STRATIFICATION OF THE DISCRIMINANT VARIETIES OF TYPE A_ℓ and B_ℓ Mutsuo Oka () A ξ ξ

Department of Mathematics, Tokyo Institute of Technology

§1. Introduction Let R be a reduced irreducible root system in \mathbf{R}^{ℓ} . Let $\mathcal{H} = \{H_{\alpha}\}(\alpha \in \Lambda)$ be the corresponding arrangement of the hyperplanes. The Weyl group W is the group generated by the reflections along $\{H_{\alpha}; \alpha \in \Lambda\}$. It acts on \mathbb{C}^{ℓ} so that the quotient space \mathbb{C}^{ℓ}/W is isomorphic to the affine space \mathbf{C}^{ℓ} whose affine coordinate ring is the ring of the invariant polynomial $\mathbf{C}[\xi_1,\ldots,\xi_{\ell}]^W$ (Chapter 6, [1]). Let $|\mathcal{H}| = \bigcup_{\alpha \in \Lambda} H_{\alpha}$. The action on the complement $\mathbf{C}^{\ell} - |\mathcal{H}|$ is free and $|\mathcal{H}|$ is W-invariant. We call the quotient space $|\mathcal{H}|/W$ the discriminant variety of the root system and we denote it by \mathcal{D} . The discriminant variety is a hypersurface in the quotient space \mathbf{C}^{ℓ}/W . There are many interesting results by many authors about the topology of the arrangement $|\mathcal{H}|$ or $\mathbb{C}^{\ell+1} - |\mathcal{H}|$. See Orlik [6] and its references. The complement $\mathbb{C}^{\ell} - \mathcal{D}$ is known to be a $K(\pi, 1)$ -space by [2] and [3]. Let S be a stratification of $|\mathcal{H}|$ which is compatible with the W-action. For instance, we can take the minimal stratification $S_{min} = \{ H_{\Xi}^* ; \Xi \subset \Lambda \}$ where $H_{\Xi}^* = \bigcap_{\alpha \in \Xi} H_{\alpha} - \bigcup_{\alpha \notin \Xi} H_{\alpha}$. For a given S, D inherits a canonical stratification \overline{S} which is defined by the images of the strata of S. The purpose of this paper is to show that the discriminant variety for the arrangements of type A_{ℓ} and B_{ℓ} has canonical regular stratifications which are constructed in the above way. Here the regularity means the b-regularity in the sense of Whitney [7]. It is known that the b-regularity implies the a-regularity ([5]). For $A_{\ell+1}$ and $B_{\ell+1}$, we can simply take $S = S_{min}$.

Let \mathcal{T} be an analytic stratification of an analytic variety V in an open set U of \mathbb{C}^n . Let (M,N) be a pair of strata of \mathcal{T} with $\overline{M} \supset N$ and let $q \in N$. Let p(u) $(0 \le u < 1)$ be a real analytic curve such that p(0) = q and $p(u) \in M$ for u > 0. Let $T = \lim_{u \to 0} T_{p(u)}M$. We say that the pair (M,N) has a unique tangential limit at q if this limit T depends only on q and M. If T enjoys this property at any point q of N for any pair (M,N), we say that T has the unique tangential limits property. Of course, the existence of a stratification with the unique tangential limits property poses a strong geometric restriction on V.

We will show that the stratifications \overline{S} for $A_{\ell+1}$ and $B_{\ell+1}$ -discriminants have the unique tangential limits property.

§2. A_{ℓ} -arrangement. We first consider the A_{ℓ} -arrangement. As a root system, A_{ℓ} is the restriction of $B_{\ell+1}$ to the following hyperplane

(2.1)
$$L: \xi_1 + \dots + \xi_{\ell+1} = 0.$$

The corresponding arrangement \mathcal{H} consists of $\binom{\ell+1}{2}$ hyperplanes $\{\xi_i - \xi_j = 0\}$ (i < j) and the Weyl group W is the symmetric group $S_{\ell+1}$. The invariant ring is generated by

(2.2)
$$s_i = \sum_{\tau \in S_{\ell+1}} \xi_{\tau(1)} \cdots \xi_{\tau(i)} \quad (i = 1, \dots, \ell+1).$$

We refer to Chapter 6 of [1] for the basic results about the irreducible root systems. We use the following symmetric polynomials for the calculation's sake.

(2.3)
$$\tau_i = \xi_1^i + \dots + \xi_{\ell+1}^i \quad (i = 1, \dots, \ell+1).$$

Note that $\{\tau_1,\ldots,\tau_{\ell+1}\}$ is also a basis of the ring of invariant polynomials and that $s_1=\tau_1=0$ on L. We define the mapping $\Phi: \mathbf{C}^{\ell+1} \to \mathbf{C}^{\ell+1}$ by $\Phi(\xi_1,\ldots,\xi_{\ell+1})=(\tau_1,\ldots,\tau_{\ell+1})$. Let \bar{L} be the hyperplane in the quotient space defined by $\tau_1=0$. Let $\phi_L:L\to \bar{L}$ and $\phi:|\mathcal{H}|\to \mathcal{D}$ be the respective restriction of Φ to L and $|\mathcal{H}|$. We have the following commutative diagrams.

