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Let (N,4),(P,3) be analytic manifolds and subanalytic
stratifications. We construct a canonical stratification for
generic proper ¢’ smooth mappings of N to P refining the
stratifications 4, 8 by a purely geometric method without the use
of Thom-Mather calculus. Ve prove also the topologicl

stabilization theorem for smooth mappings of stratified manifolds.

Canonical stratification for smooth mappings has been 6he of
fundamental tools in the singularity theory of mappings since
being initiated by Thom [17,18,191. This was constructed by
Mather {101 for generic smooth mappings by using his differential
calculus with the preparation theorem for smooth functions in a
series of papers. However no further advahced theory on this
method has been developed since then. In this paper we introduce
an elementary and geometric construction of a canonical
stratification for mappings of stratified manifolds without the

use of the unfolding theory and the preparation theorem. The



71

fundamenfal method used is partially seen in the papers [2,3] by
Fukuda and goes back three decades to the papers [17,18] written
by Thom, where the singularity theory of smooth mappings was
Einitiated with a number of brilliant ideas.

Our method uses only elementary calculus and applies to many
cases in the singularity theory, for which any finite determinacy
does not in general in the corresponding jet spaces. In this
paper all theorems are stated for mappings of subanalytic
stratified manifolds for the stratification problem of composed

mappings well as projections of subanalytic sets.

The idea of our construction can be seen already in the
papers (17,181, where Thom showed a program for a topological
‘stabilization (determinacy) theorem for map germs ‘as well as
varieties , and introduced many original idea§ such as the use of
Malgrange's preparafion theorem, Thom-Bordman symbols,  regular
stratifications, the isotopy - theorems (Theorems 1,2 (18
including a certain universality of the jet section now denoted
sJk (Lemma B). And in the final sections he indicated an sketch
to construct a canonical stratification of jet space by the
stabilization procedure. We inherit the mind of those papers but
reject the 1ideas of the wuse of preparation theorem, Bordman
symbols, and we realize the geometric construction of canonical
stratification (Steps (i) to (v) in 8§1.2, 1. 3).

Although the <idea presented by Thom [18] 1is completely
verified by our results, we need to follow an apparently different
way to prove the various ‘properties. We represent the program
here in a slightly modified form as follows. For simplicity we

discuss the canonical stratification of the infinite jet space
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J(n,p) of map germs of R",0 to RP,o0.
. . . n ‘K jod k
Consider the unfolding F : R™ x J'(n,p) =» R x J'(n,p)
defined by F(x,2) = (fz,(x),z) with the polynomial representatives

f, of 2. By the stratification theory of semialgebraic sets due

2
‘to Lojasiewicz

[81, we construct a natural stratification of F,

F: R" x 3%n,p) , g — R® x i*n,p> , g,
which is AF-regular at generic points. Define the semialgebraic

k

stratification ¢ of k-jet space by the "stratification-type" of

g , 9 at o X Jk in the source and target. A k-jet z is

n P
sufficient if there exists a neighbourhood U of 2z in the k-jet

space such that the restrictions of Q'Q

to the preimages nifk(U),
k £ 4 by the natural projection nQ,k of jet spaces ‘are induced
from ?'k. Call the smallest of such k the order of sufficienc

Denote the set of non-sufficient k-jets by,Zk and the restriction
of 9'k to the complement by 9k. These 9k+1 extend the preimages

of 9k

by the projection successively for kX = 1,2,... and define
the stratification ¢ of infinite jet space of finite type (locally
defined in finite jet space) bff the projective limit Z of Ek with

infinite codimension, . which we call

the first canonical stratification. The resulting stratification

¢ is locally but not globally semialgebraic since the order of
"sufficiency for jets in connected strata is not bounded.

In this paper ‘we first construct the restriction yt of ¢ to
the set of transversal jets (correct + transversality condition to
9 in [181), of which the complement has codimension > n (§1.2-1.4).
The restriction is semialgebraic defined in a finite jet_spacg by
the ¢onstruction in §1.2, 1.3, which we call

‘pre cangnical stratification.
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It is remarkable that the geometric construction induces the
RL-invariance and the S (= contact)-invariance (Theorem 3), which
were proved for the case of R™, RP with trivial stratification by
Mather [9] using a deep calculus with the preparation theorem.
Consider the natural inclusions Jk(n,p) C Jk(n+s,p+s) defined by
the trivial susbension. By the S-invariance pre canonical
stratifications of the térget induce stratifications %(s), s =
1,2,... , off subsets 2(s) with codimension > n + s, which fill up
the complement Zt to form the first canonical stratification 9.>

As seen in the above program és well as the statements in
Theoremé 3, 4, the problem is closely related to construction of a
canonical siratificaffon of map germs; For example recall that
in Mather's construction of the canonical stratification of
infinife‘jet space J(N,P) in [10], the well-known universality of
stable unfoldings of map  germs pléyed a key role. A stable
unfolding of 'a map germ contains all nearby singularities spring
out the original singularity as sectional map germs. This
univérsality enables us to construct canonical stratification Qf
those singularities simultaneously by giving a stratification for
a stable unfolding. |

