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JACOBI FORMS AND ODA’S LIFTING ' ' /

Takashi SUGANO  H¥E® (=&k-KH)

0. Introduction

In the space of Siegel cusp forms of genus two, a special
subspace, which is constructed by H. Maass and so is called the Maass
space, is‘defined. Many authors studied this subspace in connection
with the Saito—Kurokawa lifting. Thé coincidence between thé Maass
space and the imagé of the 1lifting was proved by uéing Jacobi forms
(cf. Zagier [12]). -In [02] and [03], Kohnen and Skorupﬁé showed
that plzlf is .a constant multiple of f for any Hecke eigen cusp
form f , where tq V[resp. Py 1 is the Saito-Kurokawa lifting [resp
the adjbin£ mapping of 1 1. Moreover the constant appearing above
is described by a special value of the L-function of f .

In our previous note [11], we constructed a lifting o of
Jacobi cusp‘formé to holomorphic cusp forﬁé dn SO(Z,m+25ﬂ { m=1 ) .
This was a natural generalization of the original Maass’ lifting
{ m=1l ) and the hermitian modular case of genus two ( m=2 ) Dby
Kojima [04] and Gritsenko [01] . we also régard our construction as
a Jacobi form veréibﬂwg¥ Oda’s lifting f06]. The purpose of this

paber is to generalize Kohnen and Skoruppa’é result, namely

Theorem Let S be a even integral positive>defiﬁite

symmetric matrix of rank m and f be a Jacobi cusp form of weight
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kK k > 2m+4 ) with respect to FS . We assume that me is a
maximal lattice with respect to S for any prime p . "If £ is a
gimultaneous eigen function of %é,p (Vp) y, then the identity

Py 1o f = CS.k L(f;(m+2)/2) f
holds. Here pg is the adjoint operator of tg o L{f;s8) is the
L-function associated with f and CS,k is an explicitly determined

Constant .

The proof is based on the Fourier expansion of zof and pOF ,
‘which is essentially given in Oda [06]. Therefore our method is
similar as Oda’s treatment in [07] and Kohnen’s first manner in [02]
(see also Oda [08]).

The auﬁhor sincerely express his hearty thanks to Professor T.
0da for drawing his attention to this subject and for constant

encouragement.

1. Notation

S : even integral positive definite symmetric matrix of rank m ,
_ _ _ _m x -1
Qy = -5 , LO-chVO_LO@Q-Q , Ly = Qp Ly >
1 yA
- _ +2 _ ~m+2 x _ -1
Q1‘[1Q0]'L1“[Lo]'lm eVy 2O Ly 2R
Z
1 Z +4 m+4 X -1
Q =] @ | L =1L | =Z""cV =4 , L' = QL ,
1
Z
G =Z0(Q) / Q , G = G% the identity component of GR ,
0 . .
G1 = O(Ql) / Q Glz Gl,R the identity component of Gl,R ’
r = G n SL(m+4,7Z) , F1 =G n SL{m+2,7) ,
X ) b 4
rr={yerl ; (yv-1)L cL } ,

G’ = sL(2) / @ , G = SL(2,R) , I'" = SL{(2,Z) ,




40

9 = (2evV, 8 C; @lmal > 03",

R
1 —Ql[g]/z )
n[]{ . ]<“9>,
1 1 :
g-47 = (g<a>)7 J(g,q) .

K=1{g¢€aG; g<§0> = 4 } . ( a maximal compact subgroup of g h
k §

Fllgl, (2) = J(g,%) " F(g<®>) (geG, 2€9),
o GS = Hs'G’ = {[gsnag]g ;‘iyﬂ € VO s £ € Q , g:[i S] e G’} / ng
10 {nS S(k,n)-tg S[nl/2 a -b
01 £S  Ss[el/2 g -¢ d
[&,n,t] g = .lm ,ﬁ n lm )
1 0 a b
, o 0 1 c d G
[g,n,8] [&°,n",8" 1 = [g+&’ ,n+n’ ,e+g’+S(&,n’ )1 , |
-1 ' : . - 7]

g [Eyn,tl g = [&’,nf,§’] ’

