_1(r)e^{2u(r)} = 0, & r \in (0, \infty) \\ v(0) = \alpha, & v'(0) = 0. \end{cases}$$

Let I be the set of α such that (6) has a unique solution $v(r;\alpha)$ on $[0,\infty)$. Our first main result is

Theorem A. Assume that K is Hölder continuous on S^2 . Then (5) has a regular solution u(z) on [-1,1] if and only if there exists an $\alpha \in I$ such that

(7)
$$\int_0^\infty K_1'(r)r^2 e^{2v(r;\alpha)} dr = 0$$

and

(8)
$$\int_0^\infty rK(r)e^{2v(r;\alpha)}dr > 0.$$

In general, we do not have much informations about the solutions $v(r;\alpha)$. Thus it is not an easy manner to verify (7).

Let
$$K_2(r) = K(\frac{1-r^2}{1+r^2})$$
. Our second main result is

Theorem B. Assume that K_1 and K_2 are smooth functions on [0,1] and change sign finite times. Then (5) has a regular solution u(z) on [-1,1] if any one of the following statements holds:

- (i) $K_1(r) = K_2(r)$ for $0 \le r \le 1$ and K_2 is positive somewhere (Moser [6]).
- (ii) $K_1(0) > 0$, $K_2(0) > 0$ and $K_1(0) \cdot K_2(0) > 0$.
- (iii) $K_1(0) > 0$, $K_2(0) > 0$, $K_1'(0) = 0$ and $K_1''(0) \cdot K_2'(0) > 0$.
- (iv) $K_1(0) > 0$, $K_2(0) > 0$, $K_1'(0) = K_2'(0) = 0$ and $K_1''(0) \cdot K_2''(0) > 0$.
- (v) $K_1(0) > 0$, $K_1(0) > 0$ and $K_2(0) \le 0$.

- (vi) $K_1(0) > 0$, $K_1'(0) = 0$, $K_1''(0) > 0$ and $K_2(0) \le 0$.
- (vii) The roles of K_1 and K_2 change in (iii), or (v), or (vi).
- (viii) $\max\{K_1(0), K_2(0)\} \le 0$ and K is positive somewhere [Hong, 4].

We shall sketch the proofs of Theorem A and part of Theorem B and leave details to Cheng and Smoller [7].

Sketch of proof of Theorem A. First we need some lemmas.

Lemma 1. Assume that $K_1(r) > 0$ for $r \ge r_0$ and $K_1(r) \sim r^{\ell}$ at ∞ for some real number ℓ . Then

$$\frac{\ell+2}{2} < \int_0^\infty s K_1(s) e^{2v(s;\alpha)} ds < \infty$$

for all $\alpha \in I$. (We use the notation "f ~ g at ∞ " to denote that "there exist two positive constants C_1 , C_2 such that $C_1g \ge f \ge C_2g$ at ∞ ".)

Lemma 2 Suppose that $K_1(r) \le 0$ for $r \ge r_0$ and $K_1(r) \sim -r^{\ell}$ at ∞ for some real number ℓ . Then

$$\int_0^\infty sK_1(s)e^{2v(s;\alpha)}ds \ge \frac{\ell+2}{2}$$

for every $\alpha \in I$. In particular if $K(r) \le 0$ for all r > 0, then

$$0 > \int_0^\infty sK(s)e^{2v(s;\alpha)}ds \ge \frac{\ell+2}{2}.$$

Let

(9)
$$A_{\alpha}(r) = (1+rv'(r;\alpha))^2 + K_1(r)r^2e^{2v(r;\alpha)}$$
.

Lemma 3. Suppose that $K_1(r) \sim r^{-\ell}$ or $K_1(r) \sim -r^{\ell}$ at ∞ for some real number ℓ . Then for each $\alpha \in I$,

(i)
$$A'_{\alpha}(r) = K'_{1}(r)r^{2}e^{2v(r;\alpha)}$$
,

(ii)
$$\lim_{r\to\infty} A_{\alpha}(r) = (1-\int_{0}^{\infty} sK_{1}(s)e^{2v(s;\alpha)}ds)^{2}$$

= $1 + \int_{0}^{\infty} K'(s)s^{2}e^{2v(s;\alpha)}ds$.