The stabilization theorem [18] gi?es, roughly stating, a
natural stratification of generic map germs and decomposition of
infinite jet space of finite type by stratification
(tobological)—type of map germs. This leéds to the first step
toward a geometric construction of a canonical stratification of
jet space. The first half of the paper on the stabilization of
varieties (Theorém 3 [18]1) was Jjustified and developed to the
theory of regularities by Kub, Trotman [201]. The second half on

map germs has been recently explained by Fukuda [2,3] and du

- 4 -
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Plessis [14] independently by using Mather's  canonical

stratification of jet space,. Fukuda constructs a canonical

Whitney A-regular stratification for unstabie map germs by a

certain stabilization procedure (the first stabilization) of jets
k

by using the universality of sJ and Mather's canonical

stratification, and he proves the stabilization theorem with the
isotopy theorem with "carpeting function" (see [18]). Al though,
the quest toward the canonical stratification was neglected, being
familiarized to Mather's stratification. |

Independently of this tautological link of Thom-Mather theory
and the various works following after Thom's original ideas,
Varchenko [21]1 had already proved a similar stabilization theorem
for map germs by using the stratification theory of varieties.
However he mentioned it was not clear that his stratification gave
a natural stratification to‘lead the topological stability theorém
for global mappings.

Holding the program in mind, we aware that the method used by
Fukuda should apply to construct canonical stratifications of
all map germs as being purposed by Thom [17,18]. In our
construction the universafity of sJk replaces allover role of the
universal unfolding used by Mather. Our method unifies and
generalizes the above individual —results. '(The pfeparation
theorem was used by Thom in order to discuss the analytic
structure of the discriminant varieties. We instead use the
theory of subanalytic sets. The partition of mappings by Bordman
symbols does not satisfy the regularity conditions. We have then
io refine ihe partition by a canonical procedure. This. is
implicitly contained in Steps (i) to (iv) in §1.2.)

A complete pfoof of thé isotopy theorems wés later given by
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Thom [19] for Whitney B-regular stratified sets and mappings in a
form close to the present form seen in [4]1, to which We'refer in
this paper. To achieve the Whitney B-regularity in our geometric
coﬁstruction we épply a furthér stabilization procedure, namely

the second stabilization (§1.3).

space for subanalytic stratified manifolds. Topological

Another significance of the geometric construction no less
than the generality for stratified manifolds is the naturality
with respect to the Thom-Mather theory. We introduce in §0.2 the
RL and S-(contact) equivalence relations for map germs of
stratified manifolds. The invariances of the stratification
unéer those relations follows from the construction. This tells
how two independent methods are correlated wiih each other.
Actually the stratification geometrically constructed coincides
with that due to Mather for manifolds with trivial stratifications.

Finally we refer to some related‘ works. By using the
subanalytic-set theory due to Hironaka [61], triangulation of
subanalytic mappings <(of which the graphs are subanalytic) is
constructed by Hardt [5], Teissier [16] and Denkowska, kKurdyka
[231. On the other hand Verona [22] constructs triangulations of
generic stratified mappings of depth one. These together with
our stratification suggest that generic cr mappings of

pre-subanalytic stratifiéd manifolds may be triangulable.
§ 0. Definitions and the main results
0.1 Stratification of global mappings

In this paper we suppose manifolds are paracompact, real
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analytic, possibly have corners (see §1.4). strgtification are
subanalytic: locally a finite union of differences of iméges of
proper analytic mappings;  and regular means the Whitnéy
B~regularity unless otherwise mentioned. VIn stating global
results, the supports stratifications (the unions of closures of
strata with pos;tive codimension) are compact for simplicify.
For the basic notions of stratification of mappings, the readers
are suggested to refer to the book [41, the paper [10]; and for
subanalytic sets, the paper [61].

Families of mappings fu’ gu:(N,d) -+ (P,83) of stratified
manifolds»with the parameter u in a manifold Q are topblogigallz
conjugate (topologically egquivalent) if there exists continuous
families of homeqmorhpisms Py of (N,d), wu qf (P,8) covering a
homeomorphism X of Q such that @uofu=gu°wu for all u. We say an
£ € chN,P) is topologically stable if the topological equivalence

class 0(1) is a neighbourhood of f in the Whitney topology, and we

say f is homotopically stable is there exists a neighbourhood ¢ of

f such that any family gu s gu = f within O is topologically
0

trivial: conjugate with the trivial family f& = f‘of f.

