Blow-up of Solutions for Semilinear Parabolic Equations

Tatsuo Itoh (University of Tokyo) 伊藤達夫

Section 1. Main results.

In this paper we consider the following initial boundary value problems

(IBVP1)
$$\begin{cases} u_{t_{\gamma}}(x,t) = \Delta u + \lambda e^{u(x,t)} & \text{in } \Omega \times (0,T), \\ u(x,t) = 0 & \text{on } \partial\Omega \times (0,T), \\ u(x,0) = \varphi(x) & \text{in } \Omega, \end{cases}$$

(IBVP2)
$$\begin{cases} u_{t}(x,t) = \Delta u + u^{p}(x,t) & \text{in } \Omega \times (0,T), \\ u(x,t) = 0 & \text{on } \partial\Omega \times (0,T), \\ u(x,0) = \varphi(x) & \text{in } \Omega. \end{cases}$$

Here $\Omega \subset \mathbb{R}^n$ (n\ge 2) is a bounded domain with smooth boundary $\partial\Omega$, $\lambda>0$ and 1< p<(n+2)/(n-2) (n\ge 3), p>1 (n=2).

Throughout the present paper we assume that an initial value ϕ satisfies the following conditions:

$$(1) \quad \phi \in C^1(\overline{\Omega}) \, \cap \, C^2(\Omega) \quad ; (2) \quad \phi(x) \, \geq \, 0 \quad (x \, \in \, \Omega) \ \, , \ \, \phi(x) \, = \, 0 \quad (x \, \in \, \partial \Omega) \, ;$$

(3)
$$\Delta \varphi + \lambda e^{\varphi} \ge 0$$
 $(x \in \Omega)$ $(resp. \Delta \varphi + \varphi^p \ge 0 \ (x \in \Omega)).$

Then, by the maximum principle, it follows that u(x, t) > 0,

$$u_t(x,t) > 0$$
 for $(x,t) \in \Omega \times (0,T)$.

Suppose that the solution u(x,t) blows up as $t\to T$ (< ∞), i.e., $\lim_{t\to T}\max u(x,t)=\infty$. We are interested in the behabior of $t\to T$ $x\in \Omega$

the limit function $\lim_{t\to T} u(x,t)$ near a blow-up point. (A point $x\in \overline{\Omega}$ is ,by definition, a blow-up point if there exists a sequence $(x_n,t_n)\in \Omega\times(0,T)$ such that $x_n\to x$, $t_n\to T$, and $u(x_n,t_n)\to\infty$ as $n\to\infty$.)

If Ω is a ball with center 0 and if ϕ satisfies the conditions (1), (2), (3) and if

(4) φ is radially symmetric with $\varphi_r \leq 0$,

There exists a constant C such that

then a blow-up point is a single point x = 0 ((5)) and the following estimates are known. Upper estimates for (IBVP1) ((4)):

(5) $u(x,t) \le -2 \ln |x| + \ln |\ln |x|| + C$ (|x| > 0).

The inequality (5) cannot be improved as follows:

$$u(x, t) \leq -2 \ln |x| + C.$$

In other words there does not exist such a constant C (see (3)).

Upper estimates for (IBVP2) ((5)): For any 0 < q < p, there exists a constant $\,C_q\,\,$ such that

$$u(x, t) \le C_q(1/|x|)^{2/(q-1)}$$
 (|x| > 0).

Lower estimates for (IBVP1) ((3)): Let n \geq 3. Then there exists $r_1 > 0$ such that

$$\lim_{t \to T} u(x, t) > \ln (2(n-2)/(x|x|^2)) \qquad (0 < |x| < r_1).$$

Lower stimates for (IBVP2) ((3)): Let n \geq 3 and let p>n/(n-2). Then there exists r₁ > 0 such that (β = 1/(p-1))

$$\lim_{t \to T} u(x, t) > (-4\beta(\beta + (2-n)/2)/|x|^2)^{\beta} \qquad (0 < |x| < r_1).$$

We shall investigate lower estimates for solutions to (IBVP1,2)

in the case that a domain in \mathbb{R}^n ($n \ge 2$) is not necessary a ball. Our results on lower estimates are as follows.

