ON KNESER TYPE THEOREM FOR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH THE PHASE SPACE \mathscr{C}_{γ} IN BANACH SPACES

Jong Son SHIN

Department of Mathematics, Korea University
Ogawa, Kodaira, Tokyo 187, Japan

§ 1. Introduction.

Let $R=(-\infty,\infty)$ and E be an infinite dimensional Banach space with norm $\|\cdot\|_E$. Let X=E or R. Denote by \mathscr{C}_{γ}^X , $\gamma\in R$, the space of continuous functions $\psi:(-\infty,0]\to X$ having the limit $\lim_{\theta\to -\infty} e^{\gamma\theta}\psi(\theta)$ with the norm $\theta\to -\infty$

$$|\psi|_{\mathcal{C}_{\gamma}} = \sup_{-\infty < \theta \le 0} e^{\gamma \theta} |\psi(\theta)|_{\chi}.$$

If $x:(-\infty,\sigma+a)\to X$, $0<a\leq\infty$, then for any $t\in(-\infty,\sigma+a)$ we define $x_t:(-\infty,0]\to X$ by $x_t(\theta)=x(t+\theta)$, $-\infty<\theta\leq0$.

The purpose of this paper is to give Kneser type theorem on the set of solutions for the Cauchy problem of the functional differential equation (FDE) with infinite delay in a Banach space (for brevity, CP(1.1)),

$$\frac{dx}{dt} = f(t, x_t), \quad x_{\sigma} = \varphi \in \mathcal{E}_{\gamma}, \quad (1.1)$$

under the condition that $f: [\sigma, \sigma+a] \times \mathcal{C}^E_{\gamma}(\phi, r) \to E, \quad \mathcal{C}^E_{\gamma}(\phi, r) := \{\psi \in \mathcal{C}^E_{\gamma} \mid |\phi-\psi|_{\mathcal{C}^E_{\gamma}} \le r\}, \text{ is a uniformly continuous mapping.}$ The

argument in the proof of the main theorem(Theorem 3.4) is besed on the idea in [9] and on properties of \mathscr{C}^E_{γ} . Our result extends the one obtained in [10] and is closely related to the one due to Kubiaczyk [2] for ordinary differential equations(ODE's).

§ 2. Some Lemmas.

In this section, we shall show a differential inequality and a comparison theorem. For a continuous function $w:(a,b)\to R$ and for $t\in(a,b)$, $(D_+w)(t)$, $(D_-w)(t)$ and $(\overline{D}_+w)(t)$ denote the right hand derivative, the left hand lower derivative and the right hand upper derivative, respectively.

Lemma 2.1. Let $w: [\sigma, \sigma+a) \to R$ be a continuous function such that $(D_+w)(t)$ exists for all $t \in [\sigma, \sigma+a)$. Then the following inequalities hold:

1)

$$\overline{D}_{+} \sup_{\sigma \le s \le t} w(s) \le |(D_{+}w)(t)|.$$

2) If $w(t) \ge 0$, then

$$\overline{D}_{+} \sup_{\sigma \leq s \leq t} e^{\gamma(s-t)} w(s) \leq \begin{cases} |(D_{+}w)(t)| & \text{if } \gamma \geq 0 \\ \\ |(D_{+}w)(t)| - \gamma \sup_{\sigma \leq s \leq t} e^{\gamma(s-t)} w(s) & \text{if } \gamma < 0. \end{cases}$$

<u>Proof.</u> For a proof of the assertion 1) refer to [1,6]. Set $u(t) = \sup\{w(s) | \sigma \le s \le t\}$, $z(t) = \sup\{e^{\gamma s} w(s) | \sigma \le s \le t\}$ and $I = [\sigma, \sigma + a)$. Clearly, z(t) is nondecreasing in $t \in I$. Let any $t \in I$ be a fixed number and $t \in I$. Then we have, for $t \in I$ be a

$$z(\tau+h) - z(\tau) = e^{\gamma t} 0 w(t_0) - z(\tau) \qquad \text{for some} \quad t_0 \in [\tau, \tau+h]$$

$$\leq e^{\gamma \tau} \sup_{\sigma \leq s \leq \tau+h} w(s) - e^{\gamma \tau} \sup_{\sigma \leq s \leq \tau} w(s)$$

$$= e^{\gamma \tau} \{u(\tau+h) - u(\tau)\},$$

from which it follows that

$$\overline{D}_{+} \sup_{\sigma \leq s \leq t} e^{\gamma s} w(s) \leq e^{\gamma t} \overline{D}_{+} \sup_{\sigma \leq s \leq t} w(s).$$

It is easy to prove the assertion 2) in case where γ is a negative number. Let $\gamma \geq 0$. Then by the assertion 1) we have

$$\begin{split} \overline{\mathbb{D}}_{+} \sup_{\sigma \leq s \leq t} \mathrm{e}^{\gamma(s-t)} w(s) & \leq -\gamma \mathrm{e}^{-\gamma t} \sup_{\sigma \leq s \leq t} \mathrm{e}^{\gamma s} w(s) + \mathrm{e}^{-\gamma t} \overline{\mathbb{D}}_{+} \sup_{\sigma \leq s \leq t} \mathrm{e}^{\gamma s} w(s) \\ & \leq -\gamma \mathrm{e}^{-\gamma t} \sup_{\sigma \leq s \leq t} \mathrm{e}^{\gamma s} w(s) + \mathrm{e}^{-\gamma t} |\mathbb{D}_{+} (\mathrm{e}^{\gamma t} w(t))| \end{split}$$

 $\leq |(D_+ w)(t)|$

as required.