A stratification of a mapping f:N - P is a pair (QN,QP) of

stratifications of N, P such that f restricts on each stratum X of

QN to a submersion into some stratum Y of QP. wWhen N, P are
previously stratified by 4, 38, we suppose that QN’ 9P refine 4, 3
respectively. We say 9N as well as the pair (QN,QP) is

Af-regular if the following condition .is satisfied : if a sequence
Y5 in a stratum Y € QN is convergent to an X in another X € 9N and

ker d(le)y is convergent to a subspace T c,TxN, then ker d(f[X)X
i

c T. This regularity condition says that roughly the fibers of f
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are "almost parallel" in a certain sense so that f possesses an
analogy of the ,covering homotopy property respecting the

stratifications.

The main global theorem is

Theorem 1 (poological stability theorem). Let (N",d), (PP,%)
be subanalytic stratified manifolds and assume that the supports
of 4 is comﬁact. Then there exists a positive integer k(N,4,B) <
« guch that

(1) k is finite if 4 is semialgebraic with respect to suitable
coordinate open neighbourhoods of N (fof the case of non compact
supbort)

(2) There exists an open dense subset ¥ in the proper c’ mapping
space c;rm,m, K(N,4,P) < r or r = k = ® with the Whitney
topology with the following properties. For any c’ smooth family
fﬁ in ¥ parametrized by u in a manifold Q, the map F = (fu,u):N X
Q@ » P x Q admits ¢ 7¥2 smooth («c**'! smooth if p = 1)
stratifications ¢ ,

- NXQ

ngQ refining 4 X Q, 8 X Q such that the second projection of P X

Q onto Q is a stratified submersion. And the set Z(FldxQ) of
those (x,u) € N X Q where F is not a stratified submersion is a
Q(F) embedded in strata A of 4 with
positive codimension. In particular mappings in F are

union of some strata X of ng

homotopically stable with respect to 4, B by Thom's second isotopy

theorem.

Subanalytic subsets ‘admit subanalytic stratifications. So

we obtain
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Corollary 2 (Topological stability theorem for mappings of
subanalytic sets). Let X ¢ N", Y c PP be subanalytic subsets of
real analytic manifolds. If X is compact, there exists an open
dense subset # c C_ (N,P) such that C* smooth families £ :N » P, u

€ Q in & admit c” smooth AF-regular stratifications (¢ F

NxQ’nyQ)’
= (fu,u), X X Q, Y X Q are unions of strata and the second
-~ projection of nyQ onto Q@ is a submersion. In particular f in ¥
are homotopically stable with respect to X and Y : any family fu
close to the trivial family f' = fu is actually conjugate with f°
by continuous families of homeomorphisms respecting X and Y.

The above theorem is proved by using the local properties of
'pre canonical stratification of jet space in Theorems 3,4 together

with an elementary argument of transversality of multi jet

sections.

0.2 Pre canonical and the first canonical stratifications

Let 4, 8 be stratifications of manifolds N, P. Map. germs f

N,x » P,y and g : N,x' -» P,y' are RL-equivalent with respect to

4, B if there exists germs of real analytic diffeomorphisms ¢

N,x » N,x', ¥ : P,y » P,y' such that ¢(d) = 4 , ¥(3) = 8 and ¢ - f
= g o ¥. The S-equivalence relation of map germs of {NXR$,AXRS)
to (Pst,ﬂst) for s = 0,1,... is generated by the RL-equivalence
relations with respect to 4 x R, 8 x R® and the relation (fu,o’U)

~ (f ,u,v) of unfoldings

u,Vv
(f, ,»w : NxR®=PxR, u e R®,
s
(£, yoW V) 2 N X RS* 5 p x RS*E , ueRs, ve R

of map germs fo 0 £s , t. By definition the S-equivalence

. O ’
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class of an unfolding (fu,u) : N x R® » P x R® is determined by
that of fo ¢ N = P. The S-equivalence -relation coincides with
the contact = (X-) equivalence defined by Mather when the
stratifications are trivial at least for X-finite germs. |

Germs of stratifications (d4,x), (4',x') of N, N' are
S-equivalent if the germs of 4 x R, 8 x R® at (x,0), (x',0) are
real analytically diffeomorphic for some‘s and s'.

Two r-jets z, z' € Jr(N,P) are RL-equivalent (respectively
S-equivalent) if they are represented by c’ smooth germs which are
RL-equivalent (S-equivalent) in the above sense with real analytic
diffeomorphisms.

These equivalence relations are defined with real analytic
diffeomorphisms in order to make the argument in this paper simple.
Note that we may replace them by cF diffeomorphisms with a
sufficiently large r when 4 is semialgebraic and has compact
support (see also §1.5).

