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Perturbed solutions of semilinear equations

in the singularly perturbed domain
By Shuichi JIMBO ( University of Tokyo )

We deal with some special type of singular deformation of a
bounded domain in R™ and the asymptotic behaviors of the sélutions
of a semilihear elliptic equation on it with the Neumann boundary
condition and we also consider the characterization of the structure
of the solutions. There are extremely various singular deformations
of the domains and it is very difficult, for the technical reason,
to deal with all of them at the same time and then we deal with a
very special case of a partial degeneration of the domain, where
some moving part of the domain degenerates into a one dimensional
set, i.e. it is expressed as follows,

Q(¢) = D1 U D2 UQ(¢) ( cf. Fig. 1).
Here Q(¢() 1is almost cylindrical and shrinks to a line segment as

t -0 . Q(¢) (¢ > 0) will be established in §1.

FIGURE 1
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We consider the following semilinear elliptic equation for £ =
9(¢) which is a stationary problem of a single reaction diffusion
equation and it often appears as a very simple mafhematical model in
physics, Biology and etc,

4v + f(v) = 0 in Q,
(1)

av/av = 0 on 3@,
where Q cC R" is a bounded domain with a smooth boundary and » is
the unit outward normal vector on 92 and f 1is a real valued
smooth function on R. Such types of domains as Q({) with (1)
have been dealt with by Matano [8], Matano and Mimura [9], Hale and
Vegas [2], Vegas [10,11]. [8] has first constructed a non-constant
stable solutios of (1) on a non-convex domain in contrast with the
case of the convex domain. [9] has dealt with a competition system
on 2({) and constructed a non-constant stable stationary solution.
[10] has obtained a transition.of the structure of the solutions of
(1) on Q(f) as ¢ -> 0 for f(u) = u - u? when 1 >0 is
sufficiently small, in the framework of the bifurcation theory. [2]
has considered (1) on Q({) under some restricted condition on the
bound of |df/du| and showed that for a solution w of (1) for Q
= D1UD2 such that w is a constant function in each Di (i = 1,
2), there exists a solution WC of (15 for Q = Q() such that
WC approaches w in D1UD2 as ¢ - 0 and [11] has obtained the
similar result to that in [2] without an assumption on the bound of
|af/au|, by the aid of a topological method. We remark that in the
situations of the above papers [2] and [10], |af/du]| is imposed to
be adequately small around the solutions and we can have an insight

that if |af/du| is bounded by a small constant, the structure of
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the solutions of (1) for @ = Q(¢) (¢ > 0 : very small) is almost

equivalent to that of (1) for Q = D,VYD,. But if f is general in

1 72
the sense that |df/du| is not imposed to be small, how will the

structure of the solutions of (1), be characterized for small >0 ?

This is our problem. For this purpose, we consider the behaviors of
the solutions, in the collapsing part Q(¢) as well as in the fixed
region DlUD2 and we present a system of equations on the singular
set D1UD2UL. ‘By this result, we assert that the effect of‘the
infinitesimal part Q({) on the structure of the solutions does not
disappear even if { tends to O ;and something described by a
certain ordinary differential equation on L, is left behind.

§1 Characterization of the solutions

We set the domain Q(f) in the following form
(1) () =D, VD, v Q)
where Di (i=1, 2 ) and Q({) are defined in the following

n-1

conditions and x' = (x ""xn) e R

2’x3’
(I.1) D; and D, are bounded domains in R" where 51052 = @
and each Di has a smooth boundary aDi and the following
conditions hold for some positive constant ¢, > O .
51 n {(xl,x') e R"| xg 21, |x'|<3¢C,}
= { (1,x') e R?| |x'|<3L,}
Dy nl{(xy,x') € K| xy 2 -1, |x'[ <3¢y}
= { (-1,x") e R?| |x'[<3C,)
(I.2) Q(Z) = R (£) Y R,(Z) Y I ()

Ry (£) = {(x,x") e B[ 1-2¢<x, < 1, |x'|<tp((x;-1)/2))