(ﬁ)ﬂ) g ’ §’ = ¢ + S(g’9n,)/2 - S(&,n)/2 ,

(g’yn’)
- Z = {[0,0,g]} = the center of Gg » Gg = Gg R’
b
Frq = GgnT = {lg&n,¢tlg ; &,n €Ly , £ €Z, g e€Tl’},

@S = § x Cm ’ ZO = (J:T,O) € @S ’

1]

g<Z> = (g<z>,wilg,z) ‘+rg<zo>+n) (g = [E,n,elg ) , L

Tg 1 (2:7) = j(2,2)" el-t+(38Inlc-8(&,w)}i(g,2) -g<z>5S[]],
Pllglg  (2) = Jg 4 (g,2)7) £(g<2>) (geGg, 2€ag) ,

elz] = exp(2n/-1 z) (z € C)

2. Jacobi cusp forms

For a positive integer 'k we denote by GS k(FS) the space of
H
Jacobi cusp forms of weight k and with respect to FS , namely the

set of holomorphic functions f on 2 satisfying

S
(i)  fllelg , = f for ¥ y € Iy and
3

(ii) fillg]l (Z.) is bounded as a function of g € G
S, k70 . . : S
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Fach form f in GS,k(rS) is expanded as

(1) f(z,w) = x apla,a) elaz - S(«,w)]
an,aELO
2a-S[wa]>0
We introduce a inner product in 68 k(FS) , which is called the
?
Petersson inner product
75 Kk .
(2) Epfpg = | £1(2) T,(Z) v exp(-2nyS(&]) az ,
g\ 2g
where Z = (z,w) , z = x+/=1y , w = &z+n , and dZ = y“2 dx dy dg dn
(dx , dy lresp. d& , dn ] are the Lebesgue measures on R [resp.
VO’R])-

3, Cusp forms on 9

We denote by Sk(r*) the space of holombrphic functions F
satisfying the following (i) and (ii) ,

(i)  Fllyl,=F Yyer,

(ii) Fl[g]k(ﬁo) is bounded as a function of g € G

The Fourier expansion of F 1is given by

T
(3) F([W])

T
2 ap(u) elQq(n, )]
uell, /Tueo * BeEE [W]

4 z
= > % aF(a,a,b) elaz - S{a,w) + br]
a,bGIN, OtELO
2ab-S[x]>0 -
The Petersson inner product in sk(r*) is defined by
(4) CF B> = Fo(%) Fo(2) (2@,0Im 21K ax
1F27k T ), 1 2 791 ‘
r\ @
_ (1 ~(m+2) _
where d¥ = (EQI[Im 1) dxpdyg. . dx  dy 4 0 X = (Zj O<j<m+1
and Z; T X5 + j:Ty‘j . We often view F = de as a left
X : .
[ ~invariant function Fgr on G , through the identification Fgr(g)
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-1
= FM(gcr>) T2y

4, Lifting of Maass’ type

Let f be in GS k(FS) . We define a holomorphic function
s 4 .
zof on 9 by
T
(5) zof<[w]) = S e S 1y rFlaieZap, 7l
z a,beN3aeLO reiN, r aeLO
2ab-S[xl1>0 rja,b
' x elaz-S({u,w)+br]
It has been proved that zof belongs to Sk(F*) . This lifting is
a natural generalization of Siegel modular case of genus 2 (m=1) by

Zagier [12] and hermitian modular case of genus 2 {(m=2) by Gritsenk
[01] and Kojima [04]. The proof is based on taking a éuitable
generator system of F* and the symmetry of <t and 2z in the L
definition (5) {for the proof see [11]) . We denote by fg its
adjoint mapping from Sk(F*) into ss’k(rs)

for ¥ f e 6g (Tg) , ¥ F e s, (T%)

{6) <30f,F>k = <f’pOF>S,k

Since Lo is injective from our definition, we know that Py is

surjective.

5. Theta functions and the definition of Oda’s lifting

X ’
For o € LO/LO and Z € @S , put

(7) 0 (z,w) =3 , elszS[o+a]l - S(L+a,w)]
o X 2
QELO
We define a Schwartz-Bruhat function fz . on V by
3




£, x(v) = Qg )k

elg @ Iv1] ,

Zy
1y

where QZ = xQ@ + /J-IyR and R = S ‘

Wwe introduce a kind of theta function on @S x G which plays a role
of the kernel function of 0Oda’s lifting.