For a stratification 4 of N and a mapping f : N ». P, we
define the singular point set Z(fld4) to be the set of those x € N
where f is not a 'stratified submersion. If 4 is Whitney
A-regular then XZ(fid) is closed. In this paper we always assume
that the restriction of f to the singular point set is
finite-to-one for map germs f ¢ N,x - P,y as well as global
mappings. When f is multi transversal with respect to a
stratification of N,x, for example the trivial stratification or

-1

the canonical stratification ?f = Jf "(¥,) in Theorems 3, 4, the

t
restriction satisfies this condition. Such a map germ admits a
representative ¥ : U - V defined on open neighbourhoods U, V of x,
y such that the restriction TIZ(Tld) is proper, finite-to one and

T(¥Id) n T lo) = x Cor emptyd. The image ¥(Z(Fld)) is then

--10 -~
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closed and its germ at y is independent of the. choice of the
representative, so denoted f(Z(fld)). By Theorems 3,4, if Jf.is
transversal to the canonical stratification ¥ of jet space, then
Z(fld) is a union of some strata of ¢. on each stratum of which f
restricts to a 1local submersion. The direct image f*yf is the
germ of partition of P at y characterized similar. to those of
constructible sheaves as follows. The germ Yy, at y' of Y € f*yf

containing y' is “the intersection Y_, = N f(X_,). Here
v f(x=y' X

Xx' siand for the germs at x' of the stratum X containing x'.
| Ih‘this paper J(N,P) denotes the infinite jet space, on which
the topology is 1induced from the projections onto finite jet
spaces.
A stratification ¥ of complement of a subset X c JQ(N,P) is
of finite type if there exists upper semicontinuous functioné 0 <
k ¢ k £ » (k is finite and k is defined off ) called the

local order, the order of ¢ with the following properties.

(1> ¢, Z are k-sufficient : for any 2z € J(N,P) there exist a

stratification g, a subset P and functions k',k" on a

neighbourhood U of zk in JK(Z)(N,P) from which the restrictions of
= -1 . . .

¢, Z, k, k to nk(z)(U) are induced via T () Here T, is the

projection of the infinite jet space onto the k(z)-jet space and

zk the image of z.

(é) ¥ is locally k-sufficient : for any z € ¢ there exist a
k

neighbourhood'U' c U of 2z, a stratification " and a function k"

on a neighbourhood U" of zk from which the restrictions of ¢, k to

U' are 1nducgd v;a the prOJectl?n ni(z)'
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We say ¥ is of weakly finite type if Condition (2) and the

following condition holds

~1

(1)' ¢ is induced from ¢' on nk QD) We call the r-jet term

zr of an infinite jet 2z with k(z) < r a sufficient r-jet and
define k(zr) = k(z), and we denote the project of the germs of ¢
to r-jet space simply by the same ¢. By the above local property
(2) the transversality of jet sections Jf to a stratum X at a jet
Ck(z)

2z makes a sense for smooth mappings as their i(z)-jet

sections are C1 smooth. We then say simply, Jf is transversal to

X in this paper without reference.

Theorem 3 <(Pre canonical stratification) Let  (N,d), (P,3) be
subanalytic stratified manifolds. Then there exist a subanalytic
subset Zt c Jm(N,P) of codimension > n + 1 and a subanalytic
stratification ¥, of the complement of finite type with finite

order (k < ) which possess the following properties.

(1y ¢

£ Zt are RL-invarijant : if sufficient r-jets 2z, 2z' are

RL-equivalent, then k(z) = k'(z) and the equivalence induces a
real analytic diffeomorphism of r-jet space which preserves the

germs of 9t . Et at 2z, z'.

(2) 9t is partially S-invariant : if sufficient r-jets z, z' € Qt
are S-equivalent, then the germs of ¢, at z, z', 4 at the sources

and 8 at the targets are respectively S-equivalent.

(3) Let £ : N,x > P,y , uc€ R® be a c' smooth unfolding with jet
z = Jrfo(x) in'a stratum X of ¥, k(z) < r and let F = (f ,u) : N

x R® » P x RS. Then the family of jet section JF = (qu) : N X

- 12 -
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R® - J(N,P) is transversal to yt at (x,0) and the  induced

1 r-k(z)

stratification 9F = JF (yt) is a Whitney regular C smooth
stratification refining 4 x R®. The singular point set Z(F|d4xR%)
is the union of the strata X of 9f embedded in some A x R® , A e 4
with positive codimension. On those strata F restricts to
immersions and the images are in general position (F is multi
transversal with respect to QF). The direct 1image and the

intersection of its preimage give the Cr_k(Z) smooth AF-regular

stratification of F
. . *
(i F : 9F Nn F F*QF _ F*yF
The direct image F*gF is transversal to # x R® and the transversal

intersection

(ii) F: 9,0 F(F9.0 RS — F 9. n HR®

is Ag-regular. The restriction Fl JF 1(X) is an immersion,
SFIdxR®) n FIRGF L0y = TF1 and 10, FAFLa0) are
the strata containing (x,0), (x',0). The second projections of

the stratifications in (ii) onto RS are stratified submersions and

induce the Af -regular stratification
u

*
f 9 N fu(fu*g

u £ ni‘i)—'fu*y’ n3

u fu fu

of fu on each fibers N X u, P X u.