Theorem 1. Let Ω be a bounded domain in \mathbb{R}^2 with smooth boundary $\partial\Omega$. Assume that ϕ satisfies the conditions (1),(2),(3). Suppose that the solution u(x,t) to (IBVP1) blows up at a point $x_0 \in \Omega$ as $t \to T$. Then there exists $r_1 > 0$ and the following inequality holds. For any r with $0 < r \le r_1$

(6)
$$\lim_{t \to T} \{1/(2\pi) \int_{0}^{2\pi} e^{-u(x_0 + (r\cos\theta, r\sin\theta), t)/2} d\theta \}^2 > 2\lambda^{-1} r^{-2}.$$

As a direct consequence of Theorem 1 we have

Corollary 2. Let Ω be a ball with center 0 in \mathbb{R}^2 . Assume that $\varphi(x)$ is radially symmetric and satisfies the conditions (1),(2), (3). Suppose that the solution u(x,t) to (IBVP1) blows up at x=0 as $t\to T$. Then there exists $r_1>0$ and the following inequality holds. For any x with $0<|x|< r_1$

(7)
$$\lim_{t \to T} u(x, t) > -2 \ln |x| + \ln(2x^{-1}).$$

Next we state the results on (IBVP2).

Theorem 3. Let Ω be a bounded convex domain in \mathbb{R}^n (n\gamma2) with smooth boundary $\partial\Omega$. If \mathbf{x}_0 is a blow-up point with a blow-up time T, then for any k>0, there exists $\mathbf{r}_k>0$ such that

$$\lim_{t \to T} u(x, t) \ge k(1/|x - x_0|)^{2/(p-1)}$$
 for any x with $0 < |x - x_0| < r_k$.

Lastly we state results on the Hausdorff dimension of the set of blow-up points of the solution to (IBVP2). Let

 $\Gamma \equiv \{ \ \gamma \ : \ \text{the solution} \quad u(\mathbf{x},\,t) \ \text{blows up in} \quad L^{\gamma} \quad \text{as } t \to T \ \}$ and set $\gamma_0 \equiv \inf \Gamma \ .$ By the result of Giga and Kohn (9), it follows that $n(p-1)/2 \in \Gamma$ and so $\gamma_0 \leq n(p-1)/2 \ .$

Theorem 4. Let Ω be a bounded convex domain with smooth boundary $\partial\Omega$. Then the Hausdorff dimension D_H of the set of blow-up points for (IBVP2) satisfies the following inequality

$$D_{H} \le -2 \gamma_{0}/(p-1) + n.$$

For the proof of Theorem 1 we use Bandle's mean value theorem, which is proved by using Bol's isoperimetric inequality. In Section 2 we recall her result and prove Theorem 1. For the proof of Theorem 3, Giga and Kohn's results ((10)) play an essential role. As a consequence of Theorem 3 we obtain Theorem 4.

Section 2. Proof of Theorem 1.

For the proof we use Bandle's mean value theorem. Before proceeding to the proof we recall her result.

Let D be a domain in \mathbb{R}^2 , and let v satisfies a differential inequality $\Delta v + \lambda e^v \ge 0$ in D. Let $B(r,x_0) \subset D$ be the disk of radius r with center $x_0 \in D$. We define a Riemann metric $d\sigma$ in D by $d\sigma^2 = e^{v(x)} (dx_1^2 + dx_2^2)$. Then the length of $\partial B(r,x_0)$ and the area of $B(r,x_0)$ are respectively

$$\ell(r) \equiv \int_0^{2\pi} e^{v(r,\theta)/2} r d\theta \quad \text{and} \quad a(r) \equiv \int_0^{2\pi} \int_0^r e^{v(r,\theta)} r dr d\theta$$

where we write $v(r,\theta)$ for v(x) ($x = x_0 + (r\cos\theta, r\sin\theta)$).

Bol's isoperimetric inequality says that

(8)
$$l(r)^2 \ge 4\pi \ a(r) - (1/2) \ a(r)^2$$
.

By the Schwarz inequality we have $2\pi r a_r(r) \ge \ell^2$. Hence this together with (8) yields a differential inequality

$$2\pi r \ a_r(r) \ge 4\pi \ a(r) - (x/2) \ a(r)^{\frac{2}{3}}$$
.

The equality holds if and only if

 $a(r) = a_0(r) \equiv \pi b r^2 / (1 + \lambda b r^2 / 8)$ (b : a positive parameter).

