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1. INTRODUCTION.

As a numerical method for solving a Dirichlet boundary value
problem such as

—Au+u=0 in Q, (1.1)

u=g on 01, (1.2)

where Q is a bounded domain in R? with the C2-boundary 9
the boundary element method is convenient to obtain the dis-
cretized equation and to solve. When we formulate an integral
equation on the boundary with the single layer potential repre-
sentation of the function which satisfies the equation (1.1), we
have to deal with the first kind Fredoholm integral equation. In
this case it is important to prove that the integral equation has
a unique solution in an appropriate Sobolev space. The discus-
sion of the integral equation about Laplace equation was pre-
sented by Nedelec and Planchard®. He proved that a bilinear
form arising from a Dirichlet problem for Laplace equation in R®
is H~1/2(0Q)-elliptic. Then a variational problem on the bound-
ary corresponding to the problem has a unique solution. For the
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case in R? Le Roux® presented same results to Nedelec and Plan-
chard. The same results for Laplace equation was also presented
by Okamoto’ with a different method from Nedelec and Plan-
chard’s method. Applications of the boundary element method
to the equation such as (1.1) appear in formulations of numeri-
cal methods for parabolic partial differential equations, for exam-
ple, steady convective diffusion problems?, Laplace transformed
equations of transient diffusion equations, semi-discrete equation
in time for transient diffusion equations'0, and convective diffu-
sion problems with first order reaction®. Furthermore in some
linearizations with quasi-Newton methods for mildly non-linear
partial differential equations®, we can find some examples.
So we are interested in the boundary element method for the
problem (1.1-2). It are shown that the integral equation on the
boundary corresponding to the problem (1.1-2) has a unique solu-
tion in H~1/2(9Q), that when we discretize the integral equation
by Galerkin method the Galerkin solution converge to the exact
solution and that we obtain H'(Q2) and L?*(2)-error estimates.
To this end the author gives a different way from Nedelec and

Planchard. The present results are based on the results presented
by Babuska! and Blair?.

2. INTEGRAL EQUATION.

The single layer potential representation of solution to the
equation (1.1) is expressed as

V@)= 5§ Kolle - uDplw)ds(o), (2.1)

where x = (21, %2), ¥y = (y1,¥2) and |z —y| is the distance between
the points x and y, K¢ denotes the second kind modified Bessel
function which is a fundamental solution for the equation (1.1), p
is a density function defined on the boundary and s denotes the
‘arc length of the boundary. Here we denote = the coordinate of
the point in 2. It is obvious that

—AU(z) + U(z) = 0. | (2.2)
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~ The in’tegral equation on the boundary for the problem (1.1-2) :

1

5= P Kollz —yl)p(y)ds(y) = g(=), | (2.3)
aQ

is given as tending the internal point x to the point z on the
boundary. To discuss the problem in the weak sense it is natural
that we consider the integral equation (2.3) in the Sobolev space
H~1/2(9Q). The reason is as follow. Here the p is the gap cross
the boundary such as -

in which ¢(z);, and ¢(z)., denote the outer normal derivatives
defined by the limiting processes from the internal region and
external region, respectively. When we consider the weak solution
for the problem its flux ¢ € H~!/2(89). Then p is too. From the
integral equation (2.3) we obtain the variational problem on the
boundary in the form (P)

find p € H~1/2(89Q) such as

(Kp,r) =(g,7), (2.5)
for allvr € H-'/2(3RQ), in which g € H'/%(6Q).

Here
(u,v) -——f uvds,
an

Kp=50 §_Kollo - slpl)ds(o)

In the next section we shall prove that the bilinear form (Kp, p)
is H=1/2 — elliptic.

and

3. EXISTENCE OF SOLUTION FOR (P).

The main result in this section is as follow:

THEOREM 1. There exists uniqe solution for the problem (P).

