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STRATIFICATION OF THE DISCRIMINANT VARIETIES OF TYPE A4, and B,

MuTtsvo Oka  (([4) ENA )

- Department of Mathematics, Tokyo Institute of Technology

~ §1. Introduction Let R be a reduced irred‘ucible root system in R%. Let H = {H,}(c € A)
be the corresponding arrangement of the hyperplanes. The Weyl group W is the group generated by
the reflections along {H, ; o € A }. It acts on C* so that the quotient space C¢/W is isomorphic to
the affine space C* whose affine coordinate ring is the ring of the invariant polynomial C[¢y,...,&]W
(Chapter 6, [1]). Let |H| = Uyep Ha- The action on the complement C*! — |H| is free and |H] is
W-invariant. We call the quotient spacé |H|/W the discriminant variety of the root system and we
denote it by D. The discriminant variety is a hypersurface in the quotient space C*/W. There are
many interesting results by many authors about the topology of the arrangement |H| or C**! —|H|.
See Orlik [6] and its references. The complement C¢ — D is known to be a K(,1)-space by [2]
and [3]. Let S be a stratification of |H| which is compatible with the W-action. For instance, we
can take the minimal stratification Smin = { HZ ; = C A } where Hf = |,z Ho — UagéE H,.
For a given S, D inherits a canonical stratification S which is defined by the images of the strata
of S. The purpdse of this paper is to show that the discriminant variety for the arrangements of
type A¢ and B, has canonical regular stratifications which are constructed in the above way. Here

the regularity means the b-regularity in the sense of Whitnéy [7]. It is known that the b-regularity
implies the a-regularity ([5]). For Az4q1 and Bgyy, we can simply take S = Spip.

Let 7 be an analytic stratification of an analytic variety V in an open set U of C". Let
(M, N) be a pair of strata of 7 with M D N and let ¢ € N. Let p(u) (0 < u < 1) be a real analytic
curve such that p(0) = ¢ and p(u) € M for u > 0. Let T = limy_.0 Tp(u)M. We say that the pair
(M, N) has a unique tangenfial limit at ¢ if this limit 7 depends only on ¢ and M. If 7 enjoys this
property at any point ¢ of N for any pair (M,N), we say that 7 has the unique tangential limits
property. Of course; the existence of a stratification with the unique tangential limits property
poses a strong geometric restriction on V.

We will show that the stratifications S for Ag¢41 and Byyq-discriminants have the unique
tangential limits property. \

§2. As-arrangement. We first consider the Ay-arrangement. As a root system, A, is the

restriction of By to the following hyperplane
(21) L2§1+---+§g+1=0.
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The corresponding ari‘angement 'Hbconsists of (e';l) hyperplanes {£; — £; = 0} (i < 7) and the Weyl
group W is the symmetric group Sey1. The invariant ring is generated by
(2:2) 8 = E &)y &y (E=1,...,041).
TESe41
We refer to Chapter 6 of [1] for the basic results about the irreducible root systems. We use the

follovrilig symmetric polynomials for the calculation’s sake.
(2.3) =&ty (G=1,...,041).

Note that {m,...,Tes+1} is also a basis of the ring of invariant polynomials and that s;. =7 =0
on L. We define the mapping & : C**! — C*! by ®(&y,...,&m41) = (T1,...,7e41). Let L be the
hyperpla,ne in the quotient space defined by 7 = 0. Let ¢ : L — L and ¢ : |[H| — D be the
réSpective restriction of ® to L and |H|. We have the following commutative diagrams.

cHl I — |H]|

(2.4) 1o oL l¢
CHl - [ « D

Here the horizontal maps are the fespective inclusion maps. It is well-known that D is defined by
[Tic; (6 =& )2 = 0 which can be written in a weighted homogeneous polynomial of {s1,...,8¢+1}
or equivalently of {7y,...,7s41}. This is equal to the discriminant polynomial of 2*+1 —s;z¢+4 ...+
(=1)%*1sp41 = 0 in the usual sense ([4]).

