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~ On Some Eliiptic Equations with Nonlocal Nonlinear Terms

%E‘ﬁj{ - H 2l i ( Kazuhiro Kurata )

§.1 Introduction and Main Results.

Consider the following problem ; Find u such that

-Au= (Vs |u|2) u +au in Q ,
0 | ,

(E)Y , u > - . in Q
u=20 on 99 ,

where Q ( c R ) is a bounded domain with a smooth boundary 28Q,

A € Rl, Vix) = 1/|x1Y ( 0 < ¥ < n ) and

(v« lul®)x) = j'QV(x - lul?y) dy .

In this paper we want to show that the solvability of the problem

(E)4 (n >4 ) is similar to that of the following Yamabe type

equation ;
- au = u@*2/(@=2) Ly in Q ,
(Y) u>0 in Q ,
u=20 on 9N

One of our motivations for studying the problem (E)4 is the following
question.

Question : Is there nonlinear elliptic boundary value problem whichvi
has strong dependence on the geometry (or the topology ) of the

domain Q ? Is there nonlinear elliptic boundary value problem which
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characterizes the geometry ( or the topology ) of the domain ?

For example, Dirichlet boundary value problem for the minimal
surface equation has strong dependence on convexty of the domain. This
fact is well known (see [GT] ). For the problem (Y) with x» = 0 some
results are known (see [P],[BC] ).

(a) If the domain Q is star-shaped, (Y) has no solution,
(b) If Q is non-contractible and n = 3, (Y) has at least one solution.

From these facts, there is a following conjecture:

"There is a solution of (Y) with x = 0."

&> " The domain Q is non-contractible."

For the problem (E)4 we can prove the next statements.

< Effect of the domain (for (E)4)_;>'

PROPOSITION.1. - Let Q be an annulus domain in Rn( n>4) (i.e.

O={xeR*; 0<a<]|x|<b}, a,b>0 are constants.) and A < Xq

where 11 is a first eigenvalue of - A with zero Dirichlet boundary

condition. Then there is a radially symmetric solution of (E)4.

PROPOSITION.2. - Let Q be a stér-shaped domain in Rn( n >5 ) and

A < 0. Then there is no solution of (E)4.

PRCPOSITION.l‘can be proved by direct variational method and
PROPOSITION.2 is obfained by using Pohozaev's type identity.
REMARK.1. - (a) The condition x < Al is necessary for the solvability
of (E), (or (Y) ). |
(b) Under the conditions 0 < X < n and A < 4, any weak solution of

(E)4 is a classical solution.
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We do not know whether non-contractibity of the domain implies the
existence of solutidns for (E)4 or not. In attacking this question,we
encounter the following questions.

Question.A. - Is the solution u of (E)' unique ?
2
I

(E)" ‘-Au=(1/|x|4* lul? ) u in R%,
u>0 (ueHYRY).

REMARK.2. - Existence of solution for (E)' is proved in this paper.

Question.B. - Is any solution of (E)' radially symmetric ?

To the question B we give next partial result.

PROPOSITION.3. - Let u be a solution of (E)' and u(x) = O (1/|x|n_2)

as |x|'» o . Then u is radially symmetric.

‘REMARK.3. - For 0 < y < n, ¥y £ 4 symmetry properties of the solution
for problem (E)Y can be proved for a symmétric domain b§ using a
slight modification of the argument in Gidas,Ni and Nirenberg [GNN 1].
In particular, we obtain the next theorem.

THEOREM.1. - Let u be a solution of (E)Y (0<y<n, y<4) and Q =
BR(o) (={xeR"; Ix] <R} ) . Then u is radially symmetric and

ur(r) < 0 for all r € (0,R].

Next we consider the effect of lower order perturbations to the

problem (E)4 . For 0 < x < x, , solvability of the problem (E)4 does

1
not depend on the shape of the domain.

< Effect of lower order perturbations >

THEOREM.2. - Let 0 < <‘11 ,n > 4 and Q be an arbitrary bounded

domain. Then there is a solution of (E)4

-i3_



Next we consider the following lower order perturbation problem:

( 1/le4* IuI2 Y u+ 2 (1/]x|V Iul2 ) u in Q,

..Au:
(P) u>20 ' in Q,
u=29 on 99,

where 0 < ¥ < 4 and 0 < 2.
THEOREM.3. - Let x > 0. Assume that 1 < y < 4 if n = 5 and 0 < y < 4 1

n > 6. Then there is a solution of (P).

REMARK'4',_ For the equation (EA we can obtain analogous resultsvto
some interesting results for Yamabe type equation (Y) ( e.g. [CFP],
[CFS] etc.).
REMARK.5. - Nonlinear term ( V # Iulz) u appears ,for example,in
Hartree type equation and Choquard type equation (see e.g. tLio 1];
[Lio 3],([GV],[HT] ).