Z y ; Z
(8) ek( 1g) EL*/L ek(ng M) Gn(“)( ) s
+ -1 X * .
where 8y (z,g;u) = 3 y(mr2)/2 £, (g (e+u)) and 5 @ L'— Ly is
2el ’

the natural projection. From the transformation formula of Qa(z,w)
and Gk(z,g;u) under the action of T’ (cf. Shintani [09]), we easily
obtain that
k ' o )
(9) Qk(z<z>,ng) = JS’R(X’Z) J(Kygo) @k(zyg) v Xersr YEF, keEK .
For an x ‘€ V1 and a y € VO we set
t t
1 -"xQ; -Q[x1/2 1 =Yy, -Qylyl/2
- - ? —
n(x) = 1m+2 X and n’(y) =. 1m . y
1 1
For g~ = |# °] € qL(2,R) ( det g, = N ), we put
‘:O_Cd] s - &g < ’ P
a b
c d
gn = 1
0 m o 4/N  -b/N
-c/N d/N
It is easy to see K = KO-Kl (semi-direct product) , where KO =
~ . - [cos 8 -sin @ - .
(kg 5 0s6<2n, x4 = [5n § Toos of ! and K; = { k € K ; J(k,%)
=1 1. We normalize a Haar measure wG(g) on G by
(10)

d(g) wp(g)
Jote) v

R i —~
o Lo ST e o [38] e

nfl "(m+3) b (m+1) dx dy da db dG dKl :

o 7

i
[y

where dx, dy, da, db, d@8 are the Lebesgue measures and IK dKl
‘ 1

I »(g) wo I ®(g)

Hence the identity

g<30>) holds for any
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integrable right K-invariant function & on G .
Now let us introduce a mapping ¢t from GS k(I'S) into Sk(F )
b .

and its adjoint mapping p .

(11) f(g) = | £(Z) 8,(Z,8) y" exp(-2nysSlgl) dz ,
Fs\ 25
(12) pF(Z) = fr*\ o F(E) 9 (Z,8) wgla)
(13) P FY = (E,pFog Vreog (g , Y Fes(rh) .

The convergence and well-definedness are assured by T. Oda [05]

for k > 2m + 4 . Our aim in this note is to prove that p:i:f 1is a

constant multiple for any Hecke eigen function f in 68 k(I“S) and
: ’ ;

to determine the constant appearing there,

Remark Any Jacobi form f in FGS,k(rS) is written as
f(z,w) = 2* fa(z) Ga(z,w) . Then (fa(z))’ becomes a
o€l /Ly .
vector valued holomorphic cusp form of weight k - m/2 with respect
to I’ = SL(2,7Z) . Moreover each component ‘fa(z) is a usual cusp

form with respect to some congruence subgroup.

6. Fourier coefficients of Oda’'s lifting

First we note that Oda’s lifting ¢ coincides with Maass'
lifting tg up to constant multiple.
: k
(A> 1f(g) J(g,9,) ‘= C(z)kaof(g<3o>) )
where C(:) = (—J—I)k 2k—m/2 (det S)_l/g .

Secondly we shall describe Fourier coefficients of pF . We

a
needs some notation for this purpose. Take any n = [a] € L1 and




assume Ql[n] > 0.

1
Put An = a Ql[n] = a - T S[C(] > 0 ’
_ -1/2
gn € G1 g go = \.J‘I A n
S Soa 1
=n ~ [taS Za]’ » Q= [fgn } ’
0 . L
= 0 = : th ’
G, (Qﬂ) R gn gn,R 1e identity component éf gn’R ,
+ .
9, = (X =(r) 5 xeR ,r>0) (X5=(0,1)eg ),
v r+§n[x]/2 v
g-X" = (g{X})N j(g,X) ( X7 = [ >1§ :’ y & € (_G_n )
Kn = the stabilizer subgroup of XO ~ SO(m+2)
It is clear that Qn is identified to an = {geG; gn =711}
0
( n = {n} ) . We identify yﬂ = ®m+1 with the orthogonal
0
complement of pn in V1 . Let us define a Haar measure on ﬁn by .
(14) [ oe) w (o)
G n
n b
o0 | a —(m+2)
= f I I ®(n(x) I _4]x) a 27 dx da dx
MH’R 0 'Kn a ,
where dx and da are Lebesgue measures and IK de = 1 . By
n

using the above notation, we can write down Fourier coefficients of

oF

(B> pF(Z) = C(p)