Rz(C) {(Xl,X') € Rn' —1§X1<~1+2C, IX'I<CP((—1_X1)/C)}

F(¢) = {(x,x') € R| -1+202x, < 1-2Z, |x'| < ¢}

- -
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where p € CO((—Z,O]) n C ((-2,0)) is a positive function such that

p(0) =2 , p(s) =1 for s e (-2,-1], dp/ds > O for s € (-1,0)
, ) V

and the inverse function p ~: (1,2) ——— (-1,0) satisfies
dk -1

lim —_ﬁ__(i) -0 holds for any positive integer k > 1.

£12-0 dé -

(II) f e CT(R), 1limsup f(&) < O , liminf f(&) > O

Eo40 Eo-o

Hereafter we put two points Py = (1,0,++-,0), P, = (-1,0,---,0),
and the set L = {(z,0,-+-,0) € Rnl -1<z<1}. We remark by the

conditions in (I) that ({) is a bounded domain in R" with a

smooth boundary dQ2(¢) for ¢ € (0,(,) and Q(¢) = L.

n
0<0<C,
Under the above situation, we characterize the behaviors of the
solutions of (1) for Q = Q(¢) for small ¢ > 0. To obtain a
detailed structure of the solutions in Q(¢), we need to consider
the behavior of the solution on Q({) as well as on D_.UD

1 72
Vol(Q(¢)) tends to O as ¢ - O, we must deal with a solution in

As

the framework of the LM(Q(C)) - norm or in other words, uniform
convergence such as (4) and (5). Now we have the following result.
Theorem 1 ([4]). Assume n > 3. For each ¢ € (0,{,), let

be any solution of (1) for Q = Q(f). Then for any sequence of

Ve

positive values such that 1lim Cm = 0 , there exist a subsequence
m-eo

{om}m=1~c {Cm}m=1 and functions W, E‘C (Di) (i =1, 2) and V €
C”([-1,1]) such that the following conditions are satisfied

Awi + f(wi) =0 din D

i’
(2) (i =1, 2)
awi/av =0 on aDi
a%v/daz2 + £(V) = 0 for z e (-1,1),

V(1) = wy(py)s V(-1) = w,(p,),




(4) 1im sup

(5) 1im sup = 0
m->ee er(am)
FIGURE 2
Remark. It is easy to show that if |[f'(&)]| < (n/z)2 for any

& € (51,52) where 51 (resp. 52) is the smallest (resp. largest)
zero point of the function f, the solution V of (3) is uniquely
| determined by the values w(pl) and w(pz) and then the behavior
of VC on Q(Z) does not have freedom by itself and it depends on
the behavior VC|D1UD2’ " Therefore any solution of (1) on Q(¢) for
small ¢ > O is approximated by some triplet (wl,WZ,V) in (2) and
(3). From this interpretation, we see that our result is not
contrary to the insight obtained by [2] and [iO]. But, for general
f, (3) can have maﬁy solutions and then the structure of the
solutions of (1) on Q(¢) (£ > 0 is small) is much larger than that
of (1) on D1UD2;

Now there arises a natural problem which is the inverse problem
of the above characterization. That is to say,

(Question) For any given triplet (wi,wz,v) in (2) and (3),

is there a solution Ve of (1) in Q(¢) such that Ve ‘approaches

Wy in D, (i =1, 2) and V in ,Q(C) as ¢ - 0.




§2 Inverse problem

In this section, we present our main result concerning the
question we stated in §2. To state the theorem we prepare some

notations. We assume,

(III) There exists a triplet (Wl’WZ’V) € Cm(ﬁl)xcm(ﬁz)xcw([—l,l])

which satisfies (2) and (3).

