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Uniqueness of critical point of solutions

Shigeru Sakaguchi (R O %)

Numazu College of Technology

§ 1. Introduction and results

Uniqueness of critical point of solutions to elliptic
boundary value problems over convex domain in R" ¢ n 2 2 ) was
shown by many authors ( see Kawohl [10] and its references). The
typical examples are the following: Let Q be a bounded.convex
domain in R" with boundary 3Q.

(1) ( The fixed membrane eigenvalue problem ) The positive\first

eigenfunction ul to the eigenvalue problem: - A u = 1 u in
Q and u =0 on 9Q is log-concave, that is, log ug is a

concave function ( see [11, [41, [51, [11],and [15] ).

(2) ( The Saint Venant torsion problem ) The root of the solution
u ( that is, Vu ) to the problem: Au =-1 in Q and u=0
on dQ is a concave function( see [12] and [C13]).

(3) ( The capillary free surFacés uith zero contact angle against
the wall over the cross section Q) The solution u to the

problem irdiv Tu=%x u (or nH ) in Q and Tu'v =1 on 8Q is a
convex function, where Tu = ( 1 + |Vu|2); 2 gy "x and H are

positive constants, and Vv denotes the unit outer normal vector

\
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to dQ( see [6] and [141).

In these three examples it is shbun that the level sets of the
solution u, Qs ={xe€Q 3 ulx) 2s>or{xeQ; ulx) {s?>
for s € R are convex, and therefore it is shown that the
critical point of u (that is, the point p with Vu(p) =0 ) is
unique and the solution u achieves its maximum or minimum at
this crifical point.

On the other hand, in the two-dimensional case the
uniqueness of critical point of solutions was shown by several
authors for some broader classes of nonlinear elliptic boundary
value problems, though the convexity of level sets are not shouwn.
Concerning the Dirichlet problems, in [22] Sperb considered the
semi]ineaf elliptic problem ¢ A u = f(u) in Q and u =0 on 28Q
and he showed that any positive solution u to this has only one
critical point for some . His proof is based on an idea of
Payne [18]. Payne's idea is, roughly speaking, to study the curve
{ x € Q3 a'Vu(x) =0 > for any direction a . Also, using the
same idea, in [19] Philippin showed that the solution u to the
Dirichlet problem for the prescribed constant mean curvature
equation: div Tu = 2H in Q@ and u =0 on 8Q has ohly one
critical point, where H 1is a positive constant. Concerning the
problem thch is not Dirichlet, we know the result of Chen. In
C71, Chen showed that the capillary free surface over convex
domain has only one critical point. Precisely, he considered the
problem: div Tu = xu (or 2H ) in Q and Tu‘v = cos 7 on 9Q

sWwhere H, k,and 7 are positive constants with 0 < 7 < =n/2. His
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proof is based on a nice comparison technique found in Chen &
Huang [6] and the method of continuity with respect to- the
contact angle 7 and the results of Chen & Huang [é61 and
Korevaar [14] ( that is, the above example (3) ).

| rIn this paper we consider some two-dimensional semilinear
elliptic boundary value problems, which are not Dirichlet, and
prove the uniqueness of critical point of the solution. Our
methods are based on an idea of Chen [71. Precisely, let Q be a
bounded convex domain in Rz with smooth boundary 8Q, and let

f be a real valued C - non—-decreasing function on R ,which is

positive somewhere.

Now, our results are the following:

Theorem 1. u € C2( Q ) be the solution to
= f(u) in Q,
(1.1)
c on 2Q,
where is g‘p051tlve constant. Then u has one and only one

critical point in Q.

Theorem 2. Suppose that f(0) is positive. Let -u € c?¢ @)

be the solution to

, Au = f(u in Q,
(1.2)
%%\ + Bu = 0 on 39,

where B8 is a positive constant. Then u has one and only one

critical point in Q.

\
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Since our theorems coﬁcern only qualitative properties of
the solutions, so only under the hypothesis of the existence of
solutions we show the uniqueness of critical point of the
solutions. For the existence of solutions, for example , see

Lieberman [16]1 or Lieberman & Trudinger [173.

In the following sections we prove these theorems. Section 2
provides some preliminary results for the problems (1.1), (1.2).

In section 3 we introduce two families of problems indexed by a

bounded closed interval [0,1] in order to use the method of

continuity. In section 4 we prove several basic lemmas with the

help of one modification of Chen & Huang ’s comparison technique

sand complete the proofs. For the details see [203].