2
ael;wely/Ly n' “n

ZAn=2a—S[a]>0

(k-m-1)/2
a, fr:\ EnF(h g ) w (h)

X 2 0he(?) e[nzAHZ] pk-(m+2) )

nen
where F; - ¢ nr* ana C(p) = /:Tk pk-m/2 (det S)—l/2 = CT(z) .
Theorem (A) and (B) , which are essentially given in [06], are
proved by chasing the Oda'’s arguments carefully (we need to rew%ite
all his discussion in terms of Jacobi forms and to determine some

constants explicitly).
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7. Hecke theory for Jacobi forms

First we introduce the notion of Hecke algebra action on

GS k(FS) after T.Shintani. For any prime p , we denote by #
b
the set of functions ¢ on GS o satisfying

b

b4
(g) #(g) for any g € Qp ) Kl,KZEKS’p

S,p

(15-1) ¢([O;Oa§]K1gK2) = Xy

and

(156-1i1i) the support of ¢ is compact modulo Zp .

where Ké’p = G,S, N SL(m+4,Zp) and Xp is the p-component of
the character x of ©Q \ QA { x (x) = elx] ) . Clearly %S p
o2 y
forms a (C-algebra with the convolution product
(16) 6 %8,(g) = 5. (e’ ") s,(2g’) dg’ ,
1772 1 2
. Z_\G
P S,p
where we normalize the measure dg’ as vol(Z \Z K )y = 1 .
PP S,p’ -
Hereafter we assume that LO,p = LO 2] Ep is a maximal Zp—lntegral
lattice with respect to S for any prime p ; namely, if M 1is a
lattice in VO,p containing LO,p and satisfies %S[x] € Zp for
any x € M, then M = L . We define two elements ¢ and
O0,p 1,p
¢O,p in %S,p as follows |
p - = = p -

¢1.p([ P 1]) Loyosupp ¢y 5 = 2y KS,p[ P 1]KS,p ’

(17) sy (10,5,00) =p P (Yy ers )
0,p y Y s = p 3 0,p y

?

supp ¢1’p = Z K {[Oyy’ol;yeLé’p}KS

P S,p ' P

where we put Lé,p = {x € L;,p ; %S[X] e»p—llp} and ap stands for

the dimension of Lé,p/LO,p over Zp/pr . "We note 0 < ap < 2 .
The next relations are easily checked.

X = X = . s
¢17p ¢in ¢01p ¢1)p ¢1)p ’
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?

’

4'7
(18) 8o, , = | if a8, =0 ,
2 _ . _
¢O,p 1 if ap = 1 ,
2 _ -1 -1 . L
%0,p (1 p )¢0,p + p if ap = 2
We denote by %é P the commutative subalgebra of the Hecke algébra
b
%S,p generated by ¢O,p and ¢1’ For any character 2 of
%é o’ local L-function Lp(x;s) is defined as follows
?
-s) ¢ (1 - Xs(p)p—s)—l if m is even
(19) L (x;s) = B (p 7) ,
p S,p Y 1 if m is odd
_ 9. -nn/2 -1l+n,/2 _ 1
x{1 - '(Alp (1+m/2)_p P 0 +p 0 )p S + lolp ZS}
Here Vo = the th: index of S over @p y Ng = m - 2up ,
D, (S
xg(p) = (P5—) » pes) = (-2 (ger )
DO(S) = the discriminant of @(D(S)l/z) s
Xy o= A(¢j’p) (5=0,1) ,
BS,p(T) = 1 when (noyap) = (0,0), (1’0)7 (2,0), (211)7
= (1 + pl/zT ) when (no,ap) = (1,1)
= (1 -p/%r when (ng,8.) = (3,1)
= (1ap /Py (1 - et when (ngi.) = (3,2)
= (1 +pT ) (1 +T) when (no,ap) = (2,2)
= (1 -pT ) (1 ~-T) when (no,ap) = (4,2)
-s -s -1
Bg(s) = [T Bg (P %) , Lixgis) =T (1 - xg(p)p %)
p p
We let %é,p act on es,k(rs) naturally. As usual, ss’k(rs)
has an basis consisting of common eigen function of all ﬁé P (Vp Y.
?
Let f ©be such a simultaneous eigen function When f*¢j o =
b ™
x(¢j p) f , we define the global L-function L(f;s) as the product
b