Definition. For the above solutions (Wl’WZ’V) in (III), we
denote by {wk}k=1 and {Ak}k=1’ respectively, the system of the
eigenvalues arranged in increasing order ( counting multiplicity )

of the following eigenvalue problems (6) and (7),

49 + f'(w)gp + wp = O in D,VD,,
(6)
agp/avy = O on aDanDZ,
wl(x) for x € D1
where w(x) = ’
w2(x) for x € D,
d°s
—5 o+ f'(V)S + 1S =0 -1 <z <1,
(7){ 92
S(1) = S(-1) =0 .

Now we present the result.

Theorem 2. Assume n > 3 and the following non-degeneracy

conditions,

Then, for any ¢ € (0,,), there exists a solution Ve €

c”(2(t)) of (1) for Q = Q() such that

(8) 1im sup | VC(X) -wx) | = 0 ,
C-’O,XGDluD2

(9) 1im sup IVC(Xl,X') - V(xy)[ =0 .
£-0 xeQ(¢) - ‘
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;

§3 Method of the proof of Theorem 2

The proof consists of two parts. By (II), we assume, without
loss of generality, that af/9f has a compact support in R.

(Part I) Construction of the approximate solution

Lemma 1. There exists a function AC € Cw(Q(Ci) such that
1,

(10) 1im sup |Ap(x) = wi(x)] =0 (i=1,2),
;-0 xeDi ,

(11) 1lim sup |Ac(x1,x') - V(xl)] =0
£-0 xeQ(¢)

(12) 1im sup |AAC(X) + f(AC(x))I =0 .
£-0 xeQ(¢)

(Sketch of the proof) It is easy to construct a function A

¢
¢

is replaced by KC' But it is difficult to construct such function

€ Cw(QZC)) which satisfies the properties (10) and (11) where A

so that it also satisfies (12) besides (10) and (11). Our device is

to define AC by KC through the following equation,

4A, - A

: + KC + f(xc) =0 in Q(¢),

¢
(13)

aAc/av 0 on aQ(¢).
We must check the properties (10), (11) and (12). Now we can apply
the similar method to prove Theorem 1 (cf. [3], [4]) and we have,

for any sequence of positive values {Cm};=1 such that 1lim Cm = 0,

m-oo
there exist a subsequence {Gm};=1 and functions (bl’ b,, B) in
c”(Bl)xc“(ﬁz)xc“([—1,1]) such that

Abi - bi w4 f(wi) = 0 in .Di,
(14) (i = 1, 2)

dby /v = 0 on aD,,

dZB/dz2 -B+V+ f(V) =0 in -1 < z < 1,
(15)
B(1) - b,(p;) = B(-1) - by(p,) = O




(16) lim sup |A_ (x) - b,(x)| =0 (1i=1,2),

m—eo XGDi Um +
(17) lim sup IA0 (xy,x") - B(X1)| =0 .
Mmoo er(am) m

From (2) and (3), we have

A(bi—wi)—(bi—w.) =0 in D

i a(bi—wi)/av =0 on 4D, (i = 1,2).

i’

By the maximum principle and the Hopf Lemma, we have bi = w

Next, from (3) and (14), we have

_a®

d22
and we conclude B =V in [-1,1]. By the arbitrariness of the

(B-V) - (B-V) = 0 in -1<z<1 , B(1)-V(1) = B(-1)-V(-1) = 0

choice of the subsequence {Cm};=1 and (16), (17), we have (10) and
(11). From (13), we have,

AAGm + f‘(AGm) = Aom - K"m + f(AGm) - f(?(om) in (o)

and we obtain, by (10) and (11),

lim sup |AAU + f(Ao Y| = 0 .
m->co er(om) m m ’

Again, by the arbitrariness of the choice of the sequence {Cm};=1,
we obtain (12).

(Part II) Reduction to the finite dimensional problem

To seek for the exact solution VC around AC’ we need to
consider the linearized eigenvalue problem, |
AD + f'(AC)Q +ud =0 1in Q(¢),

(18)
a6/av = 0 on 9Q(Z).