8§ 2. Pre]iminariés

First of all, using the strong maximum principle, we get

Proposition 2.1. Let u € C2( Q ) be the solution to (1.1)

or (1.2). Then f(u) is positive in & and 3¢ >0 on 9.

.

Furthermore, u<0 in Q in the case of (1.2).

0l

Concerning the uniqueness and the regularity of the

solution, we have

Proposition 2.2, (1) The solution to (1.1) is unique up to an

additive constant. (2) The solution to (1.2) is unigue.

(3) The solution to (1.1) or (1.2) belongs to C ¢ Q).
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Proof. Since f 1is non-decreasing, (1) and (2) follow from the
strong maximum principle. Since f 1is smooth, the regularity

theory of elliptic partial differential équationsrimplies (3.
§ 3. Families of problems for the method of continuity

For t (0 ¢t € 1), we introduce the following

problems:

Au = t flu) + (1-v) k in Q,
(3.1.%)
%ﬁ = ¢ on 0%,
where k = T%%l c and ¢ 1is the positive constant in (1.1),
Au = t f(u) + (1-t) f(m) in Q,
(3.2.¢)
du

It

= +
Em B u 0 on 989,
where m 1is the minimum value of the unique solution to (1.2)

and B 1is the positive constant in (1.2).
Remark 3.1. (3.1.1) = (1.1) and (3.2.1) = (1.2).

Remark 3.2. Concerning the uniqueness of the solution to these
problems, we obtéin the same results as in Proposition 2.2, since
the right hénd sides of these equations are non—decreasing
functions with respect to u. Also we have the same results as in
Proposition 2.1 to these problems, if we replace f(u) by the

right hand sides‘of these equations.

\




Concerning the existence, by the method of sub and

supersolutions we obtain

Proposition 3.3. Under the hypothesis of the existence of the

solution to the probTem (1.1) we see that there exists a solution

u, € C7C Q) to the problem (3.1.t) satisfying

(3.3) i Uy I

{ C  for al t € (0,13,

cltac g )

where C and a are positive constants independent of t €

£0,13, and the solution to (3.1.t) is unique up to an additive

constant.

Proposition 3.4. Under the hypothesis of the existence of the

solution to (1.2) we see that there exists a unigue solution u

t

€ C( Q) to the problem (3.2.t) satisFying the same inequality

as (3.3) for all t € [0,13.

Proof. Using the solutions uy and Ug » we can construct the
sub and supersolutions to (3.1.t) and (3.2.t). Therefore, by fhe
method of sub and supersolutions ( see Sattinger [21, Theorem 2.1
y P..980 1 ) we can prove these theorems. The estimates follow

from the results of Agmon, Douglis & Nirenberg [21.

§ 4. One modification of Chen & Huang’s comparison technique

We begin with

Lemma 4.1, For any h with f(h) > 0, there exists a number L
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(0< L £ =) such that the initial value problem

Mis) = f( uls) ) (- L<s<L),

(4.1)

v(0) = h and v’ (0) = O,
has a unique c® - solution v ,uhich satisfies the following:
(4.2) vis) = u(-s8) ( -L < s <L),
(4.3) v(s) > hand J'(s) 2 f(h) >0 ( -L <s < L),
(4.4) v (s) 2 0 (0 ¢s< L),
(4.5) lim wv(s) = + o and 1im vi(s) = + =,

s — L s — L

Using one modification of Chen & Huang’s comparison

technique, we obtain

Lemma 4.2. Let u € C°( Q) be the solution to (3.1.t) or

(3.2.t) for t € [0,1]. Suppose that Vu(p) = 0 at some point

p € Q. Then the Gaussian curvature K(p) of the graph (x} ulx))

at p does not vanish, where K(p) = 011U(p) . D22u(p) -

2 =
u(p) 3~ and Dij = axiaxj .

{D

12
Proof. As in Remark 3.2, it suffices to show this lemma when t
= 1. Therefore, let u be the solution to (1.1) or (1.2). Let
p € Q be a Eoint with Vu(p) = 0. Suppose that Ki{p) = 0.
Then, by using a parallel translation and a rotation of
coordinates, we may assume that

(4.6) p =0 and C DijU(O) ] = diag [ f(u(0)), 0 1.

