On Some Elliptic Equations with Nonlocal Nonlinear Terms

§.1 Introduction and Main Results.

Consider the following problem; Find u such that

$$\left\{ \begin{array}{lll} -\Delta \ u = (\ V * |u|^2) \ u + \lambda \ u & \text{in } \Omega \ , \\ & u > 0 & \text{in } \Omega \ , \\ & u = 0 & \text{on } \partial \Omega \end{array} \right.$$

where Ω (\subset \mathbb{R}^n) is a bounded domain with a smooth boundary $\partial\Omega$, $\lambda\in\mathbb{R}^1$, $V(x)=1/|x|^\gamma$ ($0<\gamma< n$) and

$$(V * |u|^2)(x) = \int_{\Omega} V(x - y)|u|^2(y) dy$$
.

In this paper we want to show that the solvability of the problem $(E)_4$ (n > 4) is similar to that of the following Yamabe type equation;

$$\left\{ \begin{array}{lll} -\Delta \ u = u^{(n+2)/(n-2)} + \lambda \ u & \text{in } \Omega \ , \\ & u > 0 & \text{in } \Omega \ , \\ & u = 0 & \text{on } \partial \Omega \ . \end{array} \right.$$

One of our motivations for studying the problem $(E)_4$ is the following question.

Question: Is there nonlinear elliptic boundary value problem which has strong dependence on the geometry (or the topology) of the domain Ω ? Is there nonlinear elliptic boundary value problem which

characterizes the geometry (or the topology) of the domain ? For example, Dirichlet boundary value problem for the minimal surface equation has strong dependence on convexty of the domain. This fact is well known (see [GT]). For the problem (Y) with λ = 0 some results are known (see [P],[BC]).

- (a) If the domain Ω is star-shaped, (Y) has no solution,
- (b) If Ω is non-contractible and n=3, (Y) has at least one solution. From these facts, there is a following conjecture:

"There is a solution of (Y) with $\lambda = 0$."

" The domain Ω is non-contractible."

For the problem (E) $_{\mathbf{A}}$ we can prove the next statements.

< Effect of the domain (for (E)₄)..>

PROPOSITION.1. - Let Ω be an annulus domain in R^n (n > 4) (i.e. $\Omega = \{ x \in R^n : 0 < a < |x| < b \}$, a,b > 0 are constants.) and $\lambda < \lambda_1$, where λ_1 is a first eigenvalue of - Δ with zero Dirichlet boundary condition. Then there is a radially symmetric solution of (E)₄.

<u>PROPOSITION.2</u>. - Let Ω be a star-shaped domain in \mathbb{R}^n (n > 5) and $\lambda \leq 0$. Then there is no solution of $(E)_A$.

(b) Under the conditions $0 < \lambda < n$ and $\lambda \le 4$, any weak solution of (E)₄ is a classical solution.

We do not know whether non-contractibity of the domain implies the existence of solutions for $(E)_4$ or not. In attacking this question, we encounter the following questions.

Question.A. - Is the solution u of (E)' unique?

(E)'
$$-\Delta u = (1/|x|^4 * |u|^2) u \quad \text{in } \mathbb{R}^n,$$
$$u > 0 \quad (u \in \mathbb{H}^1(\mathbb{R}^n)).$$

REMARK.2. - Existence of solution for (E)' is proved in this paper.

Question.B. - Is any solution of (E)' radially symmetric ?
To the question B we give next partial result.

<u>PROPOSITION.3</u>. - Let u be a solution of (E)' and $u(x) = 0 (1/|x|^{n-2})$ as $|x| \to \infty$. Then u is radially symmetric.

<u>REMARK.3.</u> - For $0 < \gamma < n$, $\gamma \le 4$ symmetry properties of the solution for problem (E) $_{\gamma}$ can be proved for a symmetric domain by using a slight modification of the argument in Gidas, Ni and Nirenberg [GNN 1]. In particular, we obtain the next theorem.

THEOREM.1. - Let u be a solution of (E) $_{\gamma}$ (0 < γ < n, γ ≤ 4) and Ω = B_{R} (o) (= { x ∈ R^{n} ; |x| < R }) . Then u is radially symmetric and u_{r} (r) < 0 for all r ∈ (0,R].

Next we consider the effect of lower order perturbations to the problem (E) $_4$. For 0 < λ < λ_1 , solvability of the problem (E) $_4$ does not depend on the shape of the domain.

< Effect of lower order perturbations >

THEOREM.2. - Let 0 < λ < λ_1 , n > 4 and Ω be an arbitrary bounded domain. Then there is a solution of (E) $_4$.

Next we consider the following lower order perturbation problem:

$$- \Delta u = (1/|x|^{4} * |u|^{2}) u + \lambda (1/|x|^{\gamma} * |u|^{2}) u \text{ in } \Omega,$$

$$(P) \qquad \qquad \text{in } \Omega,$$

$$u = 0 \qquad \qquad \text{on } \partial\Omega,$$

where $0 < \gamma < 4$ and $0 < \lambda$.