Denote the eigenvalues (counting multiplicity) and the orthonormal

system of the eigenfunctions of the above problem (18) by

(e (8D ey B0 {0y phyey where (8 1o0p 1) 5 0y = Pim -

Then we have the following results of this eigenvalue problem under

the assumptions of Theorem 2.
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Proposition 1 ([5]). '{uk(C)}zzl can be decomposed as follows,

(g () oo = {o () Y {2, ()4

where 1lim w, () = , 1lim 2,(Z) = 2 (k >1).
10k “k * L0 'k k 2

@y and lk were defined in §2. Decompose {¢k,c}k=1 according to
the decomposition in Proposition 2, as follows,
oo _ oo /U o0
@, che=1 = 10y ehea1 ¥ W e dkn
and we have,

Proposition 2 ([5]).

1imsupfﬂ¢k C“ - < o,
¢-0 > L (2(¢)) (n-1)/2
1/2,(n1)/2 _ _ N
lim d_ =1 (d = ),
150 D Iy c"L (2(£)) n-1 = F{(a+1)72)
lvy, I . ~o(em(3)2y gy ~ o(g (172
k24717 (p,uD,) Mt age))

lve ol . ~ o(z(n71)/2
'S TLT(D\Z; ()

where 3, ,(n) = {x e Dil Ix-pi|<n } (i =1, 2).

for any fixed 79 > O.

By using the eigenfunctions, we define some spaces,

X
X(¢) = H((8)), Xy(8) = Lob.[{y phi Vv plioq]

XZ(C) = L-h'[{¢k’c}:=q+1 U {wk’c}:=q+1]°

and the projection operator PC on LZ(Q(C)) by

q
P = ¢ . + o .
¢ kzl{( %, C)L 2(g(z)) k0t ( 1pk’c)uz(.o(z:)>w“"¢}

By the aid of Proposition 2, we can easily prove,

Lemma 2. For any q > 1 , there exists <c(q) > O such that

1A

P ol c(a)lo| for any & e L™(0(£)).

L7(Q(¢)) © L™ (Q(¢2))

We seek for the solution Ve in the following form

Ve = AC + ¢§1) + ¢é2) where @éi)‘e Xi(C) (i =1, 2) and
“¢§i)“ =(2(2)) is small for small ¢ > O . We parametrize ¢é1)
L (Q(¢




b
Y29

2
by T = (fl’fz,"',tzq) € R a as follows.

¢(1) = % ( + "
7,0~ 2 UkPe,0 ¥ Tqek¥k

where Wk,C(x) = wk,f(x)/"wk,C“L“(Q(c)) and q w1ll be determined
later. By using ‘PC’ we decompose the original equation (1) for Q
= ©(¢) and obtain the equations with variables T = (rl,---,tzq)
and ¢§2) respectively ( the Lyapunov-Schmidt method ).

(1) : (1)
(19) 40,7 + £ (Ao, +

PC(f(AC+¢§1)+¢§2))-f(AC)—f'(At)(¢§1)+¢§2))+gc) =0 in 0(¢)

¢
(20) (I-Pc)(f(AC+¢él)+¢§2))—f(AC)-f'(AC)(¢é1)+¢é2))+gc) = 0 in 0(¢)

1082) . f'(Ac)¢§2) +

a@éz)/av =0 on dQ(Z¢).

where g; ='AAC + f(AC) and 1lim sup Igc(x)l =0 ( cf. Lemma 1).
C*O‘er(C)

We can find a small solution ¢22) in (20) for small ¢§1) ( or

small T ).

Lemma 3. Let q be a natural number such that

(21) min(w yl ) > 4 sup |[£'(&)] + 4 and o >

g+1’"g+1 £<R q+1 q
Then there exists a constant 60 > 0 such that for any ¢élg_e
’
X, (8) IT| < 8y )» there exists a unique solution ¢é2) = ¢ézg €
XZ(C)nCw(Q(CS) of (20) with the following property,
(22) 1im  sup les2)0 = 0.
80 0<f<é8,|T|<é O LO(R(2))
(Sketch of the proof) We seek for ¢%22 by the variational
, «
method. Define a functional on X({) by
g = | Flval® - Peanax (uex(o) ).
| a(t) % AL (x) |
. (1) e : (1) .(2) . (2) -
For fixed QT,C € Xl(C), we mlnlmlée JC(AC+¢T,C+¢C ) in @C €