(2.4)
$$\begin{array}{cccc}
\mathbf{C}^{\ell+1} & \longleftrightarrow & L & \longleftrightarrow & |\mathcal{H}| \\
\downarrow \Phi & & \downarrow \phi_L & & \downarrow \phi \\
\mathbf{C}^{\ell+1} & \longleftrightarrow & \bar{L} & \longleftrightarrow & \mathcal{D}
\end{array}$$

Here the horizontal maps are the respective inclusion maps. It is well-known that \mathcal{D} is defined by $\prod_{i< j} (\xi_i - \xi_j)^2 = 0$ which can be written in a weighted homogeneous polynomial of $\{s_1, \ldots, s_{\ell+1}\}$ or equivalently of $\{\tau_1, \ldots, \tau_{\ell+1}\}$. This is equal to the discriminant polynomial of $x^{\ell+1} - s_1 x^{\ell} + \cdots + (-1)^{\ell+1} s_{\ell+1} = 0$ in the usual sense ([4]).

Now we consider the stratification $S = S_{min}$ of $|\mathcal{H}|$. Let C_1 be the set of the non-maximal subdivisions of the set $\{1, \ldots, \ell+1\}$. Namely an element \mathcal{F} of C_1 can be written as $\{I_1, \ldots, I_k\}$ where $I_i \cap I_j = \emptyset$ for $i \neq j$ and $\bigcup_{j=1}^k I_j = \{1, \ldots, \ell+1\}$. The maximal element $\mathcal{M} = \{\{1\}, \ldots, \{\ell+1\}\}$ is excluded as $M(\mathcal{M}) = \mathbb{C}^{\ell+1} - |\mathcal{H}|$. Note that the Weyl group W acts canonically on C_1 . Let C_2 be the set of the non-maximal partitions of the integer $\ell+1$. An element \mathcal{K} of C_2 is written as $\{m_1, \ldots, m_k\}$ such that $\sum_{j=1}^k m_j = \ell+1$ with $m_j > 0$. For a subset I of $\{1, \ldots, \ell+1\}$, we denote its cardinality by |I|. Then there is a canonical surjection from C_1 to C_2 by $\mathcal{F} \mapsto |\mathcal{F}|$ where $|\mathcal{F}| = \{|I_1|, \ldots, |I_k|\}$. For each $\mathcal{F} = \{I_1, \ldots, I_k\}$ of C_1 , we define

$$M(\mathcal{F}) = \{ \xi = (\xi_i) \in \mathbf{C}^{\ell+1} ; \xi_i = \xi_j \Leftrightarrow \exists a ; \{i, j\} \subset I_a \}.$$

It is clear that $\{M(\mathcal{F})\}_{\mathcal{F}\in\mathcal{C}_1}$ is equal to $\mathcal{S}=\mathcal{S}_{min}$ which is a regular stratification of $|\mathcal{H}|$. Let $\mathcal{F}=\{I_1,\ldots,I_k\}$ and $\mathcal{G}=\{J_1,\ldots,J_m\}$ be elements of \mathcal{C}_1 . \mathcal{F} is called a *subdivision* of \mathcal{G} if for each i, there exists a j such that $I_i\subset J_j$. We define a partial ordering in \mathcal{C}_1 (respectively in \mathcal{C}_2) by $\mathcal{F}\succeq\mathcal{G}$ if and only if \mathcal{F} is a subdivision of \mathcal{G} . (Respectively $|\mathcal{F}|\succeq|\mathcal{G}|\Leftrightarrow|\mathcal{F}|$ is a subpartition of $|\mathcal{G}|$.) The canonical map $\mathcal{F}\mapsto|\mathcal{F}|$ is obviously order-preserving.

PROPOSITION (2.5). Let $\mathcal{F}, \mathcal{F}' \in \mathcal{C}_1$. The following conditions are equivalent.

(i)
$$\overline{M(\mathcal{F})} \supseteq M(\mathcal{F}')$$
. (ii) $\overline{M(\mathcal{F})} \cap M(\mathcal{F}') \neq \emptyset$. (iii) $\mathcal{F} \succeq \mathcal{F}'$.

PROPOSITION (2.6). Let $\mathcal{F}, \mathcal{F}' \in \mathcal{C}_1$. (I) The following conditions are equivalent.

- (i) $\phi(M(\mathcal{F})) = \phi(M(\mathcal{F}'))$. (ii) $\phi(M(\mathcal{F})) \cap \phi(M(\mathcal{F}')) \neq \emptyset$.
- (iii) There exists an element $g \in W$ such that $g(M(\mathcal{F})) = M(\mathcal{F}')$. (iv) $|\mathcal{F}| = |\mathcal{F}'|$ in \mathcal{C}_2 .
- (II) $\overline{\phi(M(\mathcal{F}))} \supseteq \phi(M(\mathcal{F}'))$ if and only if $|\mathcal{F}| \succeq |\mathcal{F}'|$.