Now we consider_the stratification S = Spipn of |H|. Let C; be the set of the non-maximal
subdivisions of the set {1,...,£+1}. Namely an element F ofC1 can be written as {I,..., I} where
LnI;j=0fori#jand Ui, I; = {1,...,£+ 1}. The maximal element M = {{1},...,{¢+1}}
is excluded as M(M) = C**! — |H|. Note that the Weyl group W acts canonically on C;. Let
Cz be the set of the non-maximal partitions of the integer £+ 1. An element K of C; is written
as {my,...,my} such that E;‘___l mj = £+ 1 with m; > 0. For a subset I of {1,...,£+ 1}, we
denote its cardinality by |I|. Then there is a canonical surjection from C; to C3 by F ~— |F| where
|Fl = {|4l,- .-, |Ix|}. For each F = {I4,...,Ix} of C1, we define

MF)={€t=(&)eC™ ; & =¢ & 3a; {i,j} C L}.

It is clear that {M(F)}rec, is equal to S = Sin, which is a regular stratification of [H|. Let
F={h,...,It} and G = {J1,...,Jm} be elements of C;. F is called a subdivision of G if for each -
i, there exists a j such that I; C J;. We define a partial ordering in C; (respectively in C; ) by
F = G if and only if F is a subdivision of G. (Respectively |F| = |G| < |F] is a subpartition of

IG].) The canonical map F — |.7: | is obviously order-preserving.
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PROPOSITION (2.5). Let F,F' € C;. The following conditions are equivalent.
(i) M(F) 2 M(F'). (ii) M(F)n M(F') # 0. (iii) F = F'.

ProposITION (2.6). Let F, F' € C1. (I) The following conditions are equivalent.

(1) $(M(F)) = ¢(M(F"))- (ii) ¢(M(F)) N (M (F")) # 0.

(iii) There exists an element g € W such that g(M(F)) = M(F'). (iv) |F| = |F'| in C,.
(II) ¢(M(.7:)) :_) H(M(F")) if and only if | F| = |F'|.

- ProoF: Proposition (2.5) is immediate from the definition of M(F). We prove Proposmon (2.6).
The equivalence (iii) ¢ (iv) is obvious. The implications (iii) = (i) = (ii) are also trivial.” Assume
that ¢(€) = @(¢') for some £ € M(F) and &' € M(F’). This implies that there exists a g € W
such that g(¢) = £'. As H is invariant by the action of W, we can write g(M(F)) = M(G)
for some G € C;. As {M (f)};recl are disjoint, this implies 7' = G. Thus (i) = (iii). As
(M (F) = ¢(M(F)), the assertion (II) is an immediate consequence of (I) and Proposition (2.5).

DEFINITION (2.7). For K € C;, we define V(K) = ¢(M(F)) where |F| =
We define an important vector-valued function X(z) by
(2.8) X(z) = (z,22,...,241).

Let X'(z) = (1,2z,...,(£ + 1)z%) be the derivative of X(z). Then ®(¢) = z‘“ X(g,) and the
tangential map d®, : T¢C**1 — Ta(¢)C+! satisfies dq)f(a_z.-") = Efﬂ J&71 2. We identify the

tangent space Tg(¢)C**! with C**! in a canonical way. Then the above equahty says
I S , |
(2.9) d@g(—a-z- =X'(&), i=1,...,0+1.

For any subset I of {1,...,£+ 1}, we define
2.10 i
(2.10) =104 Z A T ;5
Let F = {I1,...,Ix} and let £ € M(F). As £; does not depend on j € I; for ¢ being fixed, we have
& =&y, for any j € I;.

ProrosiTiON (2.11). Let F = {I1,...,I;} and let £ € M(F).
(i) TeM(F) is the (k-1)-dimensional vector space which is equal to

‘ k
TeM(F) = { ZAt8§ PPV }
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(ii) The restriction ¢ : M(F) — V(|F]) is a finite covering.
(iii) V(|F|) is non-singular and

k k :
ToeV(IF]) = { SOAX'(€); Y Ae=0 }
t=1 t=1 .

