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On the Linear Classification of Singular Quartic Curves

BEEE mE I
(Tadashi Takahashi)

The linear classification of comﬁ]ex projective plane cubic
curves is well known, we can list the normal forms of them.

In this paper; we try to impose a condition to constract a unique
‘normal form. With a definition of normal forms, we find the linear

classification of complex projective plane singular quartic curves.

§1. Singular point

We review some theorems and definitions about singular points and

quasihomogeneous polynomials which are given in [2].

n+1

Definition 1.1 Let f(zo,'--,zn) be a polynomial in C and

let V be an analytic set such that V:{(ZO’.'O’znjlf(zO‘.."zn)=0}f

Then a point (20,"0,zn) in CnH is a singular point if f(zo,°~',zn)‘

8f(z 02,2 )
- 0’ ‘" n ,
=0 and oz, = 0, i=0,*°,n,
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Definition 1.2 Suppose that-(ro,~-°,rh) are fized positive
raetional numder, A polynowmial f(zo,"~,zn) is said to be
quas ihorogeneous of type(ro,-o-,rn) {f it can be expressed as a

i ¢ ¢
, , , . x n .
linear comdbination of monomials 200211’"'2n for which

o i, T

00 1 *"'+£nrn=1’

1

Let d denote the smallest positive integer so that

are integers., Then F(tqozo,'°°,tqwaw)=tdf(zo,"°,%1).

Theorerm 1.3 Let f(zo.z1,22) be a polynomial in C3 and let V be
an anlytic set such that V={(zo,z1,22)lf(zo,z1,22)=0] which has an

isolated singular point at the origin, Ther, for any ¢(i=0,1,2),

¢
(1) There exists an integer ai so that aizZ, and f has a monomial %

or

(i11) There exists an integer aiz1 and Jj(ixj) and f has a monomial

Corotllary 1.4 Let 9(20,21,22) be a quasihonogenébus polynomtal
in C3 end let V be an analytic set such that
V=[(zo,z1,22)| 9(20,21,221=0} which has an isolated singular point ai

the origin, Then g has at léast'one of the followins sets (family

I~VIII ) of mononials:



“Family set of monomials v q o.M ro #
[ ag a, a, H 1 1 i b
“p Zq %2 h ) 24 2 |l
| a,~1
11 zaO zal -4 %2 d - - a1 q
0 1 1%2 l %0 o 1% |
‘ao a1; ‘ a5 ' 4 1 32—1 al—1 ﬂ
l!l zq z,7z, z47, a122,a2-‘=2 ll ag a1a2—1 alaz-l ||
2 a a :l 1 agl aggmagtl |
IV 12 %2z %% 1= ) R ) !
ag a,y 8, ‘ !J 1 60—1 al:l_1 |}
A ' zy 2ZgZy z25Z5 l ag agdy aoa2 h
a a “ al~1 ao—l (ao—l)a1 ﬁ
VI 20, 22l 222 L ania a2 | =1 1 (aa ~1)a; |
1 %007 %% %% %23 %2 | ypa -l gyay 1 (aa sy |
a a a lay 858, +1 s, 378, +1 gHaray +1 |
VIl ZA Z b-4 1z ZAZ 2 : ara.a~tl aa,astl a a~t+1 |
0 %1 %1 %2 2022 0?2122 0?2122 02122%1 |
l virr |} 2.0 a : oy ro :}
% %1% [ % |
Table 1
$2, Normal form

2.1 Normal form to be unique

So-called "normal form"' defining equations were not unique. For

example, the defining equation of non-singular elliptic curve in
Ueierstrass normal form is different from it in Hesse normal form.
( see [3] ) What is the normal form? We define the normal form for

the homogeneous polynomials in projective space to be unique. To
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begin with, we give a following order to the monomials of homogeneous

polynomial £ = 3 aiX,l.

Definition 2.1.1 For the exzponents K£=ki ,-”,ké and
' 1 n
, K., K,
Kmk, peeenk, Cimj ), X ‘ i{s greater than X Y if there exzists an

integer s{iss=n) such that k, =k, for nu=1,+<++,5-1 and k, >k,
‘wo Yy ‘s ’s

( Lexicographic linear order )

Next, we carry out the Fo]]ouing manipulations in turn from the
Kn : N’ .
maximal X ( Kn=m,0,0,°'°,0 ) to the minimal X ( Kn/=0,0,"',0,m )

for the homogeneous polynomial xnm+a1x1m+a2x1m—132+a3x1m—133+-°°.