In 81 we give the construction of pre canonical

stratification.’ In the proof of Theorems 3; 4, Lemmas A, B play
allover role. An S-equivalence class of an unfolding F = (fu,u)
N x RS  » P x R® at (x,0) is determined by that of folat X. By

the S-invariance the germ of Qt(N x RS, P x R®) at JF(x,0) induces -

a germ of stratification of J(N,P) at Jfo(x) denoted‘n*yt(N X RS,

~13_
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P x RS). These germs for s = 1,2,... glue up to extend the
9t(N,P) to the stratifications ¢(s) and the first canonical
stratification ¢ in the following theorem. The full detail is

available in §3.

Theorem 4 (the first canonical stratification of jet space) Let
(N,4), (P,8) be subanalytic stratifiéd manifolds. Then there
exist subanalytic stratifications ¥(s) of weakly finite type with
.finite order k of complements of subanalytic subsets Z(s)c Jm(N.P)
of codimension 2 n + s + 1 for s = 0,1,... , which possess the

following properties.

(1) (9(0),Z(0)) is pre canonical stratification. Let ks be the

orders for the stratifications ¢(s). Then ks is increasing on s,
n (Z(s+1)) c Z(s) ,
ks+1(2)ks(2)
o kg -1
as germs at z 7, and T X ($(s)) is a restriction of ¥(s+1) on
: s+17s

k

which the order ks is induced from ks as germs at 2 s for all =z

+1

and s = 0,1,...

(2) (i) ¥(s), Z(s) are RL-invariant : if sufficient r-jets z, z'
are RL-equivalent, then ks(z) = ks(z') and the germs of Y(s), Z(s)
at 'z, z', 4 at the sources, B at the targets of 2z, z' are
respectively real analytically diffeomorphic.

(ii) 9(s) are partially S-invariant : if two r-jets 2z, 2' are

S-equivalent, 2z € ¢(s) and z is sufficient,' then z' is a
sufficient r-jet in an $(s+t) and the germs of Y(s+t) at z, z', d
at the sources and 3 at the targets of 2z, z' are S-equivalent
respectively.

(3) 1f a family of jet sections JF = (Jf ) : N X RS - J(N,P) of a

- 14 -
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Crsmooth family fu : N,x = P,yu , u € Rt is transversal to $(s) at
z for (x,0) and k(z) < r. Then the statements in Theorem 3, (3)

holds except for the final paragraph.

(4) The prqjective limits of XZ(s), ¥%(s) as s tends to infinity
give a (pro-locally subanalytic) subset X of J(N,P) with infinite
codimension and a (locally) subanalytic stratification ¢ ‘of the

complement of weakly finite type by Property (2).

We call the stratification ¢ in (4) the first canonical

stratification. From the partial S-invariance (2)(ii) it follows

that

(5) ¥ is S-invariant : if infinite jets 2z, 2' are S-equivalent, then
the germs of ¥, X at z, z', the germs of 4 at the sources, 3 at
the targets of Z, A are respectively S-equivalent. In
particular ¢, =

‘are locally analytically triviai over P is &8 is trivial, and

trivial over N X P if 4 is also trivial.

(6) Let 9" denote the union of the strata of ¢ with codimension <
n. (Then ¢" is of finite type and the set of those 2z € 9“ for
any representative f of which the jet section Jf is transversal to

n

s (hence to ¢) is an open dense subset of J(N,P), on which 9“

restricts to give pre canonical stratification Qt(N,d,P,ﬁ).
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8§1. Geometric coristruction of pre canonical stratification.
1.1 Preliminaries and Lemmas A, B.

For a smooth map germ f : R",x -~ RP,t(x) 1let rif denote the

Taylor polynomial.mapping of f at x of order £.

Let m, g be‘positive integers. The m-universal g-jet section

39 ®M™ x JERM,RP)  —s - JIRM,RPHM

m
is defined by J%Cx.y, Yty = ? lexyy. . For a
m i’? X i”7i=1,...,m °
subset T of JERM,RP), k < £ let RM-x)"-a@RM™ X, “ii(Z) denote

the fibre product of the bundle over R" with fibre (R"-x)™ x
A(Rn)m on x € Rn and the projection of ni;(z) onto the .sources,
A(R™™ being the generalized diagonal set of (RMH™.  We denote

the restriction of qu to this fibre pfoduct by qu

Lemma A (due to Fukuda [2,3D If k + m(q+1) £ & , then qu is

a submersion for any submanifold I c Jk(Rn.Rp).

