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On Non-—fadially Symmetric Bifurcation in the Annulus

SONG—-SUN LIN, Department of Applied Mathematics
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1. Introduction. In this paper we study the multiplicity of radially symmetric positive
solutions and the non—radially symmetric bifurcation of these solutions of the following
{Gel'fand) equation:
Au(x) + 22e%X) = g X€Q, (1.1)
u(x) =0, | x € 00, (1.2)
where €2 is the annulus |

Q= Qa = {x= (XI’XQ) ERQ: a2 < x‘f + x%( -712}, a € (0,1), A >0. In [3],
: a

Gel'fand found that (1.1) is invariant with respect to the group of transformations
u(r,a) = a+ ur exp(%)) |
ie., if uO(r) is a solution of (1.1), .then for any a € Rl, u(r,a) 1s also a solution of (1.1).
- Using this property, we can prove that there exists Af(a) > 1 such that there exist
exactly two radially symmetric solutions for A € ( 0,,\*('3,)), one for A = /\*(a) and none
for A > z\*(a). These solutions can be written explicitly and /\*(a) is computable.
Taking the ad#a.ntage of knowing the explicit formula of radially symmetric solutions

u /\(r) (upper branch of solutions), we are able to understand its linearized problem



184

: u,(r) ' :
Aw(x) + 20e X w(x) =0, x€Q, (1.3)

wix) =0, x € K. (1.4)
*
More precisely, we prove that there exists a decreasing sequence {2 (_k,a)}k:;1 with

,\*(k,a) - ( as k = o, such that the equation

u 2 \
#'(0) + Lp(n) + @ M0 _Epun =0, re@)d), (15)
I
pa) = 0 = ¢(2) O (L6)

has a non—trivial solution (pk(r) if and only if A = /\*(k,a), k=1,23, ---. For these
A*(k,a), the solution sets of (1.3), (1.4) are spanned by y:k(r)cosk() and pk(r)sink&

pk(r) can also be written explicitly.

* ,
To obtain the local non—radially symmetric bifurcation results at A (k,a), we

shall verify a Crandall-Rabinowitz type transversality condition [1].

This paper is organized as follows: In section 2, we study the radially
symmetric solutions. In section 3, we study the linearized problem (1.5), (1.6). In

section 4, a Crandall-Rabinowitz type transversality condition is verified.

2. Radially symmetric solutions. In this section we shall study the existence and
multiplicity problems of (1.1), (1.2) in the class of radially symmetric solutions, i.e., |

we consider the equation

u'(r) + %—u’(r) + 22e™(r) = 0, 1€ (a,-};), | (2.1)
(a) = 0 = u(3), (2:2)
where a € (0,1).
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By a classical transformation: x = logr and v(x) = u(r) + 2logr, (2.1), (2.2)

are transformed into '
¢'(x) + 22" X) = 0, x € (<A,A) (2.3)

v(—A) = —2A and v(A) = 2A, (2.4)

where A = —loga > 0.
The following lemma characterizes the solutions of the problem.

Lemma 2.1. The solutions of {2.3), (2.4) are given by
. 0 )
VK ‘é{x) = log £ 1%m§/;§ﬂ: )
’ (14Km P [ 2eP%)2
where K > 0, 3> 0 and vK’ﬂsatis{ies

b}

9\ —1 2y —1y B |
-ﬁ—%‘ﬁlﬂ“d #r1Km =m, (2.6)

(1+K) (14Km P )2
and m = 3_2.

(2.5)

Hwesett= b’z A_l, then (2.6) are transformed into more compact forms

- B i
tK 1 g KM (2.7)

(1+K)2 ™ (1+’1<:m7?)‘2
Now, taking t > 0 as a parameter, we can solve (2.7) in terms of t as follows:

Lemma 2.2. The solutions of (2.7) are given by two functions A( -): [4m,») ~ (0,m),

L PL(t)
-1, 1 £\ /2
A*(t) =t (Iag mlog 4m ) )

where

P =PyUPy(0), P()=F)(0Py(1), Py(v) = (t-2m) + (+*—4mt)!/2,

Py(1) = (t-2m) — (t=4mt)!/2, P(t) = (mt-2) + (m*i2amt)!/2.

3
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Then we can obtain the following result:

Theorem 2.3..

(i)  For any a € (0,1), there exists a number A"(a) (= A'(m)) such that (2.1) (2.2)
has exactly two solutions for A € (O,/\*(a,)), exactly one at A = A*(a) and none
for A > A'(a).