Now we can sketch the proof of Theorem A. Suppose (5) has a regular solution u(z) on [-1,1]. Let $z=\frac{r^2-1}{r^2+1}$ and $v(r)=u(z)-\log(\frac{1+r^2}{2})$. Then v(r) satisfies (6) with v(0)=u(-1) and $v(r)=-2\log r+O(1)$ at ∞ . It is easy to see that $2=\int_0^\infty sK_1(s)e^{2v(s;\alpha)}ds, \qquad \alpha=u(-1).$

Hence

$$(1 - \int_0^\infty sK_1(s)e^{2v(s;\alpha)}ds)^2 = 1$$

$$= 1 + \int_0^\infty K_1'(r)r^2e^{2v(r;\alpha)}dr.$$

This proves that $\alpha = u(-1) \in I$ and (7) and (8) hold.

Conversely, if there exists $\alpha \in I$, such that, (7) and (8) holds. Then from Lemmas 1,2 and 3, we have

$$\int_0^\infty sK_1(s)e^{2v(s;\alpha)}ds = 2$$

and

 $v(r;\alpha) = -2\log r + C$ for r large.

Let $z = \frac{r^2-1}{r^2+1}$ and $u(z) = v(r;\alpha) + \log(\frac{1+r^2}{2})$. Then u(z) is a regular solution of (5). The proof is complete.

We only sketch the proof of Theorem B under the following assumptions. We assume that $K_1(r) = K_2(r) \ge 0$ for all $r \in [0,1]$ and $K_1(0) > 0$. That is, we prove the following theorem.

Theorem B'. Assume that $K_1(r) = K_2(r) \ge 0$ for all $r \in [0,1]$ and $K_1(0) > 0$. Then (5) has a regular solution u(z) on [-1,1].

We need one lemma. Consider first

(10)
$$\begin{cases} v'' + \frac{1}{r}v' + K(r)e^{2v(r)} = 0 & r \in [0,1] \\ v(0) = \alpha, v'(0) = 0. \end{cases}$$

Let J be the α 's such that (10) has a solution $v(r;\alpha)$ on [0,1].

Lemma 4. Assume that $K(r) \ge 0$ for all $r \in [0,1]$ and K(0) > 0. Then $J = (-\infty, \infty)$,

$$v(1;\alpha) = \alpha - O(e^{2\alpha})$$

(11)

$$v'(1;\alpha) = O(e^{2\alpha})$$

for $\alpha \rightarrow -\infty$, and

$$v(1;\alpha) = -\alpha + O(1)$$

(12)

$$v'(1;\alpha) = -2 + o(1)$$

for $\alpha \rightarrow \infty$.

The proof of this lemma is quite long. We refer the interested reader to Cheng and Smoller [7].

Now we can sketch the proof of Theorem B'. First we consider

(13)
$$\begin{cases} \frac{d}{dz}[(1-z^2)\frac{d\tilde{v}}{dz}] + K(z)e^{2\tilde{v}} = 1, \quad z \in [-1,0] \\ \tilde{v}(-1) = \tilde{\alpha}. \end{cases}$$

We let $\widetilde{\mathbf{I}}_1$ to denote the set of numbers $\widetilde{\alpha}$, such tht, (13) has

a solution \tilde{v} ($z; \tilde{\alpha}$) on [-1,0]. Let

$$A_1 = \{(\widetilde{\mathbf{v}}(0,\widetilde{\alpha}), \widetilde{\mathbf{v}}'(0,\widetilde{\alpha})) \in \mathbb{R}^2 \colon \widetilde{\alpha} \in \widetilde{\mathbf{I}}_1\}.$$

Similarly, let

(14)
$$\begin{cases} \frac{d}{dz}[(1-z^2)\frac{d\widetilde{w}}{dz}] + K(z)e^{2\widetilde{w}} = 1, \quad z \in [0,1] \\ \widetilde{w}(-1) = \widetilde{\beta}. \end{cases}$$

