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Blow—up of Solutions for Semilinear Parabolic Equations

Tatsuo Itoh ( University of Tokyo )
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Section 1. Main results.

In this paper we consider the following initial boundary valus

problems

u G, t) = A u +oa et in @ x (0,T),
(IBVP1) oY udx, ) =0 on 89 x Q,Ty,

ulx,0) = o in @,

u, (x, 1) = Au + uf (x, ©) in Q x (0,1,
C(IBVP2) ulx,t) =20 on 89 x (O,T>,

ulx,® = ox) in .

Here § < R™ (n22) is a bounded domain with smooth boundary 89 ,
X >0 and 1 < p < (n+2)/(n?2) =3, p > 1 (=2).
Throughout the present paper we assume that an initial value

¢ satisfies the following conditions:

(1) o € C1(§5 n C2(Q) (2 o(x) 20 x € @D, ox =0 (x € 3D,
3  Ap+ 2?20 e ( resp. Ap + o2 0 (x € © ).
Then,by the maximum principle, it follows that ulx, t> > 0,
ut(x,t) >0 for ((x,t) € @ x Q,D.
Suppose that the solution uix,t) blows up as t=T (K =),
i.e., lim max u(x,t) = = We are interested in the behabior of
t-T x€Q



the limit function lim ud(x,t) near a blow—up point. ( A point x€0
t-T

is ,by definition, a blow—up point-if there exists a sequence
x ,t )€ Qx(0,T> such that X, 2X, tneT, and u(xn,tn) -=© as n -ow,)

If Q@ is a ball with center O and if ¢ satisfies the conditions
(13, (2>, (3> and if
O @ is radially symmetric with o _ < 0,
then a blow—up point is a single point x = 0 ((5)) and the
follswing estimates are kﬁown. Upper estimates for (IBVP1) ((4));
There exists a constant C such that ‘
D) ulx,t) < -2 1n |x| + 1In [ln [x|] + C C Ix| >0,
The inequality {(5) cannot be improved as follows

ulx,t) < -2 1ln |x| + C.

In other words there does not exist such a constant C (see {3)).

Upper estimates for (IBVP2) ((5)): For any 0 < q < p, there

exists a constant Cq such that
27 (q—1)

ulx, t) < Cq(l/lxl) CIx] > 0.
Lower estimates for (IBVP1) ((3)): Let n = 3. Then there
exists ry > 0 such that
lim u¢x, ) > In € 2(n-2>/Glx]1%) (0 < ixl <r,).

T

Lower stimates for (IBVP2) ((3)): Let n =2 3 and let p>n/(—2).

Then there exists ry > 0 such that C 8 = 1/7(G-1)

lim udx, ) > (48 B+@-m/2/1x1%8 (0 < |x] <ry ).
t>T |

We shall investigate lower estimates for solutions to (IBVP1,2)




: . . n o .
in the case that a domain in R (n = 2 ) is not necessary

a ball. Our results on lower estimates are as follows.
Theorem 1. Let § be a bounded domain in Rz with smooth
boundary 29 . Assume that ¢ satisfies the conditions (1), (2>, (3.

Suppose that the solution udx, t) to (IBVP1) blows up at a point

Xg €9 as t - T. Then there exists ry > 0 and the following
inequality holds. « For any r with 0 < r < ry
: om . -
& Lim {1/<2n)5 o ulxgt(rcosd, rsin®), /2,2 5 -1 -2
6]

t-T N

As a direct consequence of Theorem 1 we have

Corollary 2. Let @ be a ball with center 0 in Rz . Assume
that @(x) is radially symmetric and satisfies the conditions (1), (2),
(3). Suppose that the solution ulx,t) to (IBVP1) blows up at x = 0 as
t » T. Then there exists ry > 0 and the following ingquality holds.

For any x with 0 < |x| < r,

- lim udx,t) > -2 In |x| + 1n¢ 22”14,
) t-T

Next we state the results on (IBVP2).

Theorem 3. et © be a bounded convex domain in R" (n=2)>
with smooth boundary 3Q. If Xg is a blow—up poiht with a blow—up

time T, then for any k > 0, there exists Iy > 0 such that
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lim udx, t> = kC 1/]x - x

!
0
t-T

for ahy x with 0 < | x - Xq | < fe -

Lastly we state results on theVHausdorff dimension of the set M’
blow—up points of the solution to (IBVP2). Let /
I'= { v : the solution u(x,t) blows up in LY as t = T)
and set vy = inf T . |
By the result of Giga and Kohn (9), it follows that n®-1)/2 € T

and so Yo < n{p-1)/2 .