PROOF: Proposition (2.5) is immediate from the definition of $M(\mathcal{F})$. We prove Proposition (2.6). The equivalence (iii) \Leftrightarrow (iv) is obvious. The implications (iii) \Rightarrow (i) \Rightarrow (ii) are also trivial. Assume that $\phi(\xi) = \phi(\xi')$ for some $\xi \in M(\mathcal{F})$ and $\xi' \in M(\mathcal{F}')$. This implies that there exists a $g \in W$ such that $g(\xi) = \xi'$. As \mathcal{H} is invariant by the action of W, we can write $g(M(\mathcal{F})) = M(\mathcal{G})$ for some $\mathcal{G} \in \mathcal{C}_1$. As $\{M(\mathcal{F})\}_{\mathcal{F} \in \mathcal{C}_1}$ are disjoint, this implies $\mathcal{F}' = \mathcal{G}$. Thus (ii) \Rightarrow (iii). As $\overline{\phi(M(\mathcal{F}))} = \phi(\overline{M(\mathcal{F})})$, the assertion (II) is an immediate consequence of (I) and Proposition (2.5).

Definition (2.7). For $K \in C_2$, we define $V(K) = \phi(M(\mathcal{F}))$ where $|\mathcal{F}| = K$.

We define an important vector-valued function X(x) by

(2.8)
$$X(x) = (x, x^2, \dots, x^{\ell+1}).$$

Let $X'(x) = (1, 2x, ..., (\ell + 1)x^{\ell})$ be the derivative of X(x). Then $\Phi(\xi) = \sum_{i=1}^{\ell+1} X(\xi_i)$ and the tangential map $d\Phi_{\xi} : T_{\xi}\mathbf{C}^{\ell+1} \to T_{\Phi(\xi)}\mathbf{C}^{\ell+1}$ satisfies $d\Phi_{\xi}(\frac{\partial}{\partial \xi_i}) = \sum_{j=1}^{\ell+1} j\xi^{j-1} \frac{\partial}{\partial \tau_j}$. We identify the tangent space $T_{\Phi(\xi)}\mathbf{C}^{\ell+1}$ with $\mathbf{C}^{\ell+1}$ in a canonical way. Then the above equality says

(2.9)
$$d\Phi_{\xi}(\frac{\partial}{\partial \xi_i}) = X'(\xi_i), \quad i = 1, \dots, \ell + 1.$$

For any subset I of $\{1, \ldots, \ell+1\}$, we define

(2.10)
$$\frac{\partial}{\partial \xi_I} = \frac{1}{|I|} \sum_{i \in I} \frac{\partial}{\partial \xi_i}, \qquad \xi_I = \frac{1}{|I|} \sum_{i \in I} \xi_i.$$

Let $\mathcal{F} = \{I_1, \ldots, I_k\}$ and let $\xi \in M(\mathcal{F})$. As ξ_j does not depend on $j \in I_i$ for i being fixed, we have $\xi_j = \xi_{I_i}$ for any $j \in I_i$.

PROPOSITION (2.11). Let $\mathcal{F} = \{I_1, \ldots, I_k\}$ and let $\xi \in M(\mathcal{F})$.

(i) $T_{\xi}M(\mathcal{F})$ is the (k-1)-dimensional vector space which is equal to

$$T_{\xi}M(\mathcal{F}) = \left\{ \sum_{t=1}^{k} \lambda_{t} \frac{\partial}{\partial \xi_{I_{t}}} ; \sum_{t=1}^{k} \lambda_{t} = 0 \right\}.$$

- (ii) The restriction $\phi: M(\mathcal{F}) \to V(|\mathcal{F}|)$ is a finite covering.
- (iii) $V(|\mathcal{F}|)$ is non-singular and

$$T_{\phi(\xi)}V(|\mathcal{F}|) = \left\{ \sum_{t=1}^k \lambda_t X'(\xi_{I_t}) ; \sum_{t=1}^k \lambda_t = 0 \right\}.$$

PROOF: (i) is obvious by the definition of $M(\mathcal{F})$. Thus

$$d\Phi_{\xi}(T_{\xi}M(\mathcal{F})) = \left\{ \sum_{t=1}^{k} \lambda_t X'(\xi_{I_t}) ; \sum_{t=1}^{k} \lambda_t = 0 \right\}.$$

By the Vandermonde determinant formula, this image has dimension (k-1). Thus the restriction $\phi|M(\mathcal{F})$ is a submersion and the local image by ϕ is smooth. Now assume that $\phi(\xi) = \phi(\eta)$ for $\xi, \eta \in M(\mathcal{F})$ with $\xi \neq \eta$. Then there exists a permutation $g \in S_{\ell+1}$ so that $g(\xi) = \eta$. Then $g(M(\mathcal{F})) = M(\mathcal{F})$. Thus the local images near ξ and η by ϕ coincide. This proves that $V(|\mathcal{F}|)$ is smooth and the assertions (ii) and (iii) follow immediately.

Let us examine the order of the covering $\phi: M(\mathcal{F}) \to V(|\mathcal{F}|)$ more explicitly. Let $\{\alpha_1, \ldots, \alpha_m\}$ = $\{n \; ; \; \exists i, \; n = |I_i| \; \}$. Clearly we have $m \leq k$ and $\{\alpha_i\}$ are mutually distinct. Let ρ_i be the number of j's such that $|I_j| = \alpha_i \; (i = 1, \ldots, k)$. We consider the subgroups

$$W(\mathcal{F}) = \{ \ g \in W \ ; \ g(M(\mathcal{F})) = M(\mathcal{F}) \ \}, \quad I(\mathcal{F}) = \{ \ g \in W \ ; \ g|M(\mathcal{F}) = id \ \}.$$

Then $I(\mathcal{F})$ is a normal subgroup of $W(\mathcal{F})$ and the quotient group $W(\mathcal{F})/I(\mathcal{F})$ acts freely on $M(\mathcal{F})$ with the quotient space $V(|\mathcal{F}|)$. More precisely let $\bar{g} \in W(\mathcal{F})/I(\mathcal{F})$. Then for each $s = 1, \ldots, m, \bar{g}$ induces a permutation of $\{\xi_{I_j} ; |I_j| = \alpha_s\}$. Thus we have

PROPOSITION (2.12). There is a canonical isomorphism $W(\mathcal{F})/I(\mathcal{F}) \cong S_{\rho_1} \times \cdots \times S_{\rho_m}$. Thus the order of the above covering is $\rho_1! \cdots \rho_m!$.