K. ' |

Manipulation 2.1.2 We try a monomial X ° to eliminate by }

K

suitable linear transformation, Then {(f we can make the monomial X
K

to eliminate without generating the mronomial X Y which is greater the

K,
X b, we do so, Otherwise, we don’t use the linear transforration an

go to next manipulation.

Manipulation 2.1.3 If we can make the coefficient of the
K& .
ronomial X ~ equal to 1 by the magnification of the coordinates

‘ K,
without generating new dimension of coefficient of monomrial X J which

- K_ ; - X
its greater than X °, we do so, Otherwise, there (s nothing to be

done,
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We define the normal form by the following definition.

Definition 2.1.4 We call the results the normal forms of
homrogeneous polynorials of degree » (n (n-1)-dimensional complex

projective space,

We consider it natural that the normal form should be easy to
write and remember; that is, the normal form should have the fewest
monomials, and each monomial should be simple. The normal forms

defined in Definition 2.1.4 meet the above conditions.

2,2 Classification theory

The results of 815 in [1] reduce the classification of orbits of
of the action of the group of quasihomogeneocus diffeomorphisms on the
space of quasihomogeneous functions with fixed quasihomogeneity type
and with fixed coefficients for certain distinguished monomials. The
run of the classifications is as follows. First we compute the
exponents of homogeneity and with respect to them the monomial vector
fields that generate over € the Lie algebra of the group of all
quasihomogeneous diffeomorphisms. Fixing the coefficients of the
distinguished monomials gives an affine plane in the space of
quasihomogeneous functions. We find the isotropy algebra of this
plane. The calculations show (unexpectedly) that the actions of the.
Lie algebras within the limits of each of our series of singularities

are affinely equivalent to each other. Thus, our classification

-5 -
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reduces to a finite number of steps. The linear classifications of-
3~-forms in Cz and c@ and of 4-forms in C2 are well known.

We introduce some definitions and notation.

Let m=(ui,~°°‘,ﬁj) be a set of positive rational numbers. We
consider the arithmetic space C" with fixed coordinates Xgo "ttt e X s
Definition 2.2.1 A quasihorogeneous function of degree d and
type o is a polynromial 2 anxne C[x1,~~~~,xn3 for which (r,x)=d for al}

R,

Definition 2.2.2 The group of quasihomogeneous diffeororphisns
‘of type « is the group of gerwms of déffeonorphisns‘of c” at O taking
any quasihomogeneous function of type @ and degree d into a
quas ihorogeneous function of the same degree, The Lie algebra of
this group is called the quasihomogeneous algebdbra ard is deroted by

“a(o),

Definition 2.2.3 The space of exponents of functions of
11,---~,xn is the arithmetic space Cn whose points m with non-negat ive;

- ' »
integer coordinates are the exponents of the monorials xX .,

Definition 2.2.4 The support of quasihomogeneous functions of
degres d and type o is the set of all nonr-negative integer poinrts =
‘on the plane (m,0t)=d, The support is said to be comrplete (f it is

not containred in an affine subspace of c”~of dimension less thaen n-1.
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Quasihomogeneous fOnCtions can be regarded as functions given on
the support( 2 amxm has the value a_ atm ). A1l such functions form
a linear space Cv, vV is the number of points of the support. The
group of quasihomogeneous diFFeomorphisms and the quasihomogeneous
algebra a(®) act on this space cv, From the definitions it follows
immediately that the Lie algebra a(x) is generated as a C-linear
Space by all the monomial wvector fields xpei for which (p,m)=ai ( here

and later on, ei=e/exi').

Definition 2.2.5 The roots of the quasihorogeneous algebra alw)
ore all the nron-zero vectors m of the space of exponents that lie in
the plane (m,x)=0 anrd have the form n=p-1£(where 1£ ts the vector
whose i-th corponent is equal to | and the rerainder equel to 0, and

the vector p has non-negative integer components),

We observe that i can be regained from a root m, since m has
precisely one negative coordinate mi=—1 (not all the components of m

can be non—-negative because (m,®)=0),

Theorer 2.2.6 We assume that the support is complete. Then
the action of the Lie algebra alx) or the space of functions on the
support (s uniquely deterrnined with resbeot to the affine equivalence

class of the pair (spport, root syster). ( see [13 )

Theorem 2.2.7 The quasihomogeneous Lie algebra alx) is
determined up to finitely mary variants, by its root system (as a
Subspace of the linear space spanned by the roots) and by its

- 7 -
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dimension, ( see [11 ) -