Theorem4. Let @ be a bounded convex domain with smooth

boundary o%. Then the Hausdorff dimension D of the set of

H
blow—up points for (IBVP2) satisfies the following inequality

DH < -2 YO/(p—l) + n.

For the proof of Theorem 1 we use Bandle’s mean value theorem,
which is proved by using Bol’s isoperimetric inequality. In Section
2 we recall her result and prove Theorem 1. For the proof of
Theorem 3, Giga.and Kohn’s results ({10)) play an essential role. As

a consequence of Theorem 3 we obtain Theorem 4.




Section 2. Proof of Theorem 1.
For the proof we use Bandle’s mean value theorem. Before
proceeding to the proof we recall her result.

Let D be a domain in Rg, and let v satisfies a differential

inequality Av +xe’ >0 in D. Let B(r,xo) < D be the disk of
radius r with center Xq € D. We define a Rismann metric do in
D by do? =e"® Cax? + dxZ ).  Then the length of 8B (r, xg)
and the area of B(r,xo) are respectively
2(r) = Sg” eV (82 g and a () zjg”% eV (9 Larag
where we write v(r, 8 for v ( x = Xq + (rcos@, rsind) ).
Bol’s isoperimetric inequality says that
2 _ 2
(8> () 2 4w a(p) (x/2) aflr)”.
By the Schwarz inequality we have 2nr ar(r) P £2. Hence this
together with (8) yields a differential inequality
orr a () 2 4m al) - /2 al)? |
The equality holds if and only if
a(r)=ao(r)znbr2/( 1+1br2/8 b (b : a positive parameter J.
Note that ao(r) is the area of B(r,xo) with respect to a Riemann
metric dog = eVO(X)( dx% + dxg ), where
(9 Vo) = In (b/C 1+ abr2s8 )2 )
and it satisfies A Vg + 2 e'0 = 0.

We denote the length of SB(r,xo) with respect to doo by Qo(r).

Now we state Bandle’s mean value theorem (1, 23).
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Lemma 1 ¢ Bandle’s mean value theorem ).
Let v be as above. Let B(rl,xO) < D. Suppose that there
gxists b > 0 such that

10> 2Cr,) = 2,.€(r>.

1 01
Then if X a(rl) < 4;x , then
i) alr) < ao(r) for 0 <r < £y
Giid v{0) =< 1n b.

For the proof see (13.

Lemma 2. Let ry > 0 be fixed. Suppose that X a<r1) < 4m,

Then if

eV o <<1/2n>§g” eV (r»8/244 72 o 2/ ur? ),

then there exists b > 0 such that (10) holds and

a1 X ao(rl) < 4rx .

Proposition, Let u(x,t) be a continuous function in QXEO,TO

Assume that for each 0 < t <T0, u(x, t satisfies a differential

inequality Au+21et>20 in . Suppose that

A a(rl,O) < 47t and that for each 0 < t < TO
Tlr,, tJ. 2 . .
e 1 < 2/(1r1) . Then the followings hold for each 0 < t < TO

i) X a(rl,t) < 4m, and
G U Xy 1 oy UGy, )

where calry, ulx, dx,

e
SB(rl,xo)

(12 el (rps ) <<1/2n)§%“ eU(r» 8, 13/2 4442

s

).
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u(rl,t,e) = ulx, t) ( X=X + (rcos8,rsing) ).

Proof of Theorem 1. Since u, > 0, we have differential

u > 0 be so small that

2

inequalities Au+ 2 e > 0. Let

1
(i Aale, 0 < 4n 3 GD ed (ry, 00 2/ Giry
E(rl,Tl)

).

We prove that there exists Tl < T such that e = 2/(kr§)‘

Suppose that there does not exist such a Tl‘ Then we have for

o<t<T, "' < 2700% . Hence by (i1 of Proposition we have
ulxg, t) < In ulry, ) + 2 In 2 (0 < t<T)Hy,

and so we have

u(xo,t) < -2 In £ + 1In(8/70 (0 < t <T)»H,
contradicting the fact that Xg is a blow—up point and that T is a

blow—up time.

Proof of Proposition. First we prove that (i) holds for 0£t<TO.
Suppose that it does not hold, then there exists 0 < T1 < TO such
that ‘ X a(rl,t) < 4x 0 <t < T1 > , and
a3 Rt a(rl,Tl) = 4w .

Since BUCrI’Tl) < 2/(Ar%),we get by Lemmas 1,2 that‘ X a(rl,Tl) < 4.

This contradicts (13>.