(i1)  The solutions are of the form
82 2 1K/ % P
(1+Km'g/ 21"3)2r2 ,

u(r) = log

where

9 2 1 ‘ 1 P,(t)
K= K(t) = PT)'(T)' y A= ’\i(t) = ﬂ;(t)t ' ﬂ= .B*(t) = Tog m“og Im

t > 4m and P.z(t), P,(t) are given in Lemma 2.2.
3. Linearized eigenvalue problems. From last section, we know that for any m

(= '1—17) > 1, there are two smooth branches of radially symmetric solutions of (1.1),
a

(1.2) in (O,A*(m)), namely, the upper (maximal) branch u 3 and the lower (minimal)
branch uy It is well-known that the minimal branch u ) can be obtained by

monotone iteration starting from 0 and are stable, and u ,\(r) <u A( r) in ( a,%) for any

X € (0,2 (m)).

Let pl(/\) be the principal eigenvalue of linearized eigenvalue problem of (1.1),

(1.2) at uy Le., ,ul(/\) be the least eigenvalue of

u/\(r) ‘ , .
Aw(x) + 22Xe w(x) = —uw(x), x €€, (3.1)

w(x) =0, x € d0, (3.2)
Due to the convexity of e", it has been shown by Crandall and Rabinowitz [2] that
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;Ll( A) < 0 for any X € (O,A*(m)). Therefore it is possible that there is a bifurcation

from the upper branch u 3

By the method of separation of variables in polar coordinates, (3.1), (3.2) can be

reduced to
w1 uy(r) g2 , 1y .
P'(1) + 797 (x) + (2)e ——rg)w(r) ==y A1), T€(a3), (3.3)
pa) = 0= ¢d) (3.4)

k=0,1,2 -, =12 ---.

By several changes of variables, we can bring (3.3), (3.4) into a more desirable
form. First, set x = logr, ¥%x) = ¢r) and v(x) =u(r). Next, set y = f,
Uy) = %o, o=y RO) = I1+K ) and Wy) = THy) where
K, = Km”2 Finally, set X = K¢’ and &(X) = ¥(y). Then (3.3), (3.4) with

M = 0 are transformed into

1" 1+2C 2 - 3
$ X+—X—<I>'X)+ X)=0, Xe(L,R), ‘ 3.5)
’ (X) (X, m‘b( . ( ) | (
dL)=0= Q(R)’; (3.6)

whereL =K and R= Km'B

Set s = —2c, Xs = %—?g, 8 € (0,1). Then it can be proved that
Y =xgT 2nd ) = g XX

are two linearly independent solutions of (3.5). Then we have:

Lemma 3.1. (3.6) has a non—trivial solution if and only if
(L-X RX ~1)R® — (R—X YLX_~1)L® = 0. | | (3.7)

Furthermore, (3.7) is equivalent to the following system

0
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H(t,s,k) = 0, and s&Xt) = 2k, ‘ (3.8)
where

H(t,s.k) = (L—X_J(RX ~L)m — (R—X )(LX -1).
The corresponding eigenfunction can be taken as

#(X) = 57 +%)(X T {(L—Xs)(XXS-—l)XS—(X—XS)(L_XS—-I )LS}. (3.9)

Lemma 3.2. For any k > 0, there exists a unique solution (t(k), s(k), k) of (3.8).

Furthermore, t(k) and s(k) are smooth in k and lim t(k) = «.

k- w

' From Lemma 3.1 and 3.2, we obtain

Theorem 3.3. For any k €(0,0) there exists a unique /\*(k)>0 such that
%

iy (A" (K) = 0. The function A'(-) : (0,@) ~ (0,\ (m)) is smooth and has the

following properties: |

. * * ¥
(1) 11(1161 A(k)=A (m), (i) lim A (k)=0.

-0

Theorem 3.4. The linearized problems

u,(r)
Aw + 2Xe A

w =0, in ,

w =0, on {2, ‘
have a non—trivial solﬁtion if and only if A = /\*(k), k=0,1,2, ---. Furthermore, for
each k > 1, the corresponding eigenspace is spanned by pk(r)coskﬂ and yyk(r)sénkG,

where (pk(r) = @k(X) and @k(X) is given in (3.9) with X = Kmﬁ/Qrﬁ.
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4. Symmetry Breaking. In this section we shall prove that there are non—radially
' *
symmetric solutions which bifurcate from the upper branch uy at every A(k) k=1,

2, +--. We shall apply a bifurcation theorem of Crandall and Rabinowitz [1].