Lemma B (The universality of qu due to Fukuda 11,21 and Thom

, u € R® be a ¢c' smooth family of map

germs and £ = k + m(g+l) < 1. Then. there exists a Cr_ﬁ smooth

. pn p
(181 Let £ : R Xy 2 R Yy

family of sections

n,m n.m -1,.k
Qf (R » RH7 x an(J fu(xu)) ,

u

N | . .
qu(xu,...,xu)‘- J {u(xu)’xu""’xw) of which the first factor

is invariant under the premutations of the sources (xl,...,xm) €

_(Rn)m, such that the following diagram commutes,



86

qQ ., n.m [}
mJ : (R xJ

4

(R™™ Q
\

q . n.m s
(mJ fu) : (R™H™ x ‘R

(R",R?) ——— JER",R®H"

Proof of Lemmas A, B. We assume s = O for simplicity. It is
enough to prove for the case p = 1. So let f.: Rn,xo - R,YO be a

Cr smooth function defined on a convex neighbourhood U of xo € Rn

and xl....;xm € U. We begin writing f as
A.
*) ERNEE S, caxex) 0,
o} |10|=k+1 0 .
where AO = (Aé,...,xg) runs over the set of multi indices of order

k+1l., - Write similarly as

q 0 1
(%) f. = t_ f + > f (X=X ) e (x-%x,)
1 Yoo *ito iajlzas1 Rots 0 1
and substitute (%), for fk' in (x), . Then we obtain
0
X A X
£ = ri £+ 3 Tdg cxex) O, 3 £, (xmx) 0~(x-x1) 1
0 X 170 PSP § 071
0 0’1
Repeating this for the X2""’Xm rest, we obtain
A
f = ri £+ 2 ti £, (x-x) o,
0 X 1 "1
0
A A
q . (e 0, (x=
+ R > R txmflo"‘lm (x-x_) cor (X=X )
R .
We define the section Qf by
Qf(xl,...,xm) =
A X
-4 e 0, ren m o
7 £- 2 £, 5 xmx) R C St SR EC N SRR
AO”"’lm 0 m

Clearly the diagram in Lemma B commutes as the above second term

P S To show the Cr_Q smoothness we look at

is q-flat at x1 m
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the argument closer. The coefficients fx 2 can be
0° Xy

represented as

: A
1 1 .q i , - a
IO T.. IO 97/ 8x f*o"‘*i—l(x + t(x xi)) dt .

This shows the smoothness by induction.

Conversely the commutativity of the diagram tells that ajq

for X = (ka(xo)} is submersive as Qf(xl""’xm) since there

exists a family fu , fo = f with a constant k-jet at xo but the
. q . . :

multi jet mJ fu is submersive at (o,xl,...,xm).

Taking the average of the first factor of Qf with respect the
‘'permutations of xl,...,xm, we - may assume the first factor is

invariant. This completes the proof of Lemmas A, B.
1.2 The first stabilization

We seek to construct the strgtification yt locally at a jet z.
So we first assume that N = R", P = RP and the stratifications are
trivial. The construction falls into the steps of the .induction
on the hierarchy of the strata. - Namely we vassume that there
exist a germ of subanalytic subset Ea+1 c Jk(Rn,Rp), 0<a+1¢<0pD
at 2z with codimension 2= max{O,n-p} + a + 1 and a germ of
subanalytic stratification Qa of the complement by strata with
codimension 0 and
max{0,n-p} + i , i = 1,...,a which possess the properties in
Theorem Sf » we then seek to consfruct a stratum XA (possiblly a
union of disconnected components ) open dense in each connécted

component of 2a+ - sing Za+1 of'codimension max{0,n-p} + a + 1.

1 +

We define 9a+1 , Za+2 t? the the union of 9a and those strata, and

- 18 -
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its complement (for the detail see §1.é).' Here sing Y denotes
the set of those y € Y where Y is not an analytic submanifold of
maximal dimension. By a result due to Tamm [18] sing Y is
subanalytic for subanalytic sets Y. The induction begins with

the set of singular (non-full rank) jets X c Jl(Rn.Rp)

max{l,p-n+1}

max{0,p-n}’ and stops when 9p is constructed.

We then define Qt = 9p .

and the complement ¢

We begin with a connected component X of Za+1 - sing Z

a+l a+l

of codimension max{0,n-p} + a + 1. Let k(z) be the order of jet
space in which ya and 2a+1 are defined, and let k(z), z E.ya, be
the smallest order in which 9a,is locally defined at 2. (For the
definition of these orders, see §0.2. Note that k(z) is conétant

on connected components by analyticity.)

1 . \
Let Xa+1 c Xa+1 be the set of those jets z' € Xa+1 such that

(i) 93 is Whitney regular over Xa on a neighbourhood of 2°

+1
(This can be omitted. The theorems are proved by the other
conditions. The regularity follows from Theorem 3.)
(ii) for any representative f of which the jet section Jk(Z)f is
transversal to Xa+1 and
(iiid £ | Xa+1(f) is an immersion
_ k(z),.,.-1 .
Here Xa+1(f) = (J f) (Xb). By the transversality theorem due
to Mather (Theorem 6.1 [9]); we See 1Xa+1 is locally defined in
the jet space of the order k(z) + 1 at z and codim XA+1 < codim
X - Ix |
a+l a+1 , ; _ , .
Let Y = Y, X cel X Ym be an m-fold fibre product of

1 RP }RP
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strata of 93 (including possiblly Xa+1 itself). By the

RL-invariance Y, are locally trivial over R®, so the Y is smooth.
By Lemma A the universal jet section
k(z) IXQ