Remark. We must emphasize that the affine equivalences of
supports and linear equivalences of root systems in Theorems 2.2.6 ;
2.2.7 are not at all necessary to preserve either the coprdinate
simplex miZO on the plane (m,x)=d or the lattice of non—-negative
integral m in C". We also observe that under the hypotheses of
Theorems 2.2.6 and 2.2.7 the groups of quasihomogeneous
diffeomorphisms and their orbits in spaces of gquasihomogeneous
functions do not necessarily coincide, however, the connected

components of the orbits coincide. ( see [£17 )

Lerma 2.2.8 The space b = H & Cv can be given the following

Lie algedbra structure:

v

(1) [h1,h =0 ( "h,,h, € H )}

2 1772
v )
(2) [h,en_?—(h,n)sR ( h € H, me M )3
(3) {e ,e_ 1=N » Where m, +r, =0,
®, TR, R,oR, 1 72
= @ if m,+R

1 72
= - maz{rg n1+An2 is a root} if this mazximum (s > 13

{5 not a root:

N

Ris®oY = &+ maz{r: n2+An1 is a root} i(f this mazimum (s > 1 ‘
=+ 1 {f both mazima = 1 (the case when both razira are:
> 1 is impossible),

(4) le,,6_,1=h,, where the function h,€ H changes sign the

reflection of Cr that preserves M and takes m into -m, norwmalized

by the condition hn(n)=2 (such a reflection ezists and is unique fol

any pair of opposite roots),

The quasihomogeneous Lie algebra a(x) is isomorphic to the dired

- 8 -




gum of the Lie algebra b (for some choice of the sign % in (3)) and a

trivial (commutative) algebra: a(x) x b & o, ( see [11 )

Corollary 2.2.9 Suppose that the set of weithts o and the
degree d are such that there exists o quasihorogeneous function with
on isolated critical point O with zero 2-jet, Then the root syster
and the support uniquely deterrine the Lie algebra alwm) and . its

action @, ( see [11 )

Corollary 2.2.10 tet ¥ C?—]e C;_1 be an affine isomorphism of

a comrplete support plane 81 into o complete support plare S,, taking

g, into part of 82, the roots of a1 tnto part of the roots of 02, and

1

the bases of the roots 01 tnto part of the bases of the corresponding

roots of 02. Then ¥ induces an ésonorphisn_of the action ¢ of 01
onto functiors onr S1 end an isomorphism of the action of a subalgedra

of 02 onto the space of'functéons on S, that vanish outside ¥(S,),

2 1

Corollery 2.2.11 Suppose that under the hypotheses of Corollary
several points in the support S1 are distinguished and the values of
the functions are fized ot then, All the functions on S1

values at these points from an affine plane P in the space of

with fized

functions onrn 81. Let ap be the isotopy algedbra of this plarne P,
Then the isomorphism ¥ of Corollary 2.2.10 induces an isomorphism of

the action of np onr P with the ection of some subalgebre a,,

1%

preserving the planrne ¥ P in the space of functions on 32. ( see

11 )



The reduction of the classification steps is carried out by
means of Corollary 2.2.11. We indicate the monomials of the support
by the following signs: those distinguished by the sign O have the
coefficient 0, those by the sign ® have the coefficient 1, those by
the sign ® have the non-zero coefficient and the 6thers by the sign #®

have the parametric coefficient. And we place the signs into a

equilateral triangle. ( Fig. 2.2 )

.\ a1x3+a2x2y+a3x22+aaxy2+asxyz+aéx22+a?y3+88y22+a9y22+a1023=0

./ ./ ( a;: parameter ( 1481810 ) D
/m 3. 3,3 _ /O /ﬂ 3, 3
x +y"+z" +axyz =0 0 ;3 3_ 0 ;3 a, x +z =0
oA ;;E >3 ( At parameter ) 0 33 )D y =0 o 33 ;3 (1a «0)
Figo 202
This diagram is very convenient for the computations. According to

Corollary 2.2.11, the orbits of the identity component of the group of
quasihomogeneous diffeomorphisms that fix the plane P ( consisting ofv
functions on the support with the values 0 and 1 at the points
distinguished by the signs O and ® ) are transformed under a mapping
onto the support of the homogeneous functions into orbits of the
corresponding group of linear transformations. ( This circumstance
is a nice property of the roots in the relevant cases, in general, the
images of the roots for a(x) in the homogeneous support need not also
be roots of the linear group.)