Note that $a_0(r)$ is the area of $B(r,x_0)$ with respect to a Riemann metric $d\sigma_0^2=e^{v_0(x)}(dx_1^2+dx_2^2)$, where

(9)
$$v_0(x) = \ln (b/(1 + xbr^2/8)^2)$$

and it satisfies $\Delta v_0 + \lambda e^{V}0 = 0$.

We denote the length of $\partial B(r,x_0)$ with respect to $d\sigma_0$ by $\ell_0(r)$. Now we state Bandle's mean value theorem ((1,2)).

Lemma 1 (Bandle's mean value theorem).

Let v be as above. Let $B(r_1,x_0)\subset D$. Suppose that there exists b>0 such that

(10)
$$\ell(r_1) = \ell_0(r_1).$$

Then if $\lambda a(r_1) \leq 4\pi$, then

(i)
$$a(r) \le a_0(r)$$
 for $0 < r \le r_1$,

(ii)
$$v(0) \leq \ln b$$
.

For the proof see (1).

Lemma 2. Let $r_1>0$ be fixed. Suppose that $\lambda \ a(r_1) \leq 4\pi$. Then if $e^{\overline{V}(r_1)} \equiv ((1/2\pi) \int_0^{2\pi} e^{V(r_1,\theta)/2} d\theta)^2 < 2/(\lambda r_1^2),$ then there exists b>0 such that (10) holds and (11) $\lambda \ a_0(r_1) < 4\pi$.

Proposition. Let u(x,t) be a continuous function in $\Omega\times(0,T_0)$. Assume that for each $0\le t< T_0$, u(x,t) satisfies a differential inequality $\Delta u + \lambda e^u \ge 0$ in Ω . Suppose that $\lambda a(r_1,0)< 4\pi$ and that for each $0\le t< T_0$ $e^{\overline{u}(r_1,t)}< 2/(\lambda r_1^2)$. Then the followings hold for each $0\le t< T_0$ (i) $\lambda a(r_1,t)< 4\pi$, and (ii) $e^{u(x_0,t)}\le 4e^{\overline{u}(r_1,t)}$,

where
$$a(r_1, t) = \int_{B(r_1, x_0)} e^{u(x, t)} dx$$
,
(12) $e^{\overline{u}(r_1, t)} = ((1/2\pi) \int_0^{2\pi} e^{u(r_1, \theta, t)/2} d\theta)^2$,

$$u(r_1, t, \theta) = u(x, t)$$
 $(x=x_0 + (rcos\theta, rsin\theta)).$

Proof of Theorem 1. Since $u_t > 0$, we have differential inequalities $\Delta u + \lambda e^u > 0$. Let $r_1 > 0$ be so small that (i) $\lambda a(r_1,0) < 4\pi$; (ii) $e^{\overline{u}(r_1,0)} < 2/(\lambda r_1^2)$. We prove that there exists $T_1 < T$ such that $e^{\overline{u}(r_1,T_1)} = 2/(\lambda r_1^2)$. Suppose that there does not exist such a T_1 . Then we have for $0 \le t < T$, $e^{\overline{u}(r_1,t)} < 2/(\lambda r_1^2)$. Hence by (ii) of Proposition we have $u(x_0,t) \le \ln \overline{u}(r_1,t) + 2 \ln 2$ ($0 \le t < T$), and so we have

 $u\left(x_0,\,t\right) \, \leq \, -2\,\,\ln\,\,r_1^{} \, + \,\ln\,(8/\lambda) \qquad (\,\,0\, \leq \,t \, < \,T\,\,)\,,$ contradicting the fact that $\,x_0^{}\,\,$ is a blow-up point and that $\,T\,\,$ is a blow-up time.

Proof of Proposition. First we prove that (i) holds for $0 \le t < T_0$. Suppose that it does not hold, then there exists $0 < T_1 < T_0$ such that $\lambda \ a(r_1,t) < 4\pi$ ($0 \le t < T_1$), and

(13)
$$\lambda a(r_1, T_1) = 4\pi$$
.

Since $e^{\vec{u}(r_1,T_1)} < 2/(\lambda r_1^2)$, we get by Lemmas 1,2 that λ a $(r_1,T_1) < 4\pi$. This contradicts (13).