THEOREM.3. - Let $\lambda > 0$. Assume that $1 < \gamma < 4$ if n = 5 and $0 < \gamma < 4$ in $\lambda \geq 6$. Then there is a solution of (P).

<u>REMARK.4</u>. - For the equation (E) we can obtain analogous results to some interesting results for Yamabe type equation (Y) (e.g. [CFP], [CFS] etc.).

<u>REMARK.5</u>. - Nonlinear term ($V * |u|^2$) u appears ,for example, in Hartree type equation and Choquard type equation (see e.g. [Lio 1], [Lio 3], [GV], [HT]).

In the next section we explain the idea and some technical tools in proving THEOREM.2 and THEOREM.3.

§.2 Sketch of proof of THEOREM.2 and THEOREM.3.

Notations: For $0 < \lambda < \lambda_1$, define $\sigma(\lambda)$ as follows:

$$\sigma (\lambda) = \inf_{\substack{u \in H^1 \\ u \neq 0}} \left(\frac{\|\nabla u\|_{L^2(\Omega)}^2 - \lambda \|u\|_{L^2(\Omega)}^2}{J(u)} \right)^2,$$

where
$$J(u) = \iint_{\Omega \times \Omega} \frac{|u(x)|^2 |u(y)|^2}{|x-y|^4} dxdy$$
.

Define
$$\sum = \inf_{\substack{u \in H^1 \\ u \neq 0}} \frac{\|\nabla u\|^4_{L^2(\Omega)}}{J_0(u)},$$

where
$$J_0(u) = \iint_{R^n \setminus R^n} \frac{|u(x)|^2 |u(y)|^2}{|x - y|^4} dxdy$$
.

Note that we can get $\sigma(0) \ge \Sigma$ easily, but later we prove $\sigma(0) \ge \Sigma$. One of the key steps of our argument is the following. PROPOSITION.4. - There is a minimizer for Σ and the minimizer is (in some sense) uniquely given by the following function $U(x) = \frac{1}{(1 + |x|^2)^{(n-2)/2}} . \quad \text{(For any minimizer u there are constants c, d and } y \in \mathbb{R}^n \text{ such that } u(x) = c U((x - y)/d). \text{)}$

This is a consequence of E.H.Lieb's theorem [L] and the well known fact for Sobolev's inequality. Note that the inequality:

$$J(u) \le C \|\nabla u\|_{L^2(\Omega)}^4$$
 for any $u \in H^1(\mathbb{R}^n)$,

where C is a constant, is obtained by using Hardy-Littlewood-Sobolev's inequality and Sobolev's inequality. The following Brezis and Lieb's type lemma plays an important role throughout our arguments.

< Sketch of proof of THEOREM.2 >

Our Strategy is on the same line to that of Brezis and Nirenberg [BN]. Using LEMMA.1,we can prove the next proposition. PROPOSITION.5. - If $\sigma(\lambda) < \sigma(0)$, then $\sigma(\lambda)$ is attained.

Next we shall prove,

PROPOSITION.6. - Under the assumption of THEOREM.2, the inequality

 $\sigma(\lambda) < \sigma(0)$ holds.

We need some calculations for the proof of PROPOSITION.6. Let

$$Q_{\lambda}(v) = \frac{\left(\|\nabla v\|_{L^{2}(\Omega)}^{2} - \lambda \|v\|_{L^{2}(\Omega)}^{2}\right)^{2}}{J(u)} \text{ . Note that there is a}$$

positive constant c_0 such that $U_0(x) = c_0U(x)$ is a solution of

$$-\Delta U_o = \left(\frac{1}{|x|^4} * |U_o|^2\right) U_o \quad \text{in } R^n.$$

We may assume that $o \in \Omega$. Let $\phi_{\varepsilon}(x) = \xi(x) U_{o,\varepsilon}(x)$, where $\varepsilon > 0$,

$$U_{0,\epsilon}(x) = \frac{1}{\epsilon^{(n-2)/2}} U_{0}(\frac{x}{\epsilon})$$
 and $\xi \in C_{0}^{\infty}(\Omega)$ is a function such

that $0 \le \xi \le 1$, $\xi = 1$ on $B_{\rho}(o)$ and $\xi = 0$ on $^{C}B_{2\rho}(o)$. The constant ρ > 0 shoud be taken sufficiently small in order to $\phi_{\epsilon} \in H_{o}^{1}(\Omega)$.

$$\underline{\text{LEMMA.2.}} - (1) Q_{\lambda}(\phi_{\varepsilon}) \longrightarrow \Sigma \quad \text{as } \varepsilon \longrightarrow 0.$$

(2)
$$J(\phi_{\varepsilon}) = J(U_{o}) + O(\varepsilon^{n-2})$$
 (as $\varepsilon \longrightarrow 0$).

$$(3) \|\nabla \phi_{\varepsilon}\|_{L^{2}(\Omega)}^{2} = \|\nabla U_{o}\|_{L^{2}(\mathbb{R}^{n})}^{2} + 0 (\varepsilon^{n-2}) (as \varepsilon \longrightarrow 0).$$

(4) There are constants C_1 , $C_2 > 0$ such that

$$C_1 \varepsilon^2 \leq \|\phi_{\varepsilon}\|_{L^2(\Omega)}^2 \leq C_2 \varepsilon^2$$
.