"The Lie algebra of this group of linear transformations is easy
to describe: it is generated by a torus part, acting on a function on
the support as multiplication by affine functions that are zero at

10 -



the points of the support distinguished by the sign @ (at which a
non—zero value of the function is fixed) and by the images of those
root vectors e that do notbtake other points of the support into

points distinguished by the sign 0.

§3. Normal forms of singular quartic curves

If the analytic set have Singuiér points, we can take the
singular point at tl,0,0] inlpz by:the arbitrary 1inear
transformation. Then the defining equation takes following form:

Fz(y,z)x2+F3(y,z)x+F4(x,y)=0
where fi denotes a homogeneous polynomial oF_degree 1 ( 1=2,3,4 ).
Fz(y,z)=0 gives two boints on a'projective 1ine. By the Definition
2.1.4 for normal forms we obtain the following classification.

F2(y,z)~ yz - Step 1 , Fz(y,z)~ 22 -+ Step 2 , Fz(y,z)EO - Step 3
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i

x2yz+a1xy3+a2xy22+a3xy22+a4x23+aSy4+aéy32+a?y2z2+58y23+a924:=0.
a a
Replacing x by x’'- 5 YT T 2, we reduce the form to

x2yz+91xy3+92x23+93y4+9dy32+95y222+96yz3+g7za=0- {

If (91’93’94)=(0’0’0) or (92,96,97)=(0,0,0), changing the coordinates

X 01 0)¢(x~ X 0 1 0)¢x’

so that |y |=]1 0 0O}y’ ] or |¥i=]0 0 1]}y’ | respectively, we reduce |
z 00 17\z° z 1 0 0)\z°

the form to 95x222+gdx23+giyz3+g3za=0.

95;‘0 » Step 2 , 95=0 - Step 3 t

:éo/ro\qsé N =S Cgﬁo\:\é m
K5 {W\ e i v

Step 2

o
KXo
o(:‘; /_\o’_ 50/ ‘o Fig. 2
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Case 1: x222+xy3+a1xy22+a2xy22+a3xz3+a4ya+a5y32+a6y222+a?yz3+3824:=0.
Case 2% x222+xy22+a1xyz2+82xz3f33y4+aay32+a5y222+a6y23+a7za:=0.
4

Case 3% x222+a1xy22+a2x23+a3ya+aay3z+a5y222+a6yz3+a?z +=0,

Case 1:

X
Changing the coordinates so that [y
z

1 @ B)¢x’

=[0 1 % [y'}. We reduce the
00 1t\z7

form to x222+xy3+91xy22+92xy22+g3xz3+94y4+95y32+96y222+9?>'23+982a=0-

Here, we set as folloes:!

2_ _ 3 _ _
_ ay 3&2 _ 2&1 +98182 2733 ; - a, " 4
- Sa » - 3 . en we requce

«= g 8
the form to x222+xy3+h1y4+h2y32+h3y222

+hAYZ3+h524=0.

Case 2:
a4 a,
Replacing x by x'-— 5 YT T2y we reduce the form to

x222+xy22+g1yd+92y32+93y222+94y23+gSza=0.

Case 3:
: .3 a2
Replacing x by x'- 5T YT T2y we reduce the form to

X222+91Yd+gzy3Z+93Y222+gdyz3+9524=0. Go to Step 4.

_.13_



Step 3

2 |
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)

® Fig. 3

In this case, the form is as follows: F3(y,z)x+F4(y.z)=0 where
Fi(y,z) denotes a homogeneous polynomial of degree i. Fs(y,z)=0
gives three points on a projective line. By the Definition 2.1.4 fo
normal forms we obtain the following classification.

F3(y,z)~ y22+z3 2> Step 5 ,kfs(y,z)~ y22 » Step 6 ,

Fa(y,z)~ z3 < Step 7 , Fa(y,z)a 0 » Step 8

_14_
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Stop 4 /L%
/ \m; \n;
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:gé—&:g : :<O<-—0\:< I’ S
°<m/‘“\f~/‘“v°\. 5 KX
R 2
(E
ol
e a4 C< Ny % AO\O Fig. 4
Case 1: x222+yd+a1y32+32y222+a3y23+3424:=0.
Case 2 x222+y32+aly222+a2y23+a3 4:= .
Case 3: x222+y222+alyz3+32 4'=0.

Case 4: x222+alyz3+a22a.—0.

Case 1:
. a
Replacing ¥ by vy’ ~ 2 we reduce the form to

' x222+y4+g1y2z2+g2y23+g3zd—0.