Next we prove that (ii) holds for $0 \le t < T_0$. Since $(14) \qquad (\lambda r_1^2/2) e^{\overline{u} \, (r_1, \, t)} < 1,$ there exists $b = b \, (r_1, \, t)$ such that $\ell(r_1, \, t) = \ell_0 \, (r_1, \, t) \, ,$ where $\ell(r_1, \, t) \text{ is the length of } \partial B(x_0, r_1) \text{ with respect to a Riemann metric } d\sigma^2 = e^{u \, (x, \, t)} \, (dx_1^2 + dx_2^2) \, (\text{it equals to } 2\pi r_1 e^{\overline{u} \, (r_1, \, t)/2}) \text{ and } \ell_0 \, (r_1, \, t) = 2\pi r_1 b^{1/2} \, / (1+\lambda b r_1^2/8).$

Indeed b is a solution of a quadratic equation

$$A^{2}Cb^{2} + (2AC - 1)b + C = 0,$$

where
$$A = \lambda r_1^2 / 8$$
; $C = e^{\overline{u}(r_1, t)}$

We choose
$$b = (1 - 2AC - \sqrt{1 - 4AC})/(2A^2C)$$
,

Hence by (i) and by Lemma 1 we get

(15)
$$u(x_0, t) \le \ln b(r_1, t)$$
.

On the other hand, we have by (14), $b(r_1, t) < 4C$. Hence by (15) we obtain

$$u(x_0, t) < 2 \ln 2 + \overline{u}(r_1, t)$$
.

Thus we have proved Proposition.

Proof of Lemma 2. Set $A = \lambda r_1^2/8$ and $C = e^{\overline{u}(r_1, t)}$. Since 4AC < 1, there exists b such that $\ell(r_1) = \ell_0(r_1)$. We choose $b = (1 - 2AC - \sqrt{1 - 4AC})/(2A^2C)$. Then an inequality $\lambda a_0(r_1) = \pi \lambda b r_1^2/(1 + \lambda b r_1^2/8) > 4\pi$

holds if and only if Ab < 1. On the oher hand this inequality holds if and only if $(1-X-\sqrt{1-2X})/X < 1$ (X = 2AC) i.e., 4AC < 1. Thus we have proved Lemma 2.

Section 3. Proofs of Theorems 3,4.

Proof of Theorem 3. We prove that for any k>0 there exists $r_k>0$ such that for 0<|x| < r_k ($x_{\rm o}=o$)

$$\lim_{t\to T} u^{p-1}(x,t) > k/|x|^2.$$

Let k>0 be fixed. Suppose that there does not exist such r_k . Then there exists a sequence $\{\,x_{\ell}\,\}$ with $x_{\ell}\to 0$ such that $\lim_{t\to T}\,u^{p-1}(x_{\ell},\,t)\ \le\ k/|x_{\ell}|^2\ .$

Since $u_{t} > 0$, it follows that

(16)
$$|x_{g}|^{2} u^{p-1}(x_{g}, t) \le k \quad \text{for } t > 0.$$

Choose $\varepsilon > 0$ with

(17)
$$\varepsilon < \beta/k$$
 ($\beta=1/(p-1)$) and set $t_{\ell} \equiv T - \varepsilon |x_{\ell}|^2$. Then by (16) we get

(18)
$$\varepsilon^{-1} (T - t_0) u^{p-1} (x_0, t_0) \le k.$$

On the other hand by the result of Giga and Kohn it follows that $(T-t_{\ell}) u^{p-1}(x_{\ell},t_{\ell}) \to \beta.$

Hence by (18) we get $\beta \leq \epsilon k$. This contradicts (17).

Proof of Theorem 4. Before proceeding to the proof we recall the definition of the Hausdorff dimension. Let X be a metric space and let Y be a subset of X. For $\epsilon > 0$ and D > 0 we set $\mu_{D}, \epsilon^{(Y)} \equiv \inf_{\substack{\text{diam } B_j < \epsilon \\ \epsilon \downarrow 0}} \sum_{\substack{Y \subset \cup B_j \\ \epsilon > 0}} \sum_{\substack{\text{diam } B_j < \epsilon \\ \epsilon > 0}} \sum_{\substack{\text{diam } B_j < \epsilon \\ \epsilon > 0}} \mu_{D}, \epsilon^{(Y)}.$

Then μ_D (Y) is called the D-dimensional Hausdorff measure of Y. The Hausdorff dimension of Y is defined as follows:

 $\inf \{ D : \mu_D(Y) < \infty \} \quad (= \inf \{ D : \mu_D(Y) = 0 \}).$

We prove the following proposition. Theorem 4 is an immediate consequence of it.