Lemma 2.2. Let $\gamma \geq 0$ and $U: [\sigma, \sigma+a] \times R^+ \rightarrow R^+$ be a continuous function, where $R^+ = [0, \infty)$. Assume that

(1) $u^*: [\sigma, \sigma + a] \to R^+$ is the maximal solution of the scalar differential equation

$$\frac{du}{dt} = U(t, u(t)), \quad u(\sigma) = u_0 \ge 0$$
; and

(2) m: $(-\infty,\sigma+a] \to R$ is a continuous function such that $m_{\sigma} \in \mathcal{C}_{\gamma}^{R}$ and $m(t) \geq 0$ on $[\sigma,\sigma+a]$, and that, for every $t_{1} \in [\sigma,\sigma+a]$ such that $|m_{t_{1}}|_{\mathcal{C}_{\gamma}^{R}} = m(t_{1})$, the differential inequality

$$(\underline{D}_{m})(t_{1}) \not\leq U(t_{1}, m(t_{1}))$$

is satisfied.

If
$$\lim_{\sigma \to \mathcal{C}_{\gamma}^{R}} \leq u_{0}$$
, then

$$m(t) \le u^*(t)$$
 for $t \in [\sigma, \sigma+a]$.

 \underline{Proof} . For any $\epsilon > 0$ we denote by $u(t,\epsilon)$ any solution of the differential equation

$$\frac{d}{dt} u(t) = U(t, u(t)) + \varepsilon, \quad u(\sigma) = u_0 + \varepsilon. \quad (2.1)$$

Then, by Lemma 1.3.1 in [4], we have

$$\lim_{\varepsilon \to 0+} u(t,\varepsilon) = u^*(t)$$

uniformly on $[\sigma, \sigma+a]$. Thus it is sufficient to show that for every $\epsilon > 0$, sufficiently small,

$$m(t) \le u(t, \varepsilon)$$
 on $[\sigma, \sigma+a]$.

Suppose, on the contrary, that the set

$$Z = \{t \in [\sigma, \sigma+a] \mid m(t) > u(t, \epsilon)\}$$

is nonempty and define $t_1=\inf Z$. Then we have $t_1>\sigma$, because $\lim_{\sigma} |_{\mathscr{C}_{\gamma}^R} \leq u_0 < u_0 + \epsilon$. Moreover, since $m(t_1)=u(t_1,\epsilon)$ and $m(t) < u(t,\epsilon)$ for $t \in [\sigma,t_1)$, it is easy to see that

$$\underline{D}_{-}m(t_{1}) \geq \lim_{h \to 0^{-}} \inf_{h} \frac{1}{h} \{u(t_{1}+h,\epsilon) - u(t_{1},\epsilon)\}$$

=
$$U(t_1, m(t_1)) + \varepsilon$$
 by (2.1).

Hence, we have

$$\underline{\mathbf{D}}_{-}\mathbf{m}(\mathbf{t}_{1}) \rightarrow \mathbf{U}(\mathbf{t}_{1},\mathbf{m}(\mathbf{t}_{1})). \tag{2.2}$$

On the other hand, since $U(t,s) \ge 0$ and $u(t,\epsilon)$ is nondecreasing in t, we have

$$\begin{aligned} &|\mathsf{m}_{\mathsf{t}_1}|_{\mathcal{C}_{\gamma}^{\mathsf{R}}} &= \sup_{\theta \leq 0} \, \mathrm{e}^{\gamma \theta} |\, \mathsf{m}(\mathsf{t}_1 + \theta) \,| \\ &= \max \{ \sup_{\theta \leq \sigma - \mathsf{t}_1} \, \mathrm{e}^{\gamma \theta} |\, \mathsf{m}(\mathsf{t}_1 + \theta) \,| \,, \quad \sup_{\sigma - \mathsf{t}_1 \leq \theta \leq 0} \, \mathrm{e}^{\gamma \theta} |\, \mathsf{m}(\mathsf{t}_1 + \theta) \,| \,\} \\ &= \max \{ \sup_{s \leq 0} \, \mathrm{e}^{\gamma (s - \mathsf{t}_1 + \sigma)} |\, \mathsf{m}(\sigma + s) \,| \,, \,\, \mathsf{m}(\mathsf{t}_1) \,\} \\ &= \max \{ \mathrm{e}^{\gamma (\sigma - \mathsf{t}_1)} |\, \mathsf{m}_{\sigma} \,|_{\mathcal{C}_{\gamma}^{\mathsf{R}}} \,, \,\, \mathsf{m}(\mathsf{t}_1) \,\} \end{aligned}$$

$$= \max \{ \mathrm{e}^{\gamma (\sigma - \mathsf{t}_1)} |\, \mathsf{m}_{\sigma} \,|_{\mathcal{C}_{\gamma}^{\mathsf{R}}} \,, \,\, \mathsf{m}(\mathsf{t}_1) \,\}$$

$$= \max \{ \mathrm{e}^{\gamma (\sigma - \mathsf{t}_1)} |\, \mathsf{m}_{\sigma} \,|_{\mathcal{C}_{\gamma}^{\mathsf{R}}} \,, \,\, \mathsf{m}(\mathsf{t}_1) \,\}$$