The following lemma presented by Babuska is necessary in
order to prove theorem 1.
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LEMMA 1. Let h € H™'/2(8Q) and u be a solution of the
Neumann problem for the equation —Au+u =00nQ, du/On =h
on 80 in H'(Y). There exists constants 0 < C; < Ca < oo such
that

C’lf huds <|| h ||2_1/2,395 sz huds, (3.1)
on 80

and

lu |2 o= f huds. (3.2)
an

Proof. See [1]

Throughout this paper || v ||k,0 and || v ||k,00 denote the
norms of the Sobolev spaces H*(Q2) and H*(99), respectively. n is
the outer normal on the boundary. We denote n' the outer normal
on the boundary with respect to the exterior region ¢ = R — ()
in which Q is the closure of . In order to discuss fluently it is

necessary to define sub-spaces G({2) and G(Q) in HY(Q).

G() = {ue H'(Q)| - Au+u=0inQ in the weak sense}.

G(Q) = {ulu = Kp,p € H/2(Q)}.

We have the following lemma which is similar to the lemma 1.

LEMMA 2. Let h € H™'/2(8Q) and u be a solution of the

Neumann problem for the equation —Au+u = 0 on Q°, u/dn’ =
h on 0N in G(N2°). There exists constants 0 < C; < C3 < oo such
that

Cl f huds S” h ||_1/2,3g§ Cgf huds, (3.3)
onN ' an
and |
lu |2 ge= j{ huds. (3.4)
: on

Proof. The Neumann problem has a solution in G(2)¢. The
statement (3.4) follows immediately from the definition of a weak
solution on 2°. Then the proof of the lemma is done with same
way to the proof of the lemma 1.
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LEMMA 3. Let the operator Q : H*’(BQ) - H"(@Q) be defined
as -

Q=g+ 5 Kol — uo(u)ds(s), (42)

Then the operator is bounded in H~/2(0Q), that is, there exists,
respectively, a positive constant such that

QP —1/2,60 < Cl|pl|-1/2,00-
Proof. In order to prove this lemma we have to prove that

(@p,¥) < C|pll-1/2,00ll%]l1/2,00-

Let Q* be the adjoint of Q. We have

(QPHP) = (P, Q*¢> < ”P”—1/2,89||Q*¢”1/2,an~
If we prove that
Ipll-1/2,02 1@ ll1/2,00 < Cllpll-1/2,00ll¥l1/2,00

the proof of this lemma is complete. To this end, by using the
trace theorem we have that there exists a function w, w €

H?(Q) such as
|Q*%]1/2,60 < Cllwl2,a,

|¥ll1/2,00 < C|l©||2,0-

Since there exists a positive constant C’ such as

lwllz,0 < C'll@]|2,0,
we have the inequality we need by using the invers trace theorem.
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LEMMA 4. For all p and r € H~1/2(89)

(Kp,r) < C| p ”—-1/2,8&’2” r ”—1/2,80 .

Proof. Let v be a solution for the Dirichlet problem —Awv +
v=10in ), v = Kp on 9. Note that p = g;,, — e, same as (2.4).
Applying Schwarz inequality and trace theorem we have

(Kp,7) < ||KD||1/2,00ll7]|-1/2,00
< ~C”””1,ﬂ||7'“—1/2,an-
< Cllginll=1/2,00lI7l|-1/2,00

since v € G(Q) and we have

lv|lie = | $5q invds| < leag qinvds|.
’ ”Ullln B ”””1/2,69

From lemma 3,

ginll-1/2,00 < Cllp||-1/2,00-

Hence we have this lemma.

Finally we prove theorem 1.

Proof of theorem 1. From lemma 1 the bilinear form we can
realize that (K p,p) is H™'/2-elliptic. Lemma 3 implies that the
bilinear form is bounded in H~'/2(8Q). Then according to Lax-
Milgram lemma we have that the problem (P) has a unique solu-
tion in H~1/2(89).

