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We introduce a parameter of indexing functions and show its relation to lower bounds for
sorting algorithms on mesh-connected computers that follow from the Chain Theorem.
We give lower and upper bounds for the parameter. Conclusions from our results
are: (1) no matter what indexing function is used, any sorting algorithm must execute
$2.27n+O(1)$ steps; (2) the best lower bound true for all indexing functions that we can
hope to prove by the Chain Theorem argument is $2.5n+O(1)$ .

1 Introduction

In this paper we study a combinatorial problem that arises in considerations of

sorting problems on a mesh-connected computer. As usual in such cases, it is of main

concern to design fast algorithms and to prove lower bounds for the complexity of the

problem to get an idea how good designed algorithms are.

Sorting on a mesh-connected computer has received much attention lately ([HII,HI2,

Kl,$K2,MSS$ , SS]). It turns out that the efficiency of a sorting algorithm depends on the

indexing function used (see [HI1]). For a snake-like row-major indexing scheme an

algorithm running in $3n+o(n)$ steps is known (Schnorr and Shamir [SS]), and it is

also known to be optimal (Kunde [K1], Schnorr and Shamir [SS]). So far, no sorting

algorithm is known that would run in $(3-\epsilon)rt+o(n)$ steps, for some $\epsilon>0$ . Also, the

snake-like row-major is the only (up to trivial variations) indexing schemes for which

fastest algorithms are known to be optimal.
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The element whose final location is in the processors in a corner of the mesh may

be ini ially stored in the processor in the opposite corner, and it takes at least $2n$ steps

merely to move it to its proper final destination. This “structure based” lower bound is

too weak. Only recently, a more powerful lower bound technique, known as joker-zone

method, was discovered by Kunde [K1] and Schnorr and Shamir [SS]. Their method was

subsequently refined by Han and Igarashi [H1]. They developed an argument based on

the so called Chain Theorem, and proved that $(1+\sqrt{6}/2)n+\Theta(1)$ is a lower bound for

the running time of any sorting algorithm, no matter what indexing function is used.

The main goal of this paper is to study the power of the Chain Theorem of [HI1]

in proving lower bounds for sorting algorithms. To this end, for an indexing function

$I$ we define a combinatorial parameter called stretch $s(I)$ , and show that lower bounds

implied by the Chain Theorem directly depend on this parameter. Our first main result

provides a lower bound for $s(I)$ ; this allows to prove that independent of an indexing

function, every sorting algorithm requires at least 2. $27n$ steps, an improvement over

the old bound of $(1+\sqrt{6}/2)n+\Theta(1)$ of [HI1]. Our second result exhibits an indexing

function $I$ with $s(I)=0.5n+\Theta(1)$ .

2 Preliminaries and problem formulation

We consider a general model of a synchronous $n\cross n$ mesh-connected processor

array as given in [SS]. It is denoted by $M$ [$0..m$ , O..m]; here, and throughout the paper

$m=n-1$ . Each $pr_{-}ocessor$ at location $(i,j),$ $0\leq i,$ $j\leq m$ , is denoted by $M_{-}[i,j]$ . The

distance between $M[i_{1}, i_{2}]$ and $M[j_{1},j_{2}]$ is defined as $|i_{1}-j_{1}|+|i_{2}-j_{2}|$ and denoted

by $d((i_{1}, i_{2}),$ $(j_{1}, j_{2}))$ . Processor $M[i_{1}, i_{2}]$ is directly connected with processor $M[j_{1},j_{2}]$ if

and only if $d((i_{1}, i_{2}),$ $(j_{1},j_{2}))=1$ . All $n^{2}$ processors work in parallel with a single clock,

but they may run different programs. As for sorting computation, the initial contents

of $M$ [$0..m$ , O..m] are assumed to be $n^{2}$ items drawn from a totally ordered set, where

each processor has exactly one item. The final contents of $M$ [$0..m$ , O..m] is the sorted

sequence of the items in a specific order. In one step each processor can communicate

with all of its directly connected neighbor processors. The interchange of items in a pair
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of directly connected processors or the replacement of the item in a $pro$cessor with the

item in one of its directly connected processors can be done in one step. The computing

time is defined as the number of parallel steps of such basic operations to reach the final

configuration.