N Lp(x;s) of local ones. We put
1Y
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s+1

A r( ) m = 0 (mod 4)
(20) g(f3s) = 2795 1738/2 (get 5)8/2 { 2
r( oA ) m = 2 {(mod 4)
x T{s+k- E%g) L(f;s) : if m : even,
1 s/2 m+2

= (2n)7% (277 det S) M(s+k- =%=) L(f;s) if m : odd.

On the analytic continuation and the functional equation of L{(f;s)

the following theorem holds.

()] When k > (m+1)/2 , £(f;s) is continued to whole s-plane as g
meromorpﬂic function with possible poles at s =0 , 1 . It
satisfies the functional equation g(f;s) = €g g{(f;1-s) , where €g
is -1 if m =1 or 3 (mod 8) and +1 otherwise. Moreover except:

the case m = 6 (mod 8), £(f;s) is entire.

Remark The definition of the Hecke algebra is given by

%s,p

T. Shintani in more general context (see for example A. Murase [05])

coincides with %S;p if ap =

is a proper

It is not difficult to see that %é P
. ?

0 or 1 . On the other hand, when ap = 2 , %é,p

subalgebra of %S ; in particular %é P is not commutative.
b

P

a ; L
An element n = [u] in Li is said to be reduced if L = [ O]

1 Z
is a maximal lattice with respect to §ﬂ . We note that there
exists some reduced n such that af(a,a) = 0 . For such p we
have
(D> > af(nza,na) n~(stk-(m+2)/2)

n=1
-1
z(2s) m:even N
= L(f;s) Bgn(s+1/2) { L(xg s+1/2)"1 n:odd J agla,a) :

-n
Rewriting this by adelic language, we get

t bs—(m+2)/2 f

’ gr X
D> fQX (1of)% ([ 1o t—1]g”) It], a*t
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= apla,x) &(s-m/2) L(f;s) Bg (s+1/2)7"
-n
MN{s+k-(m+2)/2) ;(Zs)fl m:even
X (4RJZ—)s+k—(m+2)/2 ‘ L(xS ;s+1/2)"1 m: odd L
n =n
where for a cusp form F on GA we have put
(21)  F(2) = | F(n(x)g) x(-Qq(n,x)) dx .

Vi,0V1,a

Theorem (D) is shown by the standard discussion, namely the the study
of the action of ﬁé P on Fourier coefficients of f . The left
b

hand side of this theorem is represented as a convolution product of
f and a kind of Eisenstein series on GS (this representation was

' -n
given by T.Shintani in more general context). Therefore (€C) is
reduced to the analytic property of this Eisenstein series. By

calculating all Fourier coefficients of it, we can verify (C). For

more precise treatment, refer our forthcoming paper.

Moreover by comparing the actions of Hecke operators of G and

GS , we can show that

¢ ] If f 1is a common eigen function of for any p , then

b
%S, p

pif is also eigen function with same eigenvalues.

8. Eisenstein series on O(1l,qg+1)

Let T be an even integral positive definite symmetric matrix

1 .
of rank q . Put T = [ -T ] , H = O(T)  and H™ = O(T7) & We
1
put L = 7% , L* = T—lL , L™ = z@*l and L“* = T~_1L“ . For each
prime p , we assume that L0 p = LO ® 7 is a maximal lattice with
?

respect to T and set
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o0

Up = { g€ Hp ;7 8 Lp = Lp S

Up=tlegeH s gl =11,

Up = (g eUy s (g-1) L) cLy},

vrt = g e Ug s (e-1) 13T € 13 )
H; acts on D = { X = (x,r) ; X € Rq , r > 0 } through

g-X" = (g{X})"” j(g,X) ,

i r+T[x]/2 . 3
where X7 = [ T ] , X = (x,r) € D . We denote by U] = U;
the stabilizer subgroup of X, = (0,1) and put U = Ui =H . As
is well-known, the Iwaséwa decomposition and the class number one
property holds
(22) HX = PX UK* { P7 denotes the upper triangular Subgroup),;
= Hg HI U7

Hence we can write g as

a(g) q ' X
g = n(X)[ B(g) _1} k(g) , x eV, =0Q," » alg) € Q4 »
a(g)

Blg) € HY and k(g) € U, .