In the next section we explain the idea and some technical tools in‘

proving THEOREM.2 and THEOREM. 3.

§.2 Sketch of proof of THEOREM.2 and THEOREM. 3.

Notations: For 0 < x < A, ,define o( A ) as follows:

1
( I 2 2 )2
v uﬂ 2 - x i ul
o (2) =inf; - (2) , L%(9) :
ueH (R7) J( u )
u#o
Iu(x)l lu(y) |2
where J( u ) If y dxdy
QxQ x -y |
4
v ull
Define 2 = inf, — L (Q) ,
u€H (R) Jo( u )
u=o
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lu(x) 12 Juy) |2

where JO( u ) = II dxdy .
R 'xR™

Note that we can get o( 0 ) = 2 easily,but later we prove o( 0 ) =

P
| x -y |

> . One of the key steps of our argument is the following.

PROPOSITION.4. - There is a minimizer for 3 and the minimizer is

(in some sense )uniquely given by the following function

1

U(x) = - — . ( For any minimizer u there are
(1 o+ |x|? )22

constants ¢ , d and y € R? such that u(x) = c U( (x -y)/ d ). )

This is a consequence of E.H.Lieb's theorem [L] and the well known
fact for Sobolev's inequality. Note that the inequality

J(u) £C v uﬂ42 for any ueHl(Rn),
L7(Q)

where C is a constant,is obtained by using Hardy-Littlewood-Sobolev's
inequality and Sobolev's inequality. The following Brezis and Lieb's

type lemma plays an important role throughout our arguments.

LEMMA.1. - Let uEHcl)(Q) and v, —— 0 weakly in Hcl)(Q) (n — ),
Then there is a limit of [ J( u + vn) - J{( Vn) ] and

lim [ J( u + v, ) - J( Vo ) 1 =J(u) holds.

n —w

< Sketch of proof of THEOREM.2 >

Our Strategy is on the same line to that of Brezis and Nirenberg
[BN]. Using LEMMA.1,we can prove the next proposition.

PROPOSITION.5. - If o( x ) <o (0 ),then o( x ) is attained.

Next we shall prove ,

PROPOSITION.6. - Under the assumption of THEOREM.2,the inequality




o( x ) <o( 0) holds.

We need some calculations for the proof of PROPOSITION.6. Let

2 2 2
(HV v"Lz(Q)_ Al v "LZ(Q) )
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Q. ( v ) = Note that there is a
A J( u)
positive constant c such that Uo(x) = coU(x) is a solution of
_ 1 2 g
=AU, = ( T = U7 ) Uy in R .

We may assume that o € Q . Let ¢8(x) = &(X) Uo 8(x),where g >0,

1

U (x) =

0,8 o

X ©
——275:5775 Uy( g ) and £ € C) (Q) 1s a function such

that 0 £ § <1 ,§& =1 on Bp(o) and §€ = 0 on csz(o) . The constant p

‘> 0 shoud be taken sufficiently small in order to ¢8€ Hi(Q)

LEMMA.2. - (1) QA( ¢8 ) —m 2 as £ — 0.
(2) J( #,) = J(U,) +0 (e"2) (aseg ——0).
3) Iv e 1?, = avu?, | +o0(e"?) (ase ——0).
L7(Q) L7(R")

(4) There are constants Cl’ C2 > 0 such that

c,e? < 12, < C,e?

L7(Q)
(5) There are positive constant & and C € R1 such that
Ql( ¢8 ) =2 (1-38 82 + C 8n-2 + 0(82) ) as g — 0.
n-2

{ Note that n > 4 implies g = 0 (82). )
Hence (5) implies QA( ¢8 ) < > for sufficientry small € > 0.

Therefore we get o( a2 ) < 2 . o

< Sketch of proof of THEOREM.3 >

tet Fw) = - [ Ivul? ax - 2— [ (15 « 1ui? ) jui? ax
0 o IxI |

. 2 f ( 1, |u|2 ) |u|2 dx.
o - Ixl?

We claim that " F satisfies (PS)-condition for ( - =, 4%—2 )

”

-8 -
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PROPOSITION.B8. - Assume n =2 5, 0 < . < 4 and A > 0. Then for any

sequence { uj } Hi(Q) satisfying
(a) F(uj) —— ¢ ., (b) F'(u)) ——— 0 1in 1 1(Q) and
(c) ¢ < —%— > , there is a subsequence which converges in Hé(ﬂ)

strongly.

Using the function Uo we can prove

PROPOSITION.7. - Under the assumptions in THEOREM.3 ,there is a
v_€ HY(Q) such that sup F(tv_ )< 1 > .
o o £20 o 4

Using PROPOSITION.6 and POROSITION.7 ,THEOREM.3 can be proved by

Mountain Pass Lemma. ' o
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