- 10 -
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XZ(C). By a simple calculation, we have, under the condition (21),

voll),a(2)y _ wol1)
Je(apsaitleal?)y g (ar0lt))

nv

12{2)] u4¢(1’+f<A ol l)-ra)ve l , 2
LZ(Q(c)) T,¢ T¢ L2 (a(e))

By the relation between T and ¢(1g and 1lim sup lgc(x)[ = 0,
’ -0 xeQ(¢)

we can obtain ¢§22 e X (C) for small T € qu with
’

lim sup | 42)" =0 .
8-0 0<(<8,|T|<8 L2 (e(0))

By the regularity theory of the elliptic equation, @ézg e CT((T)).

To prove L7 (Q(f))-convergence, assume that there exist sequences

oo + (-] 2 . .
{¢do_ ¢ R, {T }- , cR 9 such that 1im ¢, = 0, lim |T_| =

m-oo m-ee

and “¢%2)C - >c >0 (m>1).

m’°m L (Q(¢ )) -
Putti 3(2) - ¢(2)/ ¢(2) , i tigate &(2) hich
utting &7, T, I “ 2e)) we investigate T 0 whic

~satisfies the following equatlon,

(2) ' (2)
( A%c + f (Ac)ac +
(1),4(2) "1 g(2)) 5
(23 )4 (I—PC)((f(AC+¢C +0p )—f(AC))/aT’c—f'(Ac)(aT:C+$c )+aT,C)= 0
(2) in Q(¢)
\ 30"/ /3a» = 0 on aQ(¢)
where a. , = |ol2)] _ .
.6 T a(r))

By applying the similar method to prove Theorem 1 ( [3], [4] ), we

can prove that there exist a sequence {m(j)};=1 and @ € CW(D1UD2),
% e C7([-1,1]) such that
(24) 1im sup |5(2) ¢ (x) - o(x)| =
Jo~ x€D,UD, m(J)’
(25) 1im sup |3(2) ¢ (xl,x') - 5(x1)| =
Joe xeQlEy ) m(3)tm(d)
From 1lim “Q(Z) | =0, we have ¢ = 0 in D,YD, and
moe  m’tm L2(Q(C_)) | 172
then sup |#(z)| = 1 follows from Hg(z)" =1 and (25).
: ze[-1,1] EEL ((Z))
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on the other hand, by the investigation of (23) by (24) and (25) by

the aid of the detailed property of PC (cf. [5]), we can prove,

4%8/dz°% + (£(V+3)-£(V))

0 in (-1,1),

(26)
$(1) = ¥(-1) =0 ,
and (®-S,) 0 (1 <k <q) where S, (z) = sin Eﬂ(z+1).
k 2 = = k 2
L™((-1 1))
Therefore from (21), we see that & = 0 in (-1,1) by the above
properties. But it contradicts to the fact sup |5(Z)|
ze[-1,1]
Along the same line as Lemma 3, we can prove the following.
Lemma 4.
aqs( rr
1lim sup n =0 (1 <k < 2q)

-0 0<(<é, |T|<a (Q(2))

Now expressing (19)‘by the variable T = (11,12,--o,12q), we have
2q),

where we have put, for k = 1,2,.--,2q,

Fie, o (T) = -0 (07, + JQ(C)¢k,C(x)GT’C(x)dx

(27) Fy ,(T) =0 (1 gk

A

Foe, e (T) = 4 (Deg e + jg(c)uwk,anm(Q( | Vi, £ (K06, (x)ax

- (1),5(2)y _ Y (1),45(2)
GT,C = f(AC+¢T C+¢T C) f(AC) f (AC)(QT C+¢T C) + &
It is easy to see, from Proposition 2 and Lemma 3,

lim sup sup IGT c(x)l =0 .
8-0 0<¢<8,|T|<d xeQ({) ’ ' :

(Part III) Construction of the solution

We seek for the solution of the finite dimensional equation
(27). First we easily see the following property.