. n- m—
:RT-xT-A X XD

mj —— Jk(z)(Rn’Rp‘)m

is submersive hence transversal to Y for a sufficiently large ¢ >

0(Y) = k(z) + m(k(z)+1), where 144 = nol
1k (z)

1 .
a+l ( Xa+1). We define
the project Xi of the first stratum XA of 9a

Lo 1.4
‘1 open dense in Xa+1

by

1,4

'] 1.4 -
3 B ( xa+1,m 'm

(iv) XA = xa+1,m

Here E(V,W) denotes the closure of the set B(V,W) of those x € V

where W is not Whitney B-regular over V, 1X§+1,m denotes the set
of those (z2',x',...,x') € 1X§+1 , X' being the source of z', which
is naturally identified with 1X§+1, and Y runs over the finite set
of fibre kprodugts Y1 XRP N XRP Ym satiéfying one of the

following conditions

(1> (accessible) codim Y, = max{(0,n-p} + ¢, , ¢, < b, X ¢ ?i
(2) (weakly accessible) 2 < m, b £ I ¢, » X, © \_{i and any

partial sum X' ci is strictly smaller than a + 1

(3) (Weakly accessible) m =2, ¢, = a + 1, ¢

1 < .a+1, X cyY

a+l i

2

The resulting stratum XA is defined in the jet space of the

order £ = 2(z) the maximum of &(Y) for those Y.

1.3 The second stabilization and the global strata

- 20 -
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We can show that a map germ f with a jet 2 in Xl admits the

. A
canohical A-regular stratification (yf N f*f*gf R f*yf). We now
impose the B—regularity of the strafifiéatfon by stabilizing the
.jet z further in a jet space of a sufficiently high order 4r > 9
in ‘the same manner as the first stabilization.

We begin the second stabilization with a f'~jet z € x%' and

define the germ of the stratum XQ' c Xi' ‘at Z by deleting
non~-stabilized jets. 4

The polynomial representatives fz' of f'-jets 2z' restricts to
proper and fini{e-to—one mappingé on the singular point sets
E(fz.ld) singular point sets Z(fz,ld), fz, being restricted to
suitable neighbourhoods of the source and the target of z°'. So

the above canonical stratifications for fzg are subanalytic and

the totality of those form a subanalytic canonical stratification

g N F*F*yF , F,9g) of the unfolding F = (f,,,2') R" x xf;' >
Rp X Xi' (for definition, see 8§3). The diagonal sets XAs , xAt
respectively in the source and the target of F are the sets of
those (x',2'), (y',2') with 2' € Xi' , X', ¥' being the source and
the target of 2'. These éets are naturally identified wfth Xi’.

We define the germ of the project of the stratum X'to 4'-jet space

at z by

L L+ _ 3 * L5 *
v) X = X BC X, » ¥ N F F*yF ) BC Xpy » F g

A )

F

and the orders k(z) and k(z) by £' and the order for the ¥,.

To make the <construction explicit at this stage, we give
another definition below. The equivalence of these two

definitions is diééussed in the following remark.
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let ¥ = (.3 N e ’RMH" x ¥

n A be as in the first

stabilization (ia(z) is the local order for Qa) and consider the

[ N L]
strata Y(F) = P(¥) ¢ R" x xﬁ ., FY(F) c RP x xi of the above

stratification of F, where P : (RM™ x xi’ » R" x xi' is given
with the projection onto the first Rn. The germ of the stratum

XQ at 2 is the set of those z' € Xi for which Y(F) is regular

over X FY(F) is regular over X respectively on

As ? At
neighbourhoods of 2z for the strata Y accessible or weakly
accessible to X (see Conditions (i) - (iii) in §1.2).

We define the order k (z) for 9a+1 by thelﬂ' above used and

a+l
the local order ia+l(z) by the order ka for 9a for infinite jets z
in the stratum X = ni%(XQ').

It is a routine exercise to éhow that the resulting germ of
strata are subanalytic and semialgebraic for semialgebraic 4. If
4 is semialgebraic, the order &' ig bounded and the stratification

is globally constructed in a jet space of a finite order.

Remark that the order ¢' is an upper semicontinuous function

of z. An explicit estimate of the order is given by the geometry
of the canonical stratification of F. The above construction
uses the indefinite £', but the resulting stratum is independent
of the &', We discuss this in the fbllowing remark.

Remark Consider the stratavXA(F) = (le)-l(X%) » FX, (F) (tF

denotes the family of jet sections Jgfz, ) of the above canonical

stratification of F. Theorem 3 applies to the germs >of F at
(x',z2') € XA(F) to say that the the stratification is regular over
XA(F), FXA(F) at (x',z'S, F(x',2"'). Clearly this implies the

regularities used in thersecond presentation of the stratum.
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To show the. independence of the stratum from the order '

above used, let Qz > ll = §' and consider two unfoldfng Fi with
Q.
i e . *
the parameter spages X, and the stratifications (9Fin F.Fo, Fi’
Fi*yF )N Theorem 3 says that if the stratification is regular
i . .
for i = 1 then it is so for i = 2. Conversely assume the
: n 21 n
regularity for i = 2, The natural inclusions R° x X~ < R x
2, 4, L,
X -, Rp x X c R x X are respectively transversal to the

stratifications of the source and»the target for F, and induce the

2
stratification of Fl' Thus the fegularity holds for i = 1.