Theorem 4.1. Let X, Y be Banach spaces, V a neighborhood of 0 in X, X, €in k! and
F:(A—, T+e)xV—Y
have the properties |
| (a)  F(2,0) = 0for A € (F—e, X+¢),
{b) the partial derivatives F v Fo Fau exist and are continuoué,
(c) N(F (1,0)) and Y/R(F (X,0)) are one—dimensional,
(d) FAu('X,O)wO ¢ R(FH(X,O)), where N(Fu('/\',O)) = span{wo}.
If Z is any complement of N(F (3,0)) in X, then there is a neighborhood U of (%,0) in
R x X, an interval (—§,6), and continuous functions
o (B8R, (582
such that ¢(0) = 0, ¥0) = 0 and . ,
FH(0) N U = {(a)awy+aw(a)): |al<8 U{(2,0): (10)€U}.

To apply Theorem 4.1, we need to rewrite (1.1), (1.2) as a nonlinear operator

equation on an appropriate function space. We shall work on Hélder spaces.

Denoted by C(1)+7(_§-2-) the set of continuously differentiable functions on 0

which vanish on dQ and whose first order derivatives are Holder continuous in Q with

exponent v € (0,1).

Then (1.1), (1.2) is equivalent to F(A,u) =0, where F(},u) : (O,X*(m)) x

7
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CLA@) + CAFAR) is defined by F(Au) = u+ u,y + 2AGi(utu,) with G = A~
and f(u) = €". ‘The linearized operator F (A,0): C(l)+7(§) - Cé+7(ﬁ) is given by
F (A0w =w + 23G(e Mw) and the mixed derivative F, (1,0) Y et -
ot (@) is given by Fy (A0)w = G {B%QAeu’\)w}.

Let CpT (@) = {u € CLF AT - u(x o) - u(xl,xz}. By Theorem 3.4, the
kernel of Fu(A,O) is non—trivial if and only if A = A (k), for some k > 1. If we restrict
(1.1), (1.2) on CF () then for any k 2 1,

Ker F (X" (k),0) n CAF ()
span {p,(r)cos kf} ifk is even

span {p)(r)sin k8} ifkis odd.
Therefore, with this setting the conditions (a), (b), (c) of Theorem 4.1 are satisfied and

(d) is
1

Fodode")

Lemma 4.2. For k > 0, we have

) A (k) _ 0.
(ii)J% rp%(r)—gx{)\eu'\(r)}

Proof. For A € (O,A*(m)) and k € (O,m), let p(Ak) and ¢(r,Ak) be the principal

A=A*(k) dl' < 0.

eigenvalue and principle eigenfunction of linearized eigenvalue problem

u/\(r)

{1 1 Vi 3 k2 — i 1
P(0) + 2p'(1) + (23 7 —Z)dr) = —pplr), r € (a3),
Ir .




191

Aa) =0 = ®3),

1
where ¢(r,],k) is normalized by JE ['PQ(I',A,k) dr = 1.

a

Denote by W(r,A k) = gf(r,)\,k) and V(r,Ak) = gf(r,i,k).
Then W and V satisfy second order ordinary differential equations and (2.2). Then, we

have
? Bo 0 g 0 B oo [BL2
k) = —Fw (r,)\,k)m—{%\e }dr and (A k) = QkF? 2(:,0k) dr > 0.
a a
Since ;A(A*(k),k) = (), using Theorem 3.3, we have k

a * . ;
G 0dk) 4 BTk = o,

and the results follow.
Using Theorem 4.1 and Lemmas 4.2, we obtain the following theorem:

Theorem 4.3. The upper branch u A of radially symmetric solutions of (1.1), (1.2) has a
*
non—rtadially symmetric bifurcation at each A (k), k = 1, 2, --.. Furthermore, in a

neighborhood of (A*(k), u 4 ), the dimension of the set of bifurcating asymmetric

solutions is two.

Remark 4.4. By using the global bifurcation theorem of Rabinowitz [7], we can obtain

the following global results:

Denote by S the solution set of (1.1), (1.2) and R the set of radially symmetric

solutions of (1.1), (1.2). Let C be the closure of {(O,z\*(m)) x ‘\:3(1)4'7(?2')} N(S\R).

9
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Then, for any k > 1, the connected component G, of CU {(A*(k)’u,\*(k‘} to which
)

* _
(/\*(k),u)‘* ) ) belongs is either unbounded or meets (A (l),u,\r ) for some positive

integer £# k.
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