(5) There are positive constant δ and $C \in \mathbb{R}^1$ such that

$$Q_{\lambda}(\phi_{\varepsilon}) = \sum (1 - \delta \varepsilon^{2} + C \varepsilon^{n-2} + o(\varepsilon^{2}))$$
 as $\varepsilon \longrightarrow 0$.

(Note that n > 4 implies $\epsilon^{n-2} = o(\epsilon^2)$.)

Hence (5) implies $Q_{\lambda}(\phi_{\epsilon}) < \sum$ for sufficientry small $\epsilon > 0$.

Therefore we get
$$\sigma(\lambda) < \sum$$
.

< Sketch of proof of THEOREM.3 >

Let
$$F(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 dx - \frac{1}{4} \int_{\Omega} \left(\frac{1}{|x|^4} * |u|^2 \right) |u|^2 dx - \frac{\lambda}{4} \int_{\Omega} \left(\frac{1}{|x|^{\gamma}} * |u|^2 \right) |u|^2 dx.$$

We claim that "F satisfies (PS)-condition for $(-\infty, \frac{1}{4})$ "

<u>PROPOSITION.6</u>. - Assume $n \ge 5$, $0 < \gamma < 4$ and $\lambda > 0$. Then for any sequence { u_j } $\subset H_0^1(\Omega)$ satisfying

(a) $F(u_j) \longrightarrow c$, (b) $F'(u_j) \longrightarrow 0$ in $H^{-1}(\Omega)$ and

(c) c < $\frac{1}{4}$ Σ , there is a subsequence which converges in $H_0^1(\Omega)$ strongly.

Using the function U_{Ω} we can prove

<u>PROPOSITION.7.</u> - Under the assumptions in THEOREM.3 ,there is a $v_o \in \ H_o^1(\Omega) \ \text{such that} \qquad \sup_{t \geq 0} \quad F(\ t\ v_o\) < \frac{1}{4} \ \Sigma \ .$

Using PROPOSITION.6 and POROSITION.7 ,THEOREM.3 can be proved by Mountain Pass Lemma.

References

- [BC] A.Bahri and J.M.Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain, Comm. Pure Appl. Math., 41(1988), pp. 253-294.
- [BL] H.Brezis and E.H.Lieb, A relation between pointwise convergence of functions and convergence of integrals, Proc.Amer.Math. Soc.88(1983),pp.486-490.
- [BN] H.Brezis and L.Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36(1983), pp. 437-477.
- [CFP] A.Capozzi, D.Fortunato and G.Palmieri, An existence result for nonlinear ellptic problems involving critical Sobolev exponent, Ann. Inst. H. Poincarè, 2(1985), pp. 463-470.

- [CFS] G.Cerami, D.Fortunato and M.Struwe, Bifurcation and multiplicity results for nonlinear ellptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré, 1(1984), pp. 341-350.

 [GNN 1] B.Gidas, W.M.Ni and L.Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68(1979), pp. 209-243.
- [GNN 2] B.Gidas, W.M.Ni and L.Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rⁿ, Math.Anal.and Appl.Part A(1981),pp.369-402.
- [GT] D.Gilberg and N.S.Trudinger, Elliptic partial differential equations of second order, Berlin, Heidelberg, New York, Springer (1983).
- [GV] J.Ginibre and G.Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z. 170(1980), pp. 109-136.
- [HT] N.Hayashi and Y.Tsutsumi, Scattering theory for Hartree type equations, Ann. Inst. H. Poincare, Physique theorique, 46(1987), pp. 187-213.
- [L] E.H.Lieb, Sharp constants in Hardy-Littlewood-Sobolev inequality and related inequalities, Ann. Math., 118(1983), pp. 349-374.
- [Lio 1] P.L.Lions, The concentration-compactness principle in the Calculus of Variations. The locally compact case, Part 1.
- Ann.Inst.H.Poincare,1(1984),pp.109-145,Part 2.Ann.Inst.H.Poicare, 1(1984),pp.223-283.
- [Lio 2] P.L.Lions, The concentration-compactness principle in the Calculus of Variations, The limit case, Part 1. Rev. Mat. Iberoamericana, 1. No. 1. (1985), pp. 145-201, Part 2. Rev. Mat. Iberoamericana, 1. No. 2(1985), pp. 45-121.
- [Lio 3] P.L.Lions, The Choquard equation and related

questions, Nonlin. Anal. T.M.A., 4(1980), pp. 1063-1073.

[P] S.Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$, Soviet Math.Dokl.,6(1965),pp.1408-1411.