PrOOF: (i) is obvious by the definition of M(F). Thus

k k
48¢(TeM(F)) = { S AXE) s 3 A = 0} |
_ ‘ \ t=1 : t=1, .

By the Vandermonde determinant formula, this image has dimension (k¥ — 1). Thus the restriction
#|M(F) is a submersion and the local image by ¢ is smooth. 'Now assume that ¢(£) = ¢(n) for
¢,n € M(F) with £ # 1. Then there exists a permutation g € Seyy so that g9(&) = n. Then
g(M(F)) = M(F ) Thus the local images near { and 7 by ¢ coincide. This proves that V(]]—' ) is

smooth and the assertions (11) and (iii) follow immediately.

Let us examine the order of the covering ¢ : M(F) — V(|F]) more explicitly. Let {a1,...,an}
={n; 3¢, n=|L] }. Clearly we have m < k and {o;} are mutually distinct. Let p; be the number
of j’s such that |I;| = o; (i = 1,...,k). We consider the subgroups

WF)={geW; g(MF)=MF)}, I(F)={geW; g|M(F)=1id}.

Then I(F) is a normal subgroup of W(F) and the quotient group W (F)/I(F) acts freely on M(F)
with the quotient space V(| F|). More precisely let g € W(F)/I(F). Then for each s = 1,...,m, g

induces a permutation of {{1; ; |I;| = as}. Thus we have

ProPOSITION (2.12). There is a canonical isomorphism W (F)/I(F) = S, x ---% S, .. Thus the

order of the above covering is p1!--- pm!.

Let f(z) be a vector valued rational function of one variable. We define the rational functions

fe(z1,...,2) (k=1,...,£+ 1) inductively by fi(z1) = f(z1) and
(2.13) fe(z1, o 0mk) = {fe—1(Z15 - o, Th—2, Tk 1) — fe—1(T1y. -, T2, 28)} [(@Th—1 — Tk)

We call fi(zy,...,2;) the k-fold derived function of f(z).
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PRrOPOSITION (2.14). We have the following formulae.

ko /i1
(i) flzx) = f(z1) + Z (H(.’L‘k - xh)> fi(z1,... ,":z:j)
7=2 \h=1 ’ :
(ii)

, . k /i-1
fs+1(-’131,- ,zs,ms+k)v——.— fs+1($1,- .. ,-’Es+1) + Z (H($s+k - $s+h)> fs+j(931,- .- ,$s+j)-

j=2 \h=1

PrOOF: As (i) is a special case of (ii), we prove (ii) by the induction on k. The assertion on k =1

is trivial. We assume the assertion for £ — 1. By the definition of the derived function, we have

fs+1(m1, e axsazs+k) - fs+1(wla ey Ty, $3+1) = ($a+k - xs+1)fs+2(m17 LR ,ms+1,xs+k)

= (ms+k - ms+1)fs+2(x17 ee ,$3+2)

k j-1
+ (Zotk — Tot1) Y (H($s+k - ws+1+h)> forr14i(®1, - Bot145)

i=2 \h=1

/-1 _ |
= Z (H(zs-i-k - ws+h)) fori(@1y 0y Toyj)

j=2 \h=1
This completes the proof.

Now we consider the derived functions Xi(z1,...,zx) and X;(z1,...,zx) of X(z) and X'(z)

respectively. The following Lemma plays an important role throughout this paper.