We consider a space Yy of automorphic forms on H and a linear

operator M(s;%) acting on it.
(23) ¥y = £ HQ\ Hy / U; —— (} (finite dimensional)
(24)  M(s;H)(m) = [ £h smY))) lan¥(0)157Y? ax
Va
1 s
where DV(X) = [ X 1q ] and f dx = 1
T{x1/2 xT 1 Va/Vg

Now we introduce Eisenstein series attached to f

s+q/2

(25) E(g,s;f) = 2 £(8(ve)) lol(ve)l, (g eHy ) .

eP” \ HY
vePg N Hg
By virtue of Langlands’ general theory on Eisenstein series, the

analytic properties of E(g,s;f) ~is reduced to that of its constant
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term E,(g,s;f) = I E(n(x)g,s;f) dx . Using the Bruhat
0 V@\VA
decomposition
. it X
(26) HQ = PQ U PQ W NQ , W = [1 1q ] € HQ N UA s
we obtain
a s+q/2 -s+q/2

(27) E0<[ b _1],s;f> = £(b) lal, + M(s;f)(b) lal,

We consider a suitable subalgebra ﬁﬁ of the Hecke algebra

. . . X . .
associated with the pair (Hp,Up) . For each %é eigen function
f in FH y we can define a° L-function L(f;s) . Then M{(s;f) 1is

described by this L-function.

(F> If f € VH is a simultaneous eigen function of %é {for any

prime p ) , then

; /2 q:even
.oy - _L(f;s) (2m) 4
M(s;f) = —L { 2s) } x f
LI5S (ot 1,172 e —%?EITT q:odd
For f = 1 (the constant function on HA with value 1), our
L-function is written by usual Riemann zeta functions.
q-1 1 q:odd
(28) L(1;s) ZJD1 £(s+j-a/2) x By(s) x { L(xg,s) a:even } -
2 B
(29) Mis:i1) = —zm%/ M(s) _t(s+l-q/2) 7(s)
{(det T)l/2 F(s+q/2) t{s+q/2) BT(S+I)
£(2s) £(2s+1) 1 q:odd
x { ) i -1 }ox 1
L(XT)S) L(XTaS+1) g.:even
Therefore we have obtained that
(30) Res E(g,s;1) = Res M(s;1)
s=q/2 s=q/2
(det T)'/% r(q) g(a)  Bp(a/2+1)
’ -1
g(q) g(q+l) q:odd

x A L{xy;a/2) L()(T;q/z-l-l)_1 q:even y o -

For any reduced n with An > 0, gn fulfills the assumption



on T . So we can apply the above results to the case T = Sn ( q 3
m+l ). Define a Haar measure dh on H; as follows
(31) [ e an

Ga
a
= ' -(m+2)
B f x I I . m(n(x)[ b _1]u) laly dx da db du ,
Va “Qx “Hy TUy 2

where IU* db, = 1 and g~ ¥ duV =1 . Then it is easily seen that
v v
(32) I F(hg)dh= [, F(hg) w(h ( Fe s (rf)),
HZ\HY n r’\g. n.oon
QA ncton

On account of the argument in the study of L-functions

associated with F (cf. [10]), we obtain

(6> [ (¢£)%"(h g ) E(h,s-1/2;1) dh
HX\HY n
QYA
t
_ gr s-(m+2)/2  ,x
= vol(Hp\H,) f « (1f)) ([ 1 _1]gn) [ty d7t
Q t
Remark Since E(g,s;1) 1is continued meromorphically to whole

s-plane and satisfies the functional equation E(g,s;1) = .
M(s;1)E{g,-s;1), the meromorphic continuation and the functional

equation of &(f;s) are also proved by (G).