Thus, from the assumption 2) we are led to the inequality

$$\underline{D}_{-}m(t_1) \leq U(t_1, m(t_1)),$$

which is incompatible with (2.2). This implies that the set Z is empty. Therefore the proof is completed.

A function $\eta:(\sigma,\sigma+a]\times[0,2r]\to\mathbb{R}$ is said to be a Kamketype function if the following conditions hold:

 (η_1) $\eta = \eta(t,s)$ is a real-valued function, defined on

 $(\sigma, \sigma+a] \times [0,2r]$, which is Lebesgue measurable in t for each fixed $s \in [0,2r]$ and is continuous in s for a.a. $t \in [\sigma, \sigma+a]$. (n_2) There exists a function α , defined on $(\sigma, \sigma+a]$ and locally integrable there, such that $|\eta(t,s)| \leq \alpha(t)$ for a.a. $t \in (\sigma, \sigma+a]$ and all $s \in [0,2r]$.

The following result is a modification of the one given by [8, Lemma 3.1]. The proof is obvious.

- Lemma 2.3. Let $\eta(t,s): (\sigma,\sigma+a]\times[0,2r] \to R$ be a Kamketype function and let $\{w^n\}$ and $\{z^n\}$ converge pontwise to functions w^0 and z^0 on $[\sigma,\sigma+a]$ as $n\to\infty$, respectively. Assume that
 - 1) there are a constant H > 0 such that
- $|w^{n}(t) w^{n}(s)| \le H|t-s|$ for all $t, s \in [\sigma, \sigma+a]$ and all $n \in \mathbb{N}$; and
 - 2) w^n and z^n are related to each other as

$$\frac{d}{dt} w^{n}(t) \leq \eta(t, z^{n}(t)) + \sigma_{n} \qquad \text{for } a.a. \ t \in (\sigma, \sigma + a),$$

where $\sigma_n \ge 0$ and $\sigma_n \to 0^{\circ}$ as $n^{\circ} \to \infty$.

Then

$$\frac{d}{dt}w^{0}(t) \leq \eta(t,z^{0}(t)) = \text{for } a.a. \ t \in (\sigma,\sigma+a).$$

§ 3. Main results.

For a bounded set $\,\Omega\,\,$ of $\,$ E, the $\alpha\text{-measure}$ of $\,\Omega\,\,$ is defined as follows :

 $\alpha(\Omega) = \inf\{d>0 \mid \Omega \text{ has a finite cover of diameter } (d).$

Let $\mathfrak I$ be the set of functions x on $(-\infty,\sigma+a]$, $0< a<\infty$, into E such that x is continuous on $[\sigma,\sigma+a]$ and $x_{\sigma}\in \mathscr C_{\gamma}$. For a subset $\mathfrak I\subset \mathfrak I$, we will use the following notations :

 $\mathfrak{A}(t) = (\mathbf{x}(t) \in \mathbf{E} \mid \mathbf{x} \in \mathfrak{A}), \quad \mathfrak{A}_t = (\mathbf{x}_t \mid \mathbf{x} \in \mathfrak{A}) \quad \text{for } t \in [\sigma, \sigma + a)$

and

 $\mathfrak{Al[c,d]} = \{x|[c,d] \mid x \in \mathfrak{A}\},$

where $c,d\in[\sigma,\sigma+a)$ and $x'\mid[c,d]$ is the restriction of x to [c,d]. We denote by C([a,b],E) the set of all the continuous functions $x:[a,b]\to E$ with supremum norm. For brevity, we denote \mathscr{C}_{γ} the phase space \mathscr{C}_{γ}^E when X=E. The following lemma is concerned with the phase space \mathscr{C}_{γ} .

Lemma 3.1 (Shin [7]). If \mathfrak{A}_{σ} is relatively compact in \mathscr{C}_{γ} and if $\mathfrak{All}[\sigma,t]$ is a bounded and equicontinuous set in $C([\sigma,t],E)$, then

$$\alpha(\mathfrak{A}_{t}) = e^{-\gamma t} \sup_{\sigma \leq s \leq t} e^{\gamma s} \alpha(\mathfrak{A}(s)).$$

Lemma 3.2 (Shin [9]). Let $\{S_n\}$ be a family of nonempty bounded subsets of a Banach space Y such that $S_{n+1