4. HY(Q)-ERROR ESTIMATE

The convergence of the Galerkin solution ,with an appropri-
ate subspace which is constracted to obtain an internal approxi-
mation of the solution, for the integral equation (2.3) is easy to
prove since we have Cea’s lemma2:
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LEMMA 5. Suppose that the bilinear form a(.,.) and the linear
form f satisfy the Lax-Milgram lemma, v satisfies that

a(u,v) = f(v) for all  vev,

and V}, is a finite-dimensional subspace of the Banach space V.
Then There exists a constant C' independent of the subspace V};, C
V such that

llu — < C inf |ju—valv.
lu —unllv < € inf flu—vxly

From lemma 5 we have the following corollary:

COROLLARY 1. Suppose that V;, C H~'/2(8Q). Then p,
which satisfies that

b{pn,r) = (g,7) for‘ all r eV,

in which b(p,r) = (Kp,r), converges to the solution for the prob-
lem (P). Moreover there exists apositive constant such that

e = prll-1/2,60 < C Riféfvh lp — Rill-1/2,00-

Furthermore we have the following H ~'/2(9%)-error estimate
about the approximation of p. '

THEOREM 1. Suppose that py is constracted by set of func-
tions x; on the boundary such as

xi=1 on S;, xs=0 on 00-S85;.
where US; = 0€). Then we have

lp = prll=1/2,60 < Allpll1/2,00- (4.1)

Proof. Suppose that e = p — pp. From the definition of the
norm of H~1/2(9Q) we have to prove that

(e, £)| < Chllpll1/2,0allfll1/2,00-
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When we assume that Vj, denotes the finite dimensional sub-
space of H™1/2(0R), Ry, and R}, are defined by

R;, = inf —l|_ ,
h ¢1élvh”/’ ¢|| 1/2,00

R, = inf |lp— :
h ngh‘llp Y|lo,00

we have 3
lp — Rull-1/2,00 < |lp — Rill=1/2,00-

Then we have

(E,f) = (E, f—8) < ||E|lo,00llf — 00,50
< Chl/z”ﬂ”l/z,anhl/z“f“l/z,an

where § € V;, and E = p — R,. Hence the theorem is valid from
above result and Cea’s lemma.

The above theorem was also presented in Nedelec and Plan-
chard. By using theorem 1 and lemma 4 we obtain the following
theorem.

THEOREM 2. Suppose that

Un(@) = 37 § Kole,0)en(w)ds(a). (43)

Then we have

U — Usllr,a < A||U||2,0- (4.4)

Proof. Here v : H"(Q) — H""'/2(6Q) and 6 : H"(Q) —
H"™3/2(8Q) are trace operators. Then yeq = g — § in which
g = vUp. We have

U = Uklli,a < Cllvealli2,00

- < Ch|le||—1/2,an < Ch”/’||1/2,80 ' (4’5)
< Chl[U]l0,
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- since - - . .
“P||1/2,an = HQin - Qemnl/z,an |
< ||<1in”1/2,8ﬂ + ”(Iem”l/z,an
< Cliginll1/2,00 < CllU|l1,0

Therefor we obtain theorem 2.

5. L?(Q)-ERROR ESTIMATE.

In this section L?({)-error estimate is given from results in
the previus section. The following lemma which was given by
Blair?, play fundamental role in giving L?(2)-error estimate.

LEMMA 6. Letv € H'(Q) satisfy —Av+v = 0; then ||v|o,0 <
Clivll-1/2,00-

Then we have the error estimate as follow.

THEOREM 3.
IU = Ukllo.a < CR*|[U2,0
Proof. At first we prove the inequality
”7%”—1/2,39 < Ch|vea|l1/2,00-

From definition of the norm for H~1/ 2(89) we have to show the
inequality

< ’769,9 >< Ch”’yen||1/2,39|Itheta”1/2,39
for all 8 € H'/2(89Q). If n € V}, then

< veq,0 > =< veq,0 —n >
< |lveqll1/2,00ll0 — nll-1/2,00
< |lvealli/z,00Ch||6]|1/2,00-
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Therefor from theorem 2, lemma 6 and the above result we obtain
this theorem. |
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