Let f(x) be a vector valued rational function of one variable. We define the rational functions $f_k(x_1, \ldots, x_k)$ $(k = 1, \ldots, \ell + 1)$ inductively by $f_1(x_1) = f(x_1)$ and

$$(2.13) f_k(x_1,\ldots,x_k) = \left\{ f_{k-1}(x_1,\ldots,x_{k-2},x_{k-1}) - f_{k-1}(x_1,\ldots,x_{k-2},x_k) \right\} / (x_{k-1}-x_k)$$

We call $f_k(x_1, ..., x_k)$ the k-fold derived function of f(x).

PROPOSITION (2.14). We have the following formulae.

(i)
$$f(x_k) = f(x_1) + \sum_{j=2}^k \left(\prod_{h=1}^{j-1} (x_k - x_h) \right) f_j(x_1, \dots, x_j)$$

(ii)
$$f_{s+1}(x_1,\ldots,x_s,x_{s+k}) = f_{s+1}(x_1,\ldots,x_{s+1}) + \sum_{j=2}^k \left(\prod_{h=1}^{j-1} (x_{s+k} - x_{s+h}) \right) f_{s+j}(x_1,\ldots,x_{s+j}).$$

PROOF: As (i) is a special case of (ii), we prove (ii) by the induction on k. The assertion on k = 1 is trivial. We assume the assertion for k - 1. By the definition of the derived function, we have

$$f_{s+1}(x_1, \dots, x_s, x_{s+k}) - f_{s+1}(x_1, \dots, x_s, x_{s+1}) = (x_{s+k} - x_{s+1}) f_{s+2}(x_1, \dots, x_{s+1}, x_{s+k})$$

$$= (x_{s+k} - x_{s+1}) f_{s+2}(x_1, \dots, x_{s+2})$$

$$+ (x_{s+k} - x_{s+1}) \sum_{j=2}^{k} \left(\prod_{h=1}^{j-1} (x_{s+k} - x_{s+1+h}) \right) f_{s+1+j}(x_1, \dots, x_{s+1+j})$$

$$= \sum_{j=2}^{k} \left(\prod_{h=1}^{j-1} (x_{s+k} - x_{s+h}) \right) f_{s+j}(x_1, \dots, x_{s+j}).$$

This completes the proof.

Now we consider the derived functions $X_k(x_1, \ldots, x_k)$ and $X'_k(x_1, \ldots, x_k)$ of X(x) and X'(x) respectively. The following Lemma plays an important role throughout this paper.

LEMMA (2.15). Let $a_{k,j}$ and $b_{k,j}$ be the j-th coordinate of $X_k(x_1,\ldots,x_k)$ and $X'_k(x_1,\ldots,x_k)$ respectively. Then $a_{k,j}$, $b_{k,j}$ are symmetric polynomials of x_1,\ldots,x_k defined by

(i)
$$a_{k,k+j} = \sum_{\nu_1 + \dots + \nu_k = j+1} x_1^{\nu_1} \cdots x_k^{\nu_k}, \quad b_{k,k+j} = (k+j) \sum_{\nu_1 + \dots + \nu_k = j} x_1^{\nu_1} \cdots x_k^{\nu_k}$$

(ii)
$$X_k(x,\dots,x) = X^{(k-1)}(x)/(k-1)!, \qquad X'_k(x,\dots,x) = X^{(k)}(x)/(k-1)!$$

where $X^{(j)}(x) = (\frac{d}{dx})^j X(x)$.

PROOF: (i) is immediate from the inductive calculation and the equality: $(x^a - y^a)/(x - y) = x^{a-1} + x^{a-2}y + \cdots + y^{a-1}$. The assertion (ii) follows immediately from (i).

LEMMA (2.16). Let $\xi \in M(\mathcal{F})$ and let $\mathcal{F} = \{I_1, \ldots, I_k\}$. Then

$$X'_t(\xi_{I_{\sigma(1)}},\ldots,\xi_{I_{\sigma(t)}}) \in T_{\phi(\xi)}V(|\mathcal{F}|)$$
 for any $t=2,\ldots,k$ and $\sigma \in S_t$

PROOF: By Proposition (2.11), we have that

$$X'(\xi_{I_i}) - X'(\xi_{I_j}) = (\xi_{I_i} - \xi_{I_j})X'_2(\xi_{I_i}, \xi_{I_j}) \in T_{\phi(\xi)}V(|\mathcal{F}|) \ (i \neq j).$$

This implies that $X'_2(\xi_{I_i}, \xi_{I_j}) \in T_{\phi(\xi)}V(|\mathcal{F}|)$ for $i \neq j$. Now the assertion follows by an easy inductive argument.