Next we prtove that (ii)> holds for 0 < t < TO . Since
(14> ar/pet T Y o<y,
there exists b = b(rl,t) such that l(rl,t) = Qo(rl,t) .

where l(rl,t) is the length of 8B(x0,r1) with respect to a

Riemann metric dcz = eu(x,t)( dx% + dxg ) ( it equals to

zxrleﬁ<r1't)/2 ) and Lolry, ) = 2nr1b1/2 2 ( 1+xbr§/8 ).
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Indeed b is a solution of a quadratic equation

a2ch2 + (2AC - Db + C = 0,
TCr., O
where A = Ar%/S ; C = eu I-1 ;
We choose b= ¢ 1 - 2aC - JT = 4AC yrsc2aoy

Hence by (i) and by Lemma 1 we get
(15> u(xo,t) < In b(rl,t).
On the other hand, we have by (14}, b(rl,t) < 4C. Hence by (15

we obtain
u(xo,t) <2 1In 2 + E(rl,t).

Thus we have proved Proposition.

Proof of Lemma 2. Set A = ars/8 and C = eu(rp» V)
Since 4AC < 1, there exists b such that l(rl) = lo(rl).- We
choose b = (1 - 2aC - JT = 4AC >/ (2A%2C).  Then an inequality

xag(rd €= mabra/(+abr2/8) ) < 4n
holds if and only if Ab < 1, On the oher hand this inequality
holds if and only if (1 -x-=J1 —2x)>/ X <1 (X=2\)

i.e., 4AC < 1 . Thus we have proved.Lemma 2.
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Section 3. Proofs of Theorems 3,4.

Proof of Theorem 3% We prove that for any k > 0 there exists
r, > 0 such that for 0 < |x] < . (xg=0)

lim up—l(x,t) > k/ x| 2 .

t-T

Let k>0 be fixed. Suppose that there does not exist such -
Then there exists a sequence { Xg } with Xy - 0 such that

. -1 2" ‘
lim o7 x,, 0 < k/Ix, 1% .
tT v ot
Since u, > 0, it follows that
(16) Ixg 12 Pl =k for t > 0.
Choose € > 0 with
amn e < Bs/k C 8=1/(—-1) ) and set tQ = T - SIXQI2. Then
by (18) we get
-1, p—1

(18) g (T tl)u <Xl’tl) < k.

On the other hand by the result of Giga and Kohn it follows that
T-tpuP hexy, 10 - 8. |

Hence by (18) we get B8 < gk. This contradicts (17).

Proof of Theorem 4. Before proceeding to the proof we recall
the definition of the Hausdorff dimension. Let X be a metric
space and let Y be a‘subset of X. For € >0 and D > 0 we set

up (YO = inf S «diam BOD

' & diam B;<g YCUB, J
un YD) = lim s YY) = sup u .
D £40 D, e e>0 D,e"
Then uD(Y) is called the D-dimensional Hausdorff measure of VY.

The Hausdorff dimension of Y is defined as follows:



136

inf {D: ag(¥) <=} = inf (D : ap¥ = 03 .
We prove the following proposjtion. Theorem 4 is an immediate

consequence of it.

. ‘ N
Proposition. Suppose that u does not blow—up in L as
t > T, i.e., lim W u HLY < =, Let D= -2v/ (-1 + n. Then
t->T '

the D-dimensional Hausdorff measure ap of the blow—up points

satisfies

(19 Mp < ¢ lim § u HEY (. ¢c: some constant).
t->T
Proof of Proposition. Let € > 0 be fixed. Let Xg be a

blow—up point. Since § is convex, it follows that Xg € Q (B3,
Hence by Theorem 3, there exists 0 < r. =2/3¢ such that
0
Blxp,r. ) 2 {x ¢ | x = x5 | <r } ¢ Q
0 Xq 0] Xg

lim u(x,t) = | x - Xq 1—2/(p—1)’

X € B(xo,r J.
t-T X

0
Since the set of blow—up points is compact ((5)), there exists a
finite subset ¢ X j } of the blow—up points and r; with
0 < r; < 2/3 £ such that
B(x,3/2 r) < ;
0 Blx;,r) N Blx,,ry) = &  Ci=j);

{ blow—up points } < U B(xi,3k2 ro s
i

@n lim u¥ G, Ddx = | ox - xg |72y =1 e Bix., ).
1 i
tT
By (21) we get
22 lim u¥(x, Ddx > fl( L S T P
{x—xiKSrit*T O<r<r
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Hence by (20), (22) we get

s /2 roP < @aoPclt o3 j lim v (x, £ dx
i ! i, t>T
I x xiiﬁri

< (@a/P c‘lf lim u?(x, t) dx
Q t-T-

= a0 ¢! lim J W ix, ) dx < = .
’ t>T J @ !

Since C is independent of £ ., we obtain (138). .

s
—
|
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