Case 2: »
Replacing ¥ by y’'~— 3 2 we reduce the form to
x222+y3z+g yz3+g zd=0.
1 2
Case 3:
34
Replacing ¥y by ¥y '~ >z, we reduce the form to

..15_



x222+y222+9124=0. And replacing x by 5—%z—$ y by §§%¥—3 we reduce |

the form to xy22+glzd=0.A

Case 4:

) x 0 0 1)¢x’
Changing the coordinates so that iy}=[1 0 Ol[y'}. We reduce thy

z 0 107\z7 [
form to alxy3+a2y4+y222=0. Go to Step 3. »
Step 5 ' f\ f\
o Cén/o\ > & o(P/o\
KT LTS
Figo 5
xy22+xz3+a1y4+a2y32+a3y222+a4y23+aSza:=0.
Replacing x by x'—azy—a3z, we reduce the form to
xy22+x23+g1ya+92y23+g3za=0.
(
Step 6 f\ E
e S |
K 55
Fig. 6

xy22+a1y4+a2y32+a3y222+aay23+aszd:=0.
Replacing x by x'—asy-adz, we reduce the form to

xy22+a1ya+a2y32+a524=0.

_16_
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0

step T

Case 1: x23+ya+a1y3z+azy222+a3y?3+a&24:=0‘
Case 2: x23+y3z+a1y222+82y23+a324:=0.
Case 3: x23+y222+a1yz3+azzd:=0.

Case 4: x23+aly23+a224:=0.

Case 1:
X 1 o B){x’
Changing the coordinates so that jyi={0 1 ¥}y {. We reduce the
z 0 0 1’\z°
form to xz3+y4+91y32+92y222+93y23+gazd=0. Here, we set as folloes:
3 _ ' 4_ 2 _ _
. a4 +da1a2 833 . 3a1 16&1 a2+6llala3 256a4 - a,
8 * 256 ’ ' 4 *

Then we reduce the form to -x23+ya+gly222=0.

Case 2:
' X 1 o By fx')
Changing the coordinates so that [y}=[0 1 % [y' . We reduce the

z 00 12\z7
form to xz3+y3z+gly222+92y23+9324=0. Here, we set as folloes:

_1?._
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2_ _ 3 L
a4 3a2 2a1 +9a1a2 27a3

S 27 S

Then we reduce the form to x23+y32 =0.

Case 3!

Rep]acing4x by x'-aly—azz, we reduce the form to xz3+y222=0.

Case 4:
x -a, 1 —a, ) (%
Changing the coordinates so that |yj=] 1~ 0 O a8 We reduce

the form to yz3=0. Go to Step 8.

Step 8

:g :g : :g‘%‘o\:g C Cg% :
ngMvﬂ‘ ,ﬁ;' KoXE=0

e J N
%N %N O
Eoon, S oS0
NNy NN N N N0
Fig. 8

In this case, the form is a homogeneous polynomial of degree 4
for two variables y,z. We denote the form by Fd(y,z). Then fa(y,i
=0 gives four points on a projective line. By the definition 2.1.4

for the normal forms we obtain the following classification.

FA(Y’Z) ~ Y32+381Y23+a224 ( da13+a22¢0 ),

Fa(y,z) ~ y222+z R fd(y,z) ~ yzzz,rfa(y,z) ~ yza, Fa(ny).~ z4

._18_



By results in Step 1~8 we obtain the linear classification of

. . 2 .
singular quartic curves in P” and their normal forms.

Lerma 3 The defining equatior of singular quartic curve
PZ is linear equivalent to one of following fifteen cases:
2 3 3 4 3 2.2 3 4
. + + + + + + + =
1 ¢ z°vz q1zy azzz asy; ¢4y z aBy;z aéyz a?z 0,

(a1,a3,a4)¢(0,0,0? and £a2,a6,a7):(0,0,0)

| B x222+zy3+a1y4+a2y32+q3y222+a4yz3+a524=0,
111 ¢ 1222+1y22+a1y4#a2y32+q3y222*a4y23+a524=0,
v : 1222+y4+a1y222+a2y23+a324=0,
Y 1222+y32+a1y23*a224=0,
VI ¢ xy22+123+a1y4+a2yzs+a324=0,
VII ¢ zyzz*a1y4*a2y32+a324=0,
VIII 123+y4+a1y222=0,
IX : 223+y32 =0,
X 223+y222=0.
XI : y32*3a y7.3+a. z4=0 ( 4a 3+a. 2:0 ),
1 2 1 2
XII y222+z4=0,
X111 :\y222=0,
XIV : wz°=0,
XV z4ﬁ0.

._19._
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