A one-to-one function $I$ : $\{0,1, \ldots, m\}^{2}arrow\{1,2, \ldots, n^{2}\}$ is called an indexing function.
Given an indexing function $I$ , the goal is to sort $n^{2}$ items initially stored in the $n^{2}$

processors so that when the algorithm terminates, the item of rank $k$ (the k-th smallest)

is located in processor $M[i, j]$ , where $I(i,j)=k$ .

A subset of $M$ [O..m, 0. $.m$] is called a region. For a region $S$ the number of processors

in $S$ will be called the cardinality of $S$ and will be denoted $|S|$ . A set $\{(i_{11}, i_{12}), \ldots, (i_{c1}, i_{c2})\}$

is called a chain under indexing function $I$ (or a chain if $I$ is understood) if $\{I(i_{11}, i_{12}),$
$\ldots$ ,

$I(i_{c1}, i_{c2})\}$ is a set of consecutive integers. The length of such a chain is $c$ . If $(i_{1}, i_{2})$

is in $\{0, m\}^{2}$ and $x$ is a positive real number, $\{M[j_{1},j_{2}] : d((i_{1}, i_{2}), (j_{1},j_{2}))\leq x\}$ is

called a corner region and is denoted by CREG$((i_{1}, i_{2});x)$ . An open corner region is

the set $\{M[j_{1},j_{2}] : d((i_{1}, i_{2}), (j_{1},j_{2}))<x\}$ , and it is denoted by $CREG_{o}((i_{1}, i_{2});x)$ .

The set of all processors that are at distance at least $m-x$ from all four $pro$cessors

$M[0,0],$ $M[0, m],$ $M[m, 0]$ , and $M[m, m]$ is called a center region and is denoted by

CENT$(x)$ . Throughout the paper, for any two real numbers $a$ and $b,$ $[a, b]$ denotes the

set of all integers $j$ , such that $a\leq j\leq b$ .

Consider now an indexing function $I$ and a corner region $R=CREG_{O}((i,j);x)$ ,

for some real $x,$ $0\leq x\leq 2m$ . Let $c$ be the length of a longest chain contained in $R$ ,

and let $t(R)$ be the smallest real number $t$ such that $c\leq|CREG((i, j);t)|$ . Finally,

put $s(R)=x-t(R)$ . The stretch $s(I)$ of $I$ is defined as $s(I)= \sup s(R)$ , where the

supremum is taken over all corner regions $R$ . The next theorem has been derived in

[HI1] and is called the Chain Theorem.

Theorem 2.1 (Chain Theorem [HI1]) Let I be an indexing function. Then, every al-

gorithm for sorting $n^{2}$ items into the order specified by I takes at least $2n+s(I)+\Theta(1)$

steps.

In this paper we study the parameter $s_{n}= \min s(I)$ , where the minimum is taken
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over all possible indexing functions on an $n\cross n$ mesh of processors. We show that

0. $27n\leq s_{n}$(hence, every sorting algorithm must require at least 2. $27n$ steps), and that

$s_{n}\leq 0.5n$ (hence, the best universal lower bound that can be obtained using the Chain

Theorem only is 2. $5n$ ).

3 Lower bounds

In this section we will show two theorems each giving a lower bound for $s_{n}$ . The

first one gives the lower bound initially presented in [HI1]. We present here a different

proof of that result which is simpler than the original one and helps better understand

the approach behind the proof of the improved lower bound for $s_{n}$ (Theorem 3.3).

Lemma 3.1 Let $a$ be a real number, $0\leq a\leq 1/2$ .

(a) $I^{-1}([an^{2}, (1-a)n^{2}])\subseteq CENT((1-\sqrt{2a})n+s(I)+\Theta(1))$.

(b) Let $x_{a}= \inf\{x:|CENT(x)|\geq|[an^{2}, (1-a)n^{2}]|\}.We$ have

$x_{a}=\{n(1-\sqrt{a})+\Theta(1)n\sqrt{1/2-a}+\Theta(1)$ $ifif0\leq a\leq 1/41/4<a\leq 1/2$

Proof. (a) Let $b$ be an integer, $b\in[an^{2}, (1-a)n^{2}]$ . Suppose $I^{-1}(b)$ er CENT$((1-$

$\sqrt{2a})n+s(I)+1)$ . Then, for some $(i, j)\in\{0, m\}^{2},$ $I^{-1}(b)\in CREG_{0}((i,j);n\sqrt{2a}-s(I)-2)$ .