Proposition. Suppose that u does not blow-up in L^γ as $t\to T$, i.e., $\lim_{t\to T}$ $\|u\|_{L^\gamma}<\infty$. Let $D\equiv -2\gamma/(p-1)+n$. Then the D-dimensional Hausdorff measure μ_D of the blow-up points satisfies

(19)
$$\mu_{D} \leq c \lim_{t \to T} \| \mathbf{u} \|_{L}^{\gamma} \gamma \qquad (c: some constant).$$

Proof of Proposition. Let $\epsilon>0$ be fixed. Let x_0 be a blow-up point. Since Ω is convex, it follows that $x_0\in\Omega$ ((5)). Hence by Theorem 3, there exists $0< r_{x_0} \le 2/3 \ \epsilon$ such that

$$B(x_0, r_{x_0}) \equiv \{ x : | x - x_0 | < r_{x_0} \} \subset \Omega ,$$

$$\lim_{t \to T} u(x, t) \ge |x - x_0|^{-2/(p-1)}, \quad x \in B(x_0, r_{x_0}).$$

Since the set of blow-up points is compact ((5)), there exists a finite subset { x_j } of the blow-up points and r_j with $0 < r_j \le 2/3 \ \epsilon \quad \text{such that}$

$$B(x_1, 3/2 r_1) \subset \Omega ;$$

(20)
$$B(x_{i},r_{i}) \cap B(x_{j},r_{j}) = \Phi \quad (i \neq j);$$
$$\{blow-up \ points\} \subset \bigcup_{i} B(x_{i},3/2 \ r_{i});$$

(21)
$$\lim_{t \to T} u^{\gamma}(x, t) dx \ge |x - x_0|^{-2\gamma/(p-1)}, x \in B(x_i, r_i).$$

By (21) we get

(22)
$$\int_{|x-x_i| \le r_i} \lim_{t \to T} u^{\gamma}(x, t) dx \ge \iint_{0 \le r \le r_i} r^{-2\gamma/(p-1)} r^{n-1} dr d\omega = C r_i^{D}.$$

Hence by (20), (22) we get

$$\sum_{i} (3/2 \ r_{i})^{D} \leq (3/2)^{D} C^{-1} \sum_{i} \int_{|x-x_{i}| \leq r_{i}} \lim_{t \to T} u^{\gamma}(x, t) \ dx$$

$$\leq (3/2)^{D} C^{-1} \int_{\Omega} \lim_{t \to T} u^{\gamma}(x, t) \ dx$$

$$= (3/2)^{D} C^{-1} \lim_{t \to T} \int_{\Omega} u^{\gamma}(x, t) \ dx < \infty .$$

Since C is independent of ϵ , we obtain (19).

References

- (1) Bandle, C., Mean value theorems for functions satisfying the inequality Δ u + K e $^{\rm U}$ \geq 0 , Arch. Rational Mech. Anal., 51 70-84 (1973).
- (2) Bandle, C., Isoperimetric Inequalities and Applications, Pitman (London, 1980).
- (3) Bebernes, L., A. Bressan, and D. Eberly, A description of blowup for the solid fuel ignition model, Indiana Univ. Math. J., 36, 295-305 (1987).
- (4) Bebernes, J., A. Bressan, and A. Lacey, Total blow-up versus single point blow-up, J. Differential equations 73, 30-44 (1988).
- (5) Friedman, A. and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34, 425-447
- (6) Fujita, H. and Y.-G. Chen, On the set of blow-up points and asymptotic behavior of blow-up solutions to a semilinear parabolic equation, preprint.
- (7) Galaktianov, B. A. and C. A. Pusashkov, Application of a new comparison theorem to the study of unbounded solutions of nonlinear parabolic equations, Diff. Uravnen. 22, 1165-1173 (1986).
- (8) Giga Y. and R. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38, 297-319 (1985).
- (9) Giga Y. and R. Kohn, Characterizing blowup using similarity

- variables, Indiana Univ. Math. J. 36, 1-40 (1987).
- (10) Giga Y. and R. Kohn, Nondegeneracy of blowup for semilinear heat equations, Hokkaido Univ. Preprint Series in Math. #46 (1988).
- (11) Weissler F.B., Single point blowup of semilinear initial value problems, J. Differential Equations 55, 204-224 (1984).

Department of Pure and Applied Sciences

College of Arts and Sciences

University of Tokyo