If follows from Proposition 2.1 that f(u(0)) is positive. Using
Lemma 4.1 for h = u(0), we get a unique solution to (4.1), say

v. Put wix) (= u(xl,xz) ) = v(xl). Then w satisfies
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Aw = fw in (-L,L) x R,
4.7) C DijU(O) 1 = diag [ f(u(0), 0 1,
w(0) = u(0) and Vw(0) = Vu(0) = 0.
Hence U - w satisfies
(4.8) A (u-w = a(x) (u-w) and al(x) 2 0
| in (-L,L) xR N Q,
where ‘a(x) = j 1 fCw+ 8(u-w) ) df, and u - w vanishes up
to second order gerivatives at 0. Furthermore, since u - w _is
not identically zero, it follows from (4.8) and a unique
continuation theofem for solutions to elliptic partial
differential equations ( see Aronszajn [3] ) that u - w never
vanishes up to infinite order at 0. Therefore, by Taylor’s

formula we get for some integer n 2 3
(4.9) (U= wix) = P (x) + o IxI™ ) as Ixl — 0,

where Pn(x) is a homogeneous polynomial of degree n and Pn(x)
is not identically zero. Furthermore, since u - w 1is a
C”-function, using (4.8), we see that Pn(x) 'is a harmonic
polynomial. On the other hand, it follows from the result of
Hartman & Wintner [9, Corollary 1, p. 450 1 that every interior
critical point of u - w 1is isolated. Therefore, as in 6] we
see that the zero set of u - w in some neighborhood U of
origin consists of n smooth arcé, all intersecting at origin and
dividing U into 2n sectors ( n 2 3 ). Put

ulx)-wix) > 0 1},

A = {(xeQN(L,L) xR

B = {(xeQN(L,L) xR ul{x)-w(x) < 0 }.

e

Then, it Fo]]oué from the maximum principle that
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(4.10) Both A and B have at least three components each of

which meets the boundary 8(Q M (-L,L) x R).

Now, we first consider the case of Neumann boundary
condition'(l.l). Furthermore we devide the proof into two cases.
One is the case that L 1is finite, and the other is that L is
infinite. Consider the former. Choose a number L~ with L™ <
L ,which is sufficiently near to L. Put Q7 = (-L7,L™)x R.

Look at the boundary 3(Q N Q). Since § 1is convex, observing
the boundary condition of u and the shape of the graph of w (
see Lemma 4.1 ), we see that 23(Q M Q7)) consists of at most four

connected arcs, in which %;(u—u) changes sign a1ternative1y. Put

= (xea@Na) 5 Fotumnx) >0 ),
F_={xea@Na) ; $tuwd <0 ).

( At a corner, we choose Vv to be the unit outer normal vector
to 3Q7.) Then, it never occurs that a component of A N Q

- meets A(Q N Q™) exclusively in T'_. Indeed, let ’w be a
component of A M Q" which meets 8(Q N Q~) exclusively in TI_.
Hence the strong maximum principle implies that a positive
maximum of u-w in @ is attained at p € I'_ and g;{u—u)(p) 2
0. This contradicts the definition of I'_. Also, by the same
argument as this, we see that it never occurs that a component of

BMNQ meets QN Q") exclusively in T

+° However, these

facts contradict (4.10).
\

Next consider the latter when L 1is infinite. Only

"replacing QN Q" by Q, we can use the same argument as above.
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In the case of the third kind boundary condition (1.2),
replacing %;(u-u) by %;(u—u) + B(u-w), we can use the same
argument as in the case of Neumann boundary condition (1.1).

This completes the proof of Lemma 4.2.

Lemma 4.3. Let u € C°( Q) be the solution to (3.1.0) or

(3.2.0). Suppose that Vu(p) = 0 at some point p € Q. Then

the Gaussian curvature K(p) of the graph (x, u(x)) at p is

positive.

Proof. Let p be a point with Vu(p) = 0. Suppose that K(p) ¢
0. For simplicity, by a parallel translation and a rotation of
coordinates we may assume that

(4.11) p =0 and C DijU(O) J = diag C 11,1 1,

2

where 11 >0 and 12 < 0 and 11 + 12 = k in the case of
(3.1.0), = f(m) in the case of (3.2.0). Then u(x) = wix) + P(x),
where w(x) = u(0) + 3 2,(x )%+ 3 2,(x)? and P(x) is a

harmonic function in Q. Therefore, by the same argument as in the

proof of Lemma 4.2 we can prove this.

Now, we complete the proofs. Let Uy be the solution to
(3.1.t) or (3.2.t). Roughly speaking, Lemma 4.3 implies that
Ug has only one critical point, and Lemma 4.2 implies that the
uniqueness of critical point of U is preserved as t varies
qith‘the help of Proposition 3.3 and PEoposition 3.4. Therefore,
Ul‘; that is the solution to (1.1) or (1.2), has only one

critical point by the method of continuity.
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