Let $d((i,j),$ $I^{-1}(b))=x$ and let $R=CREG((i,j),$ $2m-x$ ). Clearly, $x<n\sqrt{2a}-s(I)-2$ ,

and the longest chain contained in $R$ has length at most $(1 -a)n^{2}$ . Hence, $t(R)\leq$

$2n-n\sqrt{2a}$ . Consequently, $s(R)=2m-x-t(R)>s(I)$ , a contradiction.

(b) Follows directly from the following formula for the number of elements in a center

reglon.

$|CENT(x)|\leq\{\begin{array}{l}2x^{2}+\Theta(x)if0\leq x\leq m/2n^{2}-2(m-x)^{2}+O-(m-x)ifm/2<x\leq m\square \end{array}$

Theorem 3.1 (Han and Igarashi, [HI1]) $s_{n}\geq(\sqrt{6}/2-1)n+\Theta(1)$ .

Proof. Let us consider an arbitary indexing function $I$ . Under the notation from

4



149

Lemma 3.1 we have

$x_{a}\leq n+s(I)-\sqrt{2a}n+\Theta(1)$

(this follows from Lemma 3.1 $(a)$ ). Hence (by Lemma 3.1 $(b)$ ),

Maximizing the right hand side with respect to $a$ we get $s(I)\geq(\sqrt{6}/2-1)n+\Theta(1)$ , as

claimed. $\square$

Next, we present an improvement on this result. We first prove an auxiliary lemma.

Lemma 3.2 Consider two center regions $B_{1}$ and $B_{2}$ and regions $C_{i}$ and $D_{i},$ $i=1,2,3,4$

as shown in Fig. 3.1. Define $H_{i}=C_{i}\cup D_{i}\cup C_{i+1},$ $i=1,2,3_{f}$ and $H_{4}=C_{1}\cup D_{4}\cup C_{4}$ .

Put $B=B_{1}-B_{2},$ $b=|B|$ , and $d=|D_{1}|$ (regions $D_{i}$ have all the same size). Assume

that more than $b/2+2d$ elements of $B$ are colored with blue and green and suppose that

there is at least one element of each color. Then at least one of the regions $H_{i}$ contains

elements of both colors.

Proof. Without loss of generality we may assume that there are no less blue elements

than green elements.

Case 1. There exists a green element in $\bigcup_{i=1}^{4}C_{i}$ . Without loss of generality we may

assume that there is a green element in $C_{1}$ . Since more than $b/4+d$ elements are

colored blue, there exists a blue element not in $C_{3}\cup D_{2}\cup D_{3}$ , and the assertion of the

lemma holds.

Case 2. All green elements are in $\bigcup_{i=1}^{4}D_{i}$ . Without loss of generality we may assume

that there is a green point in $D_{1}$ . Since more than $b/2+2d$ elements in $B$ are colored

and no green element is in $C_{1}\cup C_{2}$ , there is at least one blue element in $C_{1}\cup C_{2}$ . Thus,

the assertion of the lemma holds in this case, too. $\square$

Theorem 3.2 $s_{n}\geq 0.27n+\Theta(1)$ .

Proof. Let $I$ be an arbitary indexing function. Suppose that $s(I)<0.27n$ . Consider

two sets $A_{1}=I^{-1}([0.21n^{2},0.79n^{2}])$ and $A_{2}=I^{-1}([0.395n^{2},0.605n^{2}])$ . By Lemma 3.1(a),
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Figure 3. 1 Regions on the mesh-

connected model Figure 3. 2 Regions for the proof

of Theorem 3. 2

for every sufficiently large $n,$ $A_{i}\subseteq B_{i}$ , where $B_{i}=CENT(x_{i}m),$ $x_{1}=0.622$ and