The following is a generalization of the Vandermonde determinant formula and it plays a key role to show the linear independence of certain vectors in the later arguments.

LEMMA (2.17). (Generalized Vandermonde formula) Let $\lambda_1, \ldots, \lambda_k$ be mutually distinct complex numbers and let $\mathcal{N} = \{\nu_1, \ldots, \nu_k\}$ be an element of \mathcal{C}_2 . Then we have the formula:

$$\det\left({}^tX'(\lambda_1),\ldots,{}^tX^{(\nu_1)}(\lambda_1),\ldots,{}^tX'(\lambda_k),\ldots,{}^tX^{(\nu_k)}(\lambda_k)\right)=(\ell+1)!\prod_{j>i}(\lambda_j-\lambda_i)^{\nu_i\nu_j}.$$

In particular, $\{X^{(j)}(\lambda_i)\}\ (j=1,\ldots,\nu_i,\ i=1,\ldots,k)$ are linearly independent.

PROOF: Let $\Psi(x_1,\ldots,x_{\ell+1})=\det({}^tX'(x_1),\ldots,{}^tX'(x_{\ell+1}))$. Then it is easy to see that

(2.18)
$$\Psi(x_1, \dots, x_{\ell+1}) = (\ell+1)! \prod_{j>i} (x_j - x_i)$$

by the Vandermonde determinant formula. We consider the differential operators:

$$D_i = \left(\frac{\partial}{\partial x_{\nu_1 + \dots + \nu_{i-1} + 2}}\right)^1 \cdots \left(\frac{\partial}{\partial x_{\nu_1 + \dots + \nu_i}}\right)^{\nu_i - 1} \text{ and } D = D_1 \cdots D_k.$$

Let $E = \{ (j,h) ; \nu_1 + \dots + \nu_{i-1} + 1 \le h < j \le \nu_1 + \dots + \nu_i, i = 1,\dots,k \}$ and let \mathcal{E} be the ideal generated by $\{ x_j - x_h ; (j,h) \in E \}$. As $\sum_{j=1}^{\nu_i - 1} j = \binom{\nu_i}{2}$, it is easy to see that

(2.19)
$$D\Psi \equiv (\ell+1)! \prod_{(j,h) \notin E} (x_j - x_h) \mod \mathcal{E}.$$

Thus the assertion follows immediately from

$$\det({}^{t}X'(\lambda_{1}),\ldots,{}^{t}X^{(\nu_{1})}(\lambda_{1}),\ldots,{}^{t}X'(\lambda_{k}),\ldots,{}^{t}X^{(\nu_{k})}(\lambda_{k}))$$

$$= (D\Psi)(\underbrace{\lambda_{1},\ldots,\lambda_{1}}_{\nu_{1}},\ldots,\underbrace{\lambda_{k},\ldots,\lambda_{k}}_{\nu_{k}}) = (\ell+1)! \prod_{j>i} (\lambda_{j}-\lambda_{i})^{\nu_{i}\nu_{j}}.$$

Here the last equality is due to (2.19).

§3. Regularity and the limit of the tangent space. Now we are ready to show the regularity of the stratification \overline{S} of the discriminant variety of $A_{\ell+1}$ -arrangement and the unique

tangential limits property. Let $M(\mathcal{F})$ and $M(\mathcal{G})$ be stratum of \mathcal{S} such that $\overline{M(\mathcal{F})} \supset M(\mathcal{G})$. Let q be an arbitrary point of the stratum $V(|\mathcal{G}|)$ and let $\bar{p}(u)$ and $\bar{q}(u)$ be real analytic curves defined on the interval [0,1] such that (i) $\bar{p}(0)=\bar{q}(0)=q$ and $\bar{q}(u)\in V(|\mathcal{G}|)$ for any $u\in[0,1]$. (ii) $\bar{p}(u)\in V(|\mathcal{F}|)$ for u>0. We also assume that

(3.1)
$$\lim_{u\to 0} T_{\bar{p}(u)}V(|\mathcal{F}|) = T, \qquad \lim_{u\to 0} [\bar{p}(u), \bar{q}(u)] = \gamma.$$

Here $[\bar{p}(u), \bar{q}(u)]$ is the line spanned by $\bar{p}(u) - \bar{q}(u)$. Changing the parameter u by $u^{1/m}$ for some integer m if necessary, we may assume that there are lifting real analytic curves p(u) and q(u) in $\overline{M(\mathcal{F})}$ and $M(\mathcal{G})$ respectively so that $\bar{p}(u) = \phi(p(u))$ and $\bar{q}(u) = \phi(q(u))$ respectively. We may assume that p(0) = q(0) and let $\eta = p(0) \in M(\mathcal{G})$. Let $\mathcal{G} = \{J_1, \ldots, J_m\}$. By Proposition (2.5), we can write $\mathcal{F} = \{J_{i,j} \ ; \ i = 1, \ldots, m, \ i = 1, \ldots, \nu_i \}$ where $J_{i,j} \subset J_i$ for $j = 1, \ldots, \nu_i$.