Let $\widetilde{\mathbf{I}}_2$ be the set of numbers $\widetilde{\boldsymbol{\beta}}$ such that (14) has a solution $\widetilde{\mathbf{w}}(\mathbf{z};\widetilde{\boldsymbol{\beta}})$ on [0,1]. Let

$$A_2 = \{(\widetilde{w}(0; \widetilde{\beta}), \widetilde{w}'(0; \widetilde{\beta})) \in \mathbb{R}^2 : \widetilde{\beta} \in \widetilde{I}_2\}.$$

It is easy to see that (5) has a regular solution u(z) if and only if $A_1 \cap A_2 \neq \emptyset$.

Now let $z = (r^2-1)/(r^2+1)$ and $\tilde{v}(z) = v(r) + \log(\frac{1+r^2}{2})$. Then v(r) satisfies

(15)
$$\begin{cases} v''(r) + \frac{1}{r}v'(r) + K_1(r)e^{2v(r)} = 0, & r \in [0,1] \\ v(0) = \tilde{\alpha} + \log_2 = \alpha, & v'(0) = 0, & \alpha \in I_1 = \tilde{I}_1 + \log_2, \end{cases}$$

where $K_1(r) = K(\frac{r^2-1}{r^2+1})$. Hence we have

$$A_1 = \{(v(1;\alpha), (1+v'(1;\alpha)) : \alpha \in I_1\}.$$

Similarly, let $z = \frac{1-r^2}{1+r^2}$ and $\widetilde{w}(z) = w(r) + \log(\frac{1+r^2}{2})$. Then w(r) satisfies

(16)
$$\begin{cases} w''(r) + \frac{1}{r}w'(r) + K_2(r)e^{2w(r)} = 0, & r \in [0,1] \\ w(0) = \widetilde{\beta} + \log_2 = \beta, w'(0) = 0, \beta \delta I_2 = \widetilde{I}_2 + \log_2. \end{cases}$$

Then we have

$$A_2 = \{(w(1;\beta), -(1+w'(1;\beta)): \beta \in I_2\}.$$

Now from Lemma 4, $I_1 = I_2 = (-\infty, \infty)$, then curve corresponding to the part of A_1 when $\alpha \to -\infty$ approaches the curve y = 1, $x \to -\infty$ and the curve corresponding to the part of A_1 when $\alpha \to \infty$ approaches the curve y = -1, $x \to -\infty$. Hence the curve A_1 must intersect the line y = 0 at some point. From the assumption, $K_1 = K_2$, we conclude that A_2 is the mirror images of A_1 with respect to the mirror y = 0. Hence $A_1 \cap A_2 \neq \emptyset$. This completes the sketch of proof of Theorem B'.

Acknowledgement: Most of the results of this paper were completed during the period 1987-1988 when one of the author (Cheng) was visiting the University of Michigan. He wants to thank the Department of Mathematics for partial supports during his stay at the department.

References

- 1. Chang, S. Y. A. and P. C. Yang, Prescribing Gaussian curvature on S², Acta Math. 159(1987), 216-259.
- Chang, S. Y. A. and P. C. Yang, Conformal deformation of metrics on S², J. Differential Geometry 27(1988), 259-296.
- 3. Chen, W. -X. and W. -Y,. Ding, Scalar curvature on S²,
 Trans. Amer. Math. Soc. 303(1987) 365-382.
- 4. Hong, C. -W., A best constant and the Gaussian curvature, Proc. Amer. Math. Soc. 97(1986), 737-747.
- Kazdan, J. and F. Warner, Curvature functions for compact 2-manifold. Ann. of Math. (2), 99(1974), 14-47.
- 6. Moser, J., On a nonlinear problem in differential geometry. Dynamical Systems (M. Peixoto, Editor)
 Academic Press. New York 1973.
- 7. Cheng, K. -S. and J. A. Smoller, Conformal metrics with prescribed Gaussian curvature on S^2 , preprint.