LEMMA (2.15). Let ag,; and by ; be the jth coordinate of Xi(z1,...,2x) and X|(z1,...,2)

respectively. Then ay,;, by ; are symmetric polynomials of 23, ...,z defined by

(i) Grpri= 9 aeeapt, b= (k+g) Y, af.ap
. v+t ue=j+1 _ vitietvg=j '
(ii) Xi(z,+,2) = XED(@)/(k-1),,  Xi(e,...,2) = XP(a)/(k - 1)!

where XU)(z) = (Eda—:)JX(a:)

PRrooF: (i) is immediate from the inductive calculation and the equality: (z2* — y®)/(z — y) =

291 4 2°-2y 4 ... 4+ y2~1. The assertion (ii) follows immediately from (i).
LEMMA (2.16). Let £ € M(F) and let F = { I,...,I; }. Then

CXUELays---s€L) €Ty V(IF]) foranyt=2,...,kand o€ S
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ProoF: By Proposition (2.11), we have that
X'(ff.') - X’(éfj ) = (51" - 61;‘ )Xé(in’EIj) € T¢(£)V(l]:|) (a 96 .7)

This implies that X3(&r,,&r) € Tye)V(|F|) for ¢ # j. Now the assertion follows by an easy

inductive argument.

The following is a generalization of the Vandermonde determinant formula and it plays a key

role to show the linear independence of certain vectors in the later arguments.

LEMMA (2.17). (Generalized Vandermonde formula) Let A, ..., be mutuaﬂy distinct complex

numbers and let N' = {1,...,vx} be an element'ofcg. Then we have the formula:
det (tX’()\l),. CSEXD (), X (), ‘X(”")(,\k)) = €+ D5 = 207,
i>i

In particular, { XD (X) } (j =1,...,v;, i=1,...,k) are linearly independent.

‘PrOOF: Let U(zy,...,2p41) = det(*X'(21),-..,"X'(ze41)). Then it is easy to see that
(2.18) U(z1,...,2e01) = L+ D! (25 - 23)

j>i
by the Vandermonde determinant formula. We consider the differential operators:

a 1 ( a )I/;—l
D:i=| —m—— ——— N and D = D¢ ... D,.
' (3wul+-.-+u.~_1+2) Ly, ety ! *

Let E={(j,h); i+ -+vi1+1<h<j<wvi+---4v, i=1,...,k } and let £ be the ideal
generated by { z; — 2z, ; (j,h) €E }. As E;":_llj = (%), it is easy to see that
(2.19) DV = (L+1)! H (z; —zp) modulo &.

(i,h)EE

Thus the assertion follows immediately from

det((X'(M\1),. .., I XD (), X (M), .., EX R (AL)
= (DY) (M, -e s Ay e s Ak, Ak) = (€ D[ (A5 — A)¥%.

b >3

Here the last equality is due to (2.19).
§3. Regularity and the limit of the tangent space. Now we are ready to show the

regularity of the stratification S of the discriminant variety of A, -arrangement and the unique
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tangential limits property. Let M(F) and M(G) be stratum of S such that M(F) D M(G). Let g be
an arbitrary point of the stratum V'(|G|) and let p(u) and g(u) be real analytic curves defined on the
interval [0, 1] such that (i) p(0) =kq(0) = ¢ and q(u) € V(|G]) for any u € [0,1]. (ii) p(u) € V(|F])
for u > 0. We also assume that

(3.1) lim Ty VIF) =T,  Lim{a(u),a(w)] = 7.

Here [p(u), ()] is the line spanned by p(u) — g(u). Changing the parameter u by u'/™ for somé
integer m if hecessa,ry, we may assume that there are lifting real analytic curves p(u) and g(u) in
M(F) and M(G) respectively so that p(u) = #(p(u)) and g(u) = ¢(g(u)) respectively. We may
assume that p(0) = ¢(0) and let n = p(0) € M(G). Let G = {J1,..., m}. By Proposition (2.5), we

canwrite F={ J;;; ¢t=1,...,m, i =1,...,v; } where J; ; C Jyfor j =1,...,1;.

THEOREM (3.2). S is a regular stratification with the unique tangential limits property. Namely
(i) T is generated by

{i NX'(17,) ; f}&- =0 }U {xO(s), 1gi<m, 2<5<w }.
i=1

i=1

(ii) (Regularity) vy € T.