THEOREM (3.2). \overline{S} is a regular stratification with the unique tangential limits property. Namely (i) T is generated by

$$\left\{ \sum_{i=1}^{m} \lambda_{i} X'(\eta_{J_{i}}) \; ; \; \sum_{i=1}^{m} \lambda_{i} = 0 \; \right\} \bigcup \left\{ X^{(j)}(\eta_{J_{i}}), \; 1 \leq i \leq m, \; 2 \leq j \leq \nu_{i} \; \right\}.$$

(ii) (Regularity) $\gamma \in T$.

PROOF: By Proposition (2.11), the vectors $\lambda_1 X'(p(u)_{J_{1,1}}) + \cdots + \lambda_m X'(p(u)_{J_{m,1}})$ with $\sum_{i=1}^m \lambda_i = 0$ are contained in $T_{p(u)}V(|\mathcal{F}|)$. Thus by taking the limit as $u \to 0$, we see that $\sum_{i=1}^m \lambda_i X'(\eta_{J_i}) \in T$. This gives only a subspace of T of dimension m-1. We still need $\nu_1 + \cdots + \nu_m - m$ independent vectors to generate T. For this purpose, we apply Lemma (2.15). We know that $X'_k(p(u)_{J_{i,1}}, \ldots, p(u)_{J_{i,k}}) \in T_{p(u)}V(|\mathcal{F}|)$ $(2 \le k \le \nu_i, 1 \le i \le m)$. We take the limits of these vectors as $u \to 0$ and we apply Lemma (2.15) to obtain that $X^{(j)}(\eta_{J_i}) \in T$ $(2 \le j \le \nu_i, 1 \le i \le m)$. Now we apply Lemma (2.17) to see that the vectors $\{X^{(j)}(\eta_{J_i}); 1 \le i \le m, 1 \le j \le \nu_i\}$ are linearly independent. This completes the proof of (i).

Now we consider the regularity (ii). Using the equality $\sum_{j=1}^{\nu_i} |J_{i,j}| = |J_i|$, we have

(3.3)
$$\bar{p}(u) - \bar{q}(u) = \sum_{i=1}^{m} \sum_{j=1}^{\nu_i} |J_{i,j}| \left(X(p(u)_{J_{i,j}}) - X(q(u)_{J_i}) \right).$$

Using Proposition (2.14), we can write

(3.4)
$$X(p(u)_{J_{i,j}}) - X(q(u)_{J_i}) = \sum_{h=1}^{j} \alpha_{i,j,h}(u) X_{h+1}(q(u)_{J_i}, p(u)_{J_{i,1}}, \dots, p(u)_{J_{i,h}})$$

where $\alpha_{i,j,h}(u)$ is defined by

(3.5)
$$\alpha_{i,j,h}(u) = (p(u)_{J_{i,j}} - q(u)_{J_i}) \prod_{k=1}^{h-1} (p(u)_{J_{i,j}} - p(u)_{J_{i,k}}), \quad h = 1, \dots, \nu_i.$$

Substituting (3.4) in (3.3), we obtain

(3.6)
$$\bar{p}(u) - \bar{q}(u) = \sum_{i=1}^{m} \sum_{h=1}^{\nu_i} \alpha_{i,h}(u) X_{h+1}(q(u)_{J_i}, p(u)_{J_{i,1}}, \dots, p(u)_{J_{i,h}}).$$

where $\alpha_{i,h}(u) = \sum_{j=h}^{\nu_i} |J_{i,j}| \alpha_{i,j,h}(u)$. In particular, we have

(3.7)
$$\alpha_{i,1}(u) = \sum_{i=1}^{\nu_i} |J_{i,j}| \left(p(u)_{J_{i,j}} - q(u)_{J_i} \right).$$

We define a non-negative integer β by

(3.8)
$$\beta = \min \{ \text{order } (\alpha_{i,h}(u)) ; i = 1, ..., m, h = 1, ..., \nu_i \}$$

and let $\alpha_{i,h}(u) = \alpha_{i,h}u^{\beta}$ + (higher terms). Then (3.6) and Lemma (2.15) imply that

$$\bar{p}(u) - \bar{q}(u) = \left(\sum_{i=1}^{m} \sum_{h=1}^{\nu_i} \alpha_{i,h} X^{(h)}(\eta_{J_i})/h!\right) u^{\beta} + (\text{higher terms}).$$

By the Generalized Vandermonde formula (Lemma (2.17)), we can see easily that

(3.10)
$$\sum_{i=1}^{m} \sum_{h=1}^{\nu_i} \alpha_{i,h} X^{(h)}(\eta_{J_i})/h! \neq 0 \text{ and } \gamma = \left[\sum_{i=1}^{m} \sum_{h=1}^{\nu_i} \alpha_{i,h} X^{(h)}(\eta_{J_i})/h! \right].$$

Here [v] denotes the line generated by the vector v. Thus the assertion (ii) of Theorem (3.2) follows immediately from (i) and (3.10) and the following.

Assertion (3.11).
$$\sum_{i=1}^{m} \alpha_{i,1} = 0$$
.

PROOF: By (3.7) we have

$$\sum_{i=1}^{m} \alpha_{i,1}(u) = \sum_{i=1}^{m} \alpha_{i,1}t^{\beta} + (\text{higher terms}) = \sum_{i=1}^{m} \sum_{j=1}^{\nu_j} |J_{i,j}| p(u)_{J_{i,j}} - \sum_{i=1}^{m} |J_{i}| q(u)_{J_{i}} \equiv 0.$$

The last equality is derived from the fact that p(u) and q(u) are in the hyperplane L. Now the assertion is immediate from the above equality.