This completes the proof of the independence.

By the above independence and the upper semicontinuity of the
order & , the germs of the stratum above constructed glue up
together to give a global stratum X in the infinite jet space.
The orders k, k are then defined by those for germs. The orders
are upper semicontinuous, and if 'd is semialgebraic, bounded and X
is semialgebraic. |

Let N, P be analytic manifolds and (Ui)’ {Vj} be coordinate open
neighbourhoods. The first and the second stabiliiation
procedures are compatible with analytic coordinate chanée of the
source and the target, so the stratifications of J(Ui,Vj) glue up

and give a global stratification Qt of J(N,P) of finite type.
1.4 Non trivial 4, 3

First we show the reduction to the case of trivial 3. Let

4, B be subanalytic stratifications of N, P. Assume that there



exists the stratification yt(N,d,P)‘with the properties in Theorem

3 for trivial 3. Then by the RL-invariance (Theorem 3 (2)), ¢

t
is trivial over P, so the set F of mappings f of N to P for which
¥t is transversal to ¢, Nn %, in other words fvlef_l(yt) is
transversal to 8 is_open dense in the mappings space. Since the
strata of ¢ are chally defined in k-jet ’space, this

t
transversality at x € N depends only on the k(Jf(x))~jets of f at

X. We denote the set of those transversal k-jets by 0, which is
subanalytic and open dense in 9t by the density of Z. We defiﬁe
yt(N’d,P,ﬁ) by the restriction of 9t to 0, and Zt(N,d,P,ﬁ) by its
complement. By the density of #, codim Zt exceeds n.

By the RL-invariance (Theorem 3 (2)), ‘it is enough to
construct fdr N = R", P = RP and subanalytic stratific#tion 4 of
R™. The construction uses the same induction as in 8§1.2, 1.3.
So assuming that there exists the stratification 'ya of the

complement of Z , we construct strata X open dense in connected

a+l
components of smdoth parts of Za+1 N A, A € 4 with codimension
max{0,n-p} + a + 1. The first stabilization remains the same
form as for trivial 4. In the second stabilization and the proof
of Theorem 3, We use the various lojasiewicz exponents of the
tangent spaces of the stratification of F. Those orders -are
similarly defined for semialgebraic 4 by the well-known result due
to Lojasiewicz [8], which are finite, and the stratification gt is
constructed in a finite jet space. For subanaiytic 4, those
orders ahd exponents afe given by the generalization of the works
of onasiewicz for subanalytic sets by Bochnak and Risler [11].

The resulting stratification 9t is in general of finite type but

no longer bounded for subanalytic case.
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1.5 A generalization

The essential conditions used in our construction in the

proceeding sections is the subanalyticity of 9a y = and the

a+1l

independence of the singular point‘set sing X from the choice

a+l

of local coordinates of N, P. Now define sing1 Za+1 to be the

set of those 2z € X

. i 3
asl where Za+1 is not a C° smooth submanifold of

codimension max{O,n-p} + a + 1. Clearly this: set is invariant
under C' smooth coordinate transformations of jet space hence

k(z)+i

under C smooth coordinate transformations of N, P. By Tamm

[15] it is known that sing1 z is subanalytic when za;l is so,

a+l
and then we can define the stratum X open dense in 2a+1 - sing]
Za+1 by the same stabilization procedures in §1.2, 1.3. Denote
the resulting pre canonical stratification by Qi . By the above

i

t is invariant

invariance of sing1 z the stratification ¢

a+l °

under Ck+l smooth local coordinate transformations of 4, B, where

k is the local order for ¢ This invariance suggests to

£
generalize the notion of subanalytic stratified manifolds as

follows.

r

We call a subset X © M of a C smooth manifold is

pre_subanalytic if there exists a coordinate open covering (Ui} of

M such that each intersection X N Ui is subanalytic. And the we
suppose that the coordinate system {Ui) is fixed and that‘ of
Jk(N,P) is induced from those of N, P. Let (N,4), (P,8) be pre
subanalytic stratified cr manifolds, and {Ui)' (Vj} the coordinate
systems. By the above invarianée the stratification

g,CU; 41UV, 8IV) glue together by c’ transition function if

k(z) + i £ r for all jet z € J(Ui’vj) and all i, j. (The order k
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depends only on 4.) If 4 has compact support and :dIUi are
semialgebraic, the order k is bounded and we allow finite r. For
general 4, we require r = =,

The resulting stratification ¢, of JT(N,P) possesses
properties similar to those in Theorems 3, 4. The important
difference arising here is that the strata are subanalytic and Ci

smooth but not real analytic.
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