PRrOOF: By Proposition (2.11), the vectors Ay X'(p(u) s, , )+ -+ Am X' (p(v) s, ,) With Y 1v; A =0
are contained in Tp(y)V(]F]). Thus by taking the limit as u — 0, we see that >,;", \; X'(ns,) € T.
This gives only a subspace of T of dimension m — 1. We still need v; + --- + v, — m in-
dependent vectors to.generate T. For this purpose, we apply Lemma (2.15). We know that
Xi(p(u)g, 1se s p(u)5,,) € Tpy)V(IF) (2 < k < v, 1 <4< m). We take the limits of these vec-
tors as u — 0 and we apply Lemma (2.15) to obtain that XU)(n;) €T (2<j <vi, 1 < i < m).
Now we apply Lemma (2.17) to see that the vectors {(XO(nz); 1<i<m 1<j< v} are

linearly independent. This completes the proof of (i).
Now we consider the regularity (ii). Using the equality 37, |Ji ;| = |/i], we have

m v

33) p(u) — q(uw) = 3 > Wil (X(p(w)a,;) — X(g(w) 1)) -

i=1 j=1

Using Proposition (2.14), we can write

(3'4) X(p(u)-]i,j) - X(g(u)y) = E a!;,j,h(u)Xh+1 (g(u); 7p(u)«7;,1a <o ,P(u)J.',h)
h=1
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where a; jn(u) is defined by

h-1
(3-5) ai,j,h(u) = (p(u)-’.',,' - Q(U)J.') H(p(u)J.',j - p(u)Ji,k )} h=1,...,v.
k=1

Substituting (3.4) in (3.3), we obtain
(36) P — 20 = 305 @i (0 X (08 P(8) 5501 - 2510
i=1 h=1
where a; n(u) = 3351, | i jlei j,n(u). In particular, we have
| (37) . ‘ ai,l(ﬁ) = f;l-fi,jl (P(U)Js,,' - Q(“)Jf) .
j=1.

We define a non-negative integer § by
(3.8) (B = min {order (a;x(w)); i=1,...,m, h=1,...,v;}

and let o; n(u) = a; puP + (higher terms). Then (3.6) and Lemma (2.15) imply that

m vy
(3.9) p(u) — qu) = (E Z ai,hX(h)(ﬂ.]‘-)/h!) uP + (higher terms).
1 o i=1 h=1
By the Generalized Vandermonde formula (Lemma (2.17)), we can see easily that
m. Yy ‘ mo Vi
(3.10) > inXM(ng)/h! # 0 and y = [E > i XM (ny,) /th :
=1 h=1 i=1 h=1

Here [v] denotes the line generated by the vector v. Thus the assertion (ii) of Theorem (3.2) follows
immediately from (i) and (3.10) and the following.

m
ASSERTION (3.11). ) a;1 =0.
i=1

Proor: By (3.7) we have
m m m Vj m
> eia(u) =" 0i1t? + (higher terms) = Y N " |Jijlp(w)s,; — Y |Jilg(u)s; = 0.
i=1 i=1 ’ i=1 j=1 i=1
The last equality is derived from the fact that p(u) and g(u) are in the hyperplane L. Now the
assertion is immediate from the above equality.
§4. Byyi-arrangement. Let R be the root system of type Byy; in R, The corresponding

arrangement H consists of 2(5';1) + £+ 1 hyperplanes: {§; £{; = 0} and {& = 0}. The Weyl group
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W is isomorphic to a semi-direct product of the symmetric group Se+1 and the abelian group
(Z/2Z)**(Chapter 6, [1]). The invariant polynomial ring is generated by
(4.1) t;‘ = Z {3.(1)"'672.(1-), 7:= 1,_...,£+ 1.