§4. $B_{\ell+1}$ -arrangement. Let R be the root system of type $B_{\ell+1}$ in $\mathbf{R}^{\ell+1}$. The corresponding arrangement \mathcal{H} consists of $2\binom{\ell+1}{2} + \ell + 1$ hyperplanes: $\{\xi_i \pm \xi_j = 0\}$ and $\{\xi_i = 0\}$. The Weyl group

W is isomorphic to a semi-direct product of the symmetric group $S_{\ell+1}$ and the abelian group $(\mathbf{Z}/2\mathbf{Z})^{\ell+1}$ (Chapter 6, [1]). The invariant polynomial ring is generated by

(4.1)
$$t_i = \sum_{\tau \in S_{\ell+1}} \xi_{\tau(1)}^2 \cdots \xi_{\tau(i)}^2, \quad i = 1, \dots, \ell+1.$$

We will use the following generators.

(4.2)
$$\zeta_i = \xi_1^{2i} + \dots + \xi_{\ell+1}^{2i} \quad i = 1, \dots, \ell+1.$$

Let $\Phi: \mathbf{C}^{\ell+1} \to \mathbf{C}^{\ell+1}/W \cong \mathbf{C}^{\ell+1}$ be the map defined by $\xi \mapsto (\zeta_1(\xi), \ldots, \zeta_{\ell+1}(\xi))$. We take $S = S_{min}$. The stratification S can be described as follows. Let \mathcal{E}_1 be the set of the subdivisions of the non-empty subsets of $\{1, \ldots, \ell+1\}$. Namely an element $\mathcal{F} \in \mathcal{E}_1$ can be written as $\mathcal{F} = \{I_1, \ldots, I_k\}$ where each I_i is non-empty and $I_i \cap I_j = \emptyset$ for $i \neq j$. Let $S(\mathcal{F}) = \bigcup_{i=1}^k I_i$ and $\mathcal{F}^c = \{1, \ldots, \ell+1\} - S(\mathcal{F})$. Let \mathcal{E}_2 be the set of the partitions of the integer m for $m = 1, \ldots, \ell+1$. There is a canonical surjective mapping from \mathcal{E}_1 to \mathcal{E}_2 by $\mathcal{F} \mapsto |\mathcal{F}| = \{|I_1|, \ldots, |I_k|\}$. Let

$$M(\mathcal{F}) = \{ \xi \in \mathbf{C}^{\ell+1} ; (i) \xi_i = 0 \Leftrightarrow i \in \mathcal{F}^c, (ii) \xi_i^2 = \xi_j^2 \Leftrightarrow \{i, j\} \subseteq \exists I_s \}$$

We omit $\mathcal{M} = \{\{1\}, \ldots, \{\ell+1\}\}$ and $|\mathcal{M}|$ from \mathcal{E}_1 and \mathcal{E}_2 respectively as $M(\mathcal{M})$ and $V(|\mathcal{M}|)$ are nothing but the complement $C^{\ell+1} - |\mathcal{H}|$ and $C^{\ell+1} - \mathcal{D}$. Let $\alpha = \sum_{i=1}^k |I_i| - k$. Then $M(\mathcal{F})$ is a disjoint union of 2^{α} connected components corresponding th sign of $\xi_i = \pm \xi_j$ in the definition of $M(\mathcal{F})$. But they are in the same W-orbit. (Recall that the reflection along $\{\xi_i = 0\}$ is the multiplication by -1 in the i-th coordinate.) Thus each connected component is mapped by ϕ onto the same stratum of $\overline{\mathcal{S}}$. We define partial orderings in \mathcal{E}_1 and \mathcal{E}_2 as follows. Let $\mathcal{F} = \{I_1, \ldots, I_k\}$ and $\mathcal{G} = \{J_1, \ldots, J_n\}$. $\mathcal{F} \succeq \mathcal{G}$ if and only if (i) $\mathcal{F}^c \subseteq \mathcal{G}^c$, (ii) $\tilde{\mathcal{F}} \succeq \tilde{\mathcal{G}}$ in \mathcal{C}_1 . Here $\tilde{\mathcal{F}}$ is defined by $\{\mathcal{F}^c, I_1, \ldots, I_k\} \in \mathcal{C}_1$. Similarly we define $|\mathcal{F}| \succeq |\mathcal{G}|$ if and only if (i) $|\mathcal{F}^c| \leq |\mathcal{G}^c|$, (ii) $|\tilde{\mathcal{F}}| \succeq |\tilde{\mathcal{G}}|$ in \mathcal{C}_2 . Now the following propositions are completely parallel to Proposition (2.5) and Proposition (2.6).

PROPOSITION (4.3). Let $\mathcal{F}, \mathcal{G} \in \mathcal{E}_1$. The following conditions are equivalent.

$$(i) \ \overline{M(\mathcal{F})} \supseteq M(\mathcal{G}). \ (ii) \ \overline{M(\mathcal{F})} \cap M(\mathcal{G}) \neq \emptyset. \ (iii) \ \mathcal{F} \succeq \mathcal{G}.$$

PROPOSITION (4.4). Let $\mathcal{F}, \mathcal{G} \in \mathcal{E}_1$. The following conditions are equivalent.