9. Siegel formula

From the celebrated'Siegel’s theorem on quadratic forms, we can

calculate the volume of HQ\HA .
.y [la=1)/2]

(H> vol(Hg\Hy) = 2! Yq sy By(d) (det 1) (a71)/2
1 q:odd
x A L(XT;q/Z) g:even !
where Yq = nq(q+1)/4 I F(j/Z)_l , H = O(T) and VOl(U:) =1
. Jj=1 N
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10. Main result

Theorem Assume k > 2m + 4 and let f € 6q k(rS) be a
, 3.
gimultaneous eigen function of %é o for all p . Then
)]
pozof = CS,k L{f;(m+2)/2) £ ,
Co » = (47) % (k) C
where S,k - T g
; [(m+1)/2]
CS = (det S)(m+1)/2 T BZ'
j=1 !

o-m/2  ~1-m/2
x { )
o— (m+1) /2

if m is even
r(ﬂgi)'l if m is odd

sz is the 2j-th Bernoulli number.

/

Consequently, we obtain the connection between the norm of f

and that of zof

Corollary Notation and assumption being as above,

<zof,aof>k = CS,k L{f;(m+2)/2) <f’f>S,k

Remark 1 In particular, when m = 1 and S = 2 , CS,k =
(4;1)_k k) 6—1 . This coincides with the Kohnen-Skoruppa’s results
([031). Their method, which is based on the study of Eisenstein
series on Sp(2,R) , is entirely different from ours. Probably our

inner product formula is obtained also by calculating the constant
term of Eisenstein series on 0(2,m+2) . vHowever, our theorem is
not reduced to this formula, because the multiplicity one property is

not known for Jacobi forms.

Remark 2 Taking account of the connection between Jacobi
cusp forms of weight kK and elliptic cusp forms of weight k—m/ZJ, it

is easily checked from Rankin’s evaluation that the Dirichlet series
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in (D) converges absolutely at s = (m+2)/2 for even m . As is
shown in [07] ( m=1 ) by using the Shimura-Shintani correspondence,
it is probably valid for odd m . If so, the non-vanishingness of
the special value of L—function_appearing in the above theorem is

also verified directly.

11. Proof of Theorem

a
Take any reduced n = [a] € LT with An >0 and put T = 8
1
S

We calculate %he residue at = (m+2)/2 of

(33) £)87 (n g.) E(h,s-1/2;1) dh

JoHé\HA (e 07

First, from (30) and (G) we have

(34) Res Mis;1) x| (1of)%(h g ) dh
s=(m+1)/2 Hé\H; n
t s—(m+2)/2
= vol(H_.\H,) Res ( f)gf([ 1 g ) |t da*t
RN (nrz) /2 IQK 07 n 1f8n) 1tla
Secondly, accounting (32) we get
gr
(35) jr*\ﬁ (1of)%7(h &) w ()
n “Hn :
vol(H_\H,) t s-{(m+2)/2
= L Res [ & (zof>gf<[ 1 _1]g ) 1ty %t
Res M(s;1) s=(m+2)/2 @A n t n
s=(m+1)/2
v [m/2] 1
_ ! m/2 m -1 m+1 .
= ldet M 2 vy Bplmpm) Me(29) U L(xgs (me1) 72)
(det T)1/2  r(m+1) t(me1) Dpl(m+3)/2)
m+1) /2 T{(m+1)/2Z) TRes t(s) B.((m+1)/2)
(2mn) Cos-1 T
1

£(m+2) g(m+1)”
X L(xgs (m43)/2) Lixgs (me1)/2)" 1
i3 -1, -k/2

x apla,o) 22? g(s) L(f;(m+2)/2) Bep(——)

(4) K r(k)
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g(m+2)
A L (mesy 2yt
’ ( we used (Hy, (30), (G )
B, (4n)_k F(k) o= n—(m+1)/2 ?m+11 An(m+1-—k)/2 F(?éTI%}Z)
[(m+1)/2]
X ‘ﬂl £(2)) L{f;(m+2)/2) ac(a,a)
J=

{ note det T = ZAn (det S8) ) .
-1
since pgF = C(z) pF for any F 1in sk(r*) and C(p) = C(z) ,

a
we obtain for any reduced pn = [a]
' 1

(36) B (2% = Cg p L(f5(m+2)/2) ag(a,a)

{ we used (B) and (35) ).

Put f’ = pozof - CS K L{f;(m+2)/2) £ . It belongs to the same
b .
eigen space as f and af,(a,u) = 0 for any reduce n . So f°’
mnust be 0 ( (E) ) and our theorem is now proved.
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