TESe41

We will use the following generators.
(4.2) G=EF 4+ € i=1,... 041

Let ® : Ct1  CH1/W =~ C*! be the map defined by & — (({1(€),-..,Ce41(€)). We take
S = Snin- The stratification S can be described as follows. Let & be the set of the subdivisions
of the non-empty subsets of {1,...,£ + 1}. Namely an element F € & can be written as F =
{I1,...,It} where each I; is non-empty and I; NI; = @ for ¢« # j. Let S(F) = Ule I; and
Fe=A{1,...,£+1} - S(F). Let & be the set of the partitions of the integer m for m = 1,...,£+1.
There is a canonical surjective mapping from & to & by F — |F| = {|L1,..., [ Ix]}. Let

MF)={€eCH; () &=0&ieFe(i) & =€ & {i,j} CIL}

We omit M = {{1},...,{f + 1}} and | M| from &; and &, respectively as M(M) and V(|M]) are
nothing but the complement C#! — |H| and C*! — D. Let @ = Y5 |I;| — k. Then M(F) is
a disjoint union of 2* connected components corresponding th sign of §; = :I:fj in the definition
of M(F). But they are in the same W-orbit. (Recall that the reflection along {{ = 0} is the
multiplication by —1 in the i-th coordinate.) Thus each connected component is mapped by ¢ onto
the same stratum of S. We define partial orderings in & and &; as follows. Let F = {hL,...,Ix}
and G = {J1,...,Jn}. F = G if and only if (i) F¢ C G°, (ii) F = G in C;. Here F is defined by
{Fe,I,..., I} € Cy. Similarly we define | F| > |G| if and only if (i) |F°| < |G|, (ii) |F] > |G| in C,.
Now the following propositions are completely parallel to Proposition (2.5) a.ﬁd Proposition (2.6).

ProrosiTION (4.3). Let F,G € &;. The following conditions are equivalent.
() 3T(F) 2 M(G). (i) M) M(G) #90. (i) F > .

ProrosITION (4.4). Let F,G € & . The following conditions are equivalent.
(i) $(M(F)) = ¢(M(G)). (ii)There exists a g € W such that g(M(F))= M(G). (iii) |F| = |G|.

Thus for a K € & we can define V(K) = ¢(M(F)) for any F € &; such that |F| = K. Now
we study the tangential map. Note that
0

5g,) = 26 X'(€).

(4.5) d®(
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For each I C {1,...,£+ 1}, we define m(I) = min {¢ ; ¢ € I}. Let F = {I;,...,I;} € & and let
teF. We define £ € M(F) by

: ém(I;) ifjel;
(46) | 6= { 0 if j € Fe.

It is easy to see that £ is in the W-orbit of £. We also dei‘ine

a1 9
% = T > (&ilemu) %

J€I;

Note that §]/£m(1) =+1 and §J = £m(” = 51‘ foreachj € I;. It is ea;sy'tb“see'that g%‘— € TeM(F)
and d@g(a—&j—) =261 X I(€I; ). Now Proposition (2.11) and Lemma (2.15) can be translated into the .

following form.

PrOPOSITION (4.7). Let F = {h,...,Ix} € &. Then .

(i) The dimension of T¢ M(F) is k and it is generated by'{% ;i=1,... ,k}.

(ii) The restnctwn ¢ : M(F) — V(|F]) is a finite covering.

(iii) V([.T-']) is non-singular and T4V (|F|) is generated by {X'(fI ); i=1,...,k}.

LEMMA (4.8). Let F be as in Proposition (4.7). Then
XUE,....8) €Ty V(IF|) fors=1,...,k.

Let F > G and let G = {J1,...,Jm}. Wecan write F={J;;; i=0,...,m, j=1,...,v}
so that J; ; C J; where Jo = G° by definition. Let p(u), g(u), g, p(u), q(u), n, T and v be as
§3. We consider the equality p(u) — a(u) = S0 Sy sl (X(2(8)5, ) — X (a(u) ). Then using

Lemma (4.8), we do the same argument as for the Ag+1-d1scr1nuna,nt to obtain

THEOREM (4.9). S is a regular stratification with the unique tangential limits property. Namely
(i) T is generated by { X(j)(ﬁi) 14=0,...,m, 7=1,...,v4}. (ii) (Regularity) y € T.

For the stratification of discriminant variety of Dy, see [8].
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