(i)
$$\phi(M(\mathcal{F})) = \phi(M(\mathcal{G}))$$
. (ii) There exists a $g \in W$ such that $g(M(\mathcal{F})) = M(\mathcal{G})$. (iii) $|\mathcal{F}| = |\mathcal{G}|$.

Thus for a $K \in \mathcal{E}_2$ we can define $V(K) = \phi(M(\mathcal{F}))$ for any $\mathcal{F} \in \mathcal{E}_1$ such that $|\mathcal{F}| = K$. Now we study the tangential map. Note that

(4.5)
$$d\Phi_{\xi}(\frac{\partial}{\partial \xi_i}) = 2\xi_i X'(\xi_i^2).$$

For each $I \subset \{1, ..., \ell+1\}$, we define $m(I) = \min \{i : i \in I\}$. Let $\mathcal{F} = \{I_1, ..., I_k\} \in \mathcal{E}_1$ and let $\xi \in \mathcal{F}$. We define $\tilde{\xi} \in M(\mathcal{F})$ by

(4.6)
$$\tilde{\xi}_j = \begin{cases} \xi_{m(I_i)} & \text{if } j \in I_i \\ 0 & \text{if } j \in \mathcal{F}^c. \end{cases}$$

It is easy to see that $\tilde{\xi}$ is in the W-orbit of ξ . We also define

$$\frac{\widetilde{\partial}}{\partial \xi_{I_i}} = \frac{1}{|I_i|} \sum_{j \in I_i} \left(\xi_j / \xi_{m(I_i)} \right) \frac{\partial}{\partial \xi_j}.$$

Note that $\xi_j/\xi_{m(I_i)} = \pm 1$ and $\xi_j^2 = \xi_{m(I_i)}^2 = \tilde{\xi}_{I_i}^2$ for each $j \in I_i$. It is easy to see that $\frac{\widetilde{\partial}}{\partial \xi_{I_i}} \in T_\xi M(\mathcal{F})$ and $d\Phi_\xi(\frac{\widetilde{\partial}}{\partial \xi_{I_i}}) = 2\tilde{\xi}_{I_i}X'(\tilde{\xi}_{I_i}^2)$. Now Proposition (2.11) and Lemma (2.15) can be translated into the following form.

PROPOSITION (4.7). Let $\mathcal{F} = \{I_1, \ldots, I_k\} \in \mathcal{E}_1$. Then

- (i) The dimension of $T_{\xi}M(\mathcal{F})$ is k and it is generated by $\left\{\widetilde{\frac{\partial}{\partial \xi_{I_{i}}}};\ i=1,\ldots,k\right\}$.
- (ii) The restriction $\phi: M(\mathcal{F}) \to V(|\mathcal{F}|)$ is a finite covering.
- (iii) $V(|\mathcal{F}|)$ is non-singular and $T_{\phi(\xi)}V(|\mathcal{F}|)$ is generated by $\{X'(\tilde{\xi}_L^2) ; i=1,\ldots,k\}$.

LEMMA (4.8). Let \mathcal{F} be as in Proposition (4.7). Then

$$X'_s(\tilde{\xi}_{I_1}^2,\ldots,\tilde{\xi}_{I_t}^2) \in T_{\phi(\xi)}V(|\mathcal{F}|)$$
 for $s=1,\ldots,k$.

Let $\mathcal{F} \succeq \mathcal{G}$ and let $\mathcal{G} = \{J_1, \ldots, J_m\}$. We can write $\mathcal{F} = \{J_{i,j} \; ; \; i = 0, \ldots, m, \; j = 1, \ldots, \nu_i\}$ so that $J_{i,j} \subset J_i$ where $J_0 = \mathcal{G}^c$ by definition. Let $\bar{p}(u)$, $\bar{q}(u)$, q, p(u), q(u), q, p(u), q(u), q, p(u), q(u), q(

THEOREM (4.9). \overline{S} is a regular stratification with the unique tangential limits property. Namely (i) T is generated by $\{X^{(j)}(\tilde{\eta}_{J_i}^2) ; i=0,\ldots,m, j=1,\ldots,\nu_i\}$. (ii) (Regularity) $\gamma \in T$.

For the stratification of discriminant variety of D_{ℓ} , see [8].

REFERENCES

^[1] N. Bourbaki, "Groupes et Algèbres de Lie, Chapitres 4,5 et 6," Hermann, Paris, 1968.

^[2] E. Brieskorn, Sur les groupes de tresses, in "Séminaire Bourbaki 1971/72, Lecture Note in Math. 317," Springer, Berlin/Heidelberg/New York, 1973, pp. 21-44.

^[3] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math 17 (1972), 273-302.

- [4] S. Lang, "Algebra," Addison-Wesley, Amsterdam-London-Manila-Singapore-Sydney-Tokyo, 1965.
- [5] J. Mather, Stratifications and Mappings, in "Dynamical Systems," edited by Peixoto, 1973, pp. 195-232.
- [6] P. Orlik, Introduction to arrangements, preprint.
- [7] H. Whitney, Tangents to analytic variety, Ann. Math. 81 (1964), 496-546.
- [8] M. Oka, On the stratification of the discriminant varieties, Kodai Math. J., to appear.

Oh-Okayama, Meguroku-ku, Tokyo 152, Japan