$x_{2}=0.3812$ (recall that $m=n-1$ ). Regions $B_{i}$ and other regions we will consider

in the proof are shown in Fig. 3.2. Let $B=B_{1}-B_{2}$ and $l=0.1123024$. Color all

elements in $I^{-1}([0.21n^{2},0.395n^{2}])$ in blue and all elements in $I^{-1}([0.605n^{2}\}0.79n^{2}])$ in

green. Altogether, there are 0. $37n^{2}+\Theta(1)$ colored elements. These colored elements

must be located in $B_{1}$ . At most $|B_{2}|-(0.21n^{2})+\Theta(1)$ of them can be located in $B_{2}$ , as

$A_{2}\subseteq B_{2}$ and $|A_{2}|=0.21n^{2}+\Theta(1)$ . Since $|B_{2}|=2(x_{2}m)^{2}+\Theta(m)=2(x_{2}m,)^{2}+\Theta(m)$ ,

at least 0. $2893m^{2}+\Theta(m)$ of the colored elements are located in $B$ . In particular, it

follows that $B$ contains both blue and green points. Observe that $|B|=2(x_{1}m)^{2}-$

$2(x_{2}m)^{2}-4(x_{1}m-m/2)^{2}+\Theta(m)$ . Denote by $d$ the common cardinality of regions $D_{i}$

and observe that $d=\sqrt{2}l(x_{1}-x_{2})m^{2}+\Theta(m)$ . Hence, the number of $colo_{-}red$ elements

in $B$ is bigger (for sufficiently large n) than $|B|/2+2d$ . Thus, by Lemma 3.3, there are

both blue and green points in one of the regions $H_{i}$ (see notation of Lemma 3.3), say

in $H_{3}$ . Consider now set $A_{2}=I^{-1}([0.395n^{2},0.605n^{2}])$ . It has 0. $21n^{2}+\Theta(1)$ elements.

All of them belong to $B_{2}$ . Notice, that the cardinality of the region EFGH is given

by $(x_{2}m)^{2}+\sqrt{2}lx_{2}m^{2}+\Theta(m)$ and thus it contains at most 0.$206m^{2}+\Theta(m)$ elements.

Therefore, for every sufficiently large $n$ , there is an element in $A_{2}$ that belongs to

$B_{2}$-EFGH. Let $R$ be the corner region determined by the line $PQ$ and containing

$H_{1}$ . It follows that the longest chain in $R$ has length at most 0. $395n^{2}+\Theta(1)$ . Thus,
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$\square$

$s(R)\geq 0.27n+\Theta(1)$ , as required.

We conclude this section with a theorem being a corollary of Theorems 2.1 and 3.2.

Theorem 3.3 No matter what indexing function is used, any algorithm for sorting $n^{2}$

items on a mesh-connected computer takes at least $2.27n+\Theta(1)$ steps.

4 Limit of the chain argument

In this section we study the power of the chain argument. It turns out that the best

lower bound we can hope to obtain using this type of an argument is $2.5n+\Theta(1)$ . To

justify this claim we will construct an indexing function $I$ with $s(I)\leq 0.5n+\Theta(1)$ .

We denote $CREG_{0}((i,j),$ $\lceil m/2\rceil$ ), for $i,j\in\{0,m\}^{2}$ by $A_{i,j}$ and CENT$(\lceil m/2\rceil)$ by

$C$ . Let $a=|A_{i,j}|$ (it does not depend on $i$ and j) and $c=|C|$ . Let us assume now that

an indexing function $I$ satisfies the following requirements:

(1) Processors in $A_{0,0}$ (resp. $A_{0,m}$ ) will be assigned odd (resp. even) integers from

$\{1, \ldots, 2a\}$ , processors in $C$ will be assigned elements from $\{2a+1,2a+2,$ $\ldots,$

$n^{2}-$

$2a\}$ , and processors in $A_{m,0}$ (resp. $A_{m,m}$ ) will be assigned odd (resp. even) integers

from $\{n^{2}-2a+1,n^{2}-2a+2, \ldots, n^{2}\}$ .

(2) For every $x=M[i_{1},j_{1}]$ and $y=M[i_{2}, j_{2}]$ ,

(a) If $x$ and $\dot{y}$ are both in $A_{0,0}$ or in $A_{m,m}$ and $i_{1}-j_{1}<^{\{}i_{2}-j_{2}$ , then $I(x)>I(y)$ .