Lemma 5.

A
-
HA

lim |F ,(0)] =0 (1 g 2q)

£-0
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Next we investigate the behavior of the Jacobian matrix of

Fk,t at Tv= 0 . We calculate aFi,C/arj as follows,
aF. aG
i,¢ T,
e URRRIRTHGIE fg(c)¢k,c( 7 £(x) ax
oF aG
_9+i,¢ = - T,¢
atj (T) 5Q+1 J 1(5) ¥ fQ(C)"wk’C"Lm(Q(C)) C(X) J (x)dx
(2)
aG a0 .
seps T (Ao Lot (A (g v 5t ) (1gdsa)
J ’ ’ J
‘ (2)
aG ad ‘
T, _ ' (1) (2) ' ~ T, s
= (£f'(A.+0." [+ )=£ (A ) ( w, + ) (1 <3 <a)
GIQ+j ¢ "T,0 "T,¢ ¢ J»¢ atq+j
Then we have,
—=22(0) + % ‘
aG
T,
< ¢ sup . max | [¢ || s v A1 o ly I 4
= xen()1%7 1;k;q( L)) T e Tt <Q(c)>)

Applying Proposition 1 and Proposition 2 to the above inequallty, we.

have the following.

Lemma 6.
em | o, ()
aFl ~i,g . 2”'w
T7 . (0) oo~ s Q 4 as ¢ - 0 .
J l’-] O 13‘ ¢ 1

The right hand side of the above expression is non-singular from the.
assumption (IV) and then applying the standard implicit function
theorem, we obtain the unique solution Te such that 1lim ITCI
-0
1) (2)
= A, + ¢( + O
C C’C TC’C

References

We obtain the desired solution

Vck

[1] P. Brunovsky and S. N. Chow, Generic Properties of Stationary
State Solutions of Reaction-Diffusion Equations, J. Diff. Eq., 53,

(1984) 1-23.

- 13 - i




-
-
w

[2] J. K. Hale and J. Vegas, A Nonlinear Parabolic Equation with
Varying Domain. Arch. Rat. Mech. Anal. 86, (1984), 99-123.

[3] S. Jimbo, Singular Perturbation of Domains and Semilinear
Elliptic Equation, J. Fac. Sci. Univ. Tokyo 35, (1988) 27-76.

[4] S. Jimbo, Singular Perturbation of Domains and Semilinear
Elliptic Equation II, to appear in J. Diff. Eq.

[5] S. Jimbo, The Singularly Perturbed Domain and The
Characterization for The Eigenfunctions with Neumann Boundary
Condition, to appear in J. Diff. Eq.

[6] S. Jimbo, Existence of The Perturbed Solutions of Semilinear
Elliptic Equation in The Singularly Perturbed Domains, Proc. Japan
Acad., 64 (1988) 33-36.

[7] K. Maginu, Stability of stationary solutions of a semilinear
parabolic partial differential equation, J. Math. Anal. Appl.,63
(1978), 224-243.

[8] H. Matano, Asymptotic behavior and stability of solutions of
semilinear diffusion equations. Publ. RIMS, Kyoto Univ., 15, (1979)
4o1-454.

[9] H. Matano and M.Mimura, Pattern Formation in Competition-
Diffusion Systems in Nonconvex Domains. Publ. RIMS, Kyoto Univ. 19
(1983), 1049-1079.

[10] J.M. Vegas, Bifurcation Caused by Perturbing the Domain in an
Elliptic Equation. J. Diff. Eq. 48, (1983) 189-226.

[11] J.M. Vegas, Irregular variations of the domain in elliptic
problems with Neumann boundary conditions, in Cohtfibutions to
nonlinear‘partial differential equations, J.I. Diaz and P. L. Lions,

eds. 276-287, Pitman 1987.

- 14 -