(b) If $x$ and $y$ are both in $A_{0,m}$ or in $A_{m,0}$ and $i_{1}+j_{1}<i_{2}+j_{2}$ , then $I(x)>I(y)$ .

(c) If $x$ and $y$ are both in $C$ and $i_{1}<i_{2}$ , then $I(x)<I(y)$ .

An expample of an indexing function satisfying requirements (1) and (2) (for $n=9$)

is given in Fig. 4.1. It is clear that indexing functions satisfying (1) and (2) exist for

every positive $n$ .

Theorem 4.1 If an indexing function satisfies requirements (1) and (2) then $s(I)=$

$0.5n+\Theta(1)$ . Hence, $s_{n}\leq 0.5n+\Theta(1)$ .

Proof. To prove the theorem, we show that no matter what corner region $R=$
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CREG$((i,j);x)$ is used, $s(R)=x-t(R)\leq 0.5n+\Theta(1)$ . We consider first the case 1,

2, 3 and 4, the elements contained in the interior of region $B$ indicated with the bold

line in Fig. 4.2(a), (b) and (c), respectively, form a chain. (In this figure, we assume

that top leftmost corner contains $M[0,0]$ , and top rightmost corner contains processor

Figure 4.1 An indexing scheme Figure 4.2 Chains formed in regions

The length of this chain is equal to $|B|+\Theta(p)$ , where $|B|$ is the area of the polygon $B$

and $p$ is the perimeter of B. (Note that in (c) $B$ is the union ot two interior-disjoint

convex polygons.)

1. $0\leq x\leq 0.5m$ . In this case $s(R)\leq x\leq 0.5m$ , as required.

2. 0.$5m<x\leq m$ . In this case, (see Fig. $4.2(a)$ ) $|B|=3b^{2}/4$ and $p^{-}=\Theta(b)$ , where

$b=x-0.5m$ . Hence, $t(R)=b\sqrt{3/2}+\Theta(1)$ . Since $0<b\leq 0.5m,$ $s(R)=x-t(R)\leq$

$0.5m+\Theta(1)$ .

3. $m<x\leq 1.5m$ . In this case, (see Fig $4.2(b)$ ) $|B|=(2m^{2}-2bm-b^{2})/4$ and

$p=\Theta(m)$ , where $b=1.5m-x$ . Since 0. $1875m^{2}+\Theta(m)\leq|B|\leq 0.5m^{2},$ $s(R)=$

$+\Theta(1)$ . As $0\leq b<0.5m$ , also in this case we have $s(R)\leq 0.5m+\Theta(1)$ .

4. 1.$5m<x\leq 2m$ . $|B|=0.75m^{2}+(x-1.5m)^{2}/2$ and $p=\Theta(m)$ . $|B|\geq 0.75m^{2}+$
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$s(R)\leq 0.5m+\Theta(1)$ follows.

In the other three cases for the corner we consider identical subcases and get the same
formulas for $t(R)$ and $s(R)$ as in the corresponding subcase for the corner $(m, m)$ . This
completes the proof.

$\square$

5 Concluding remarks

We showed that $0.27n+\Theta(1)\leq s_{n}\leq 0.5n+\Theta(1)$ . Improving the lower bound on

$s_{n}$ would give a better lower bound for sorting on a mesh-connected computer. The

upper bound on $s_{n}$ , which we proved by exhibiting a class of indexing functions $I$ with

$s(I)=0.5n+\Theta(1)$ shows the limit of the Chain Theorem in proving lower bounds.

Although the Chain Theorem is strong enough to prove optimality (up to the leading

term) of the $3n+o(n)$ algorithm of Schnorr and Schamir [SS], it seems unlikely that an

indexing function exists that would admit a sorting algorithm running in $(3-\epsilon)+o(n)$

steps. So, in general, stronger lower bound techniques are needed.

Recently Kunde also showed a lower bound of 0. $25n$ on $s_{n}$ [K3]. However, our lower

bound of 0. $27n$ on $s_{n}$ is still the best one known. Using a more complicated indexing

scheme we can show an upper bound of 0. $46n$ on $s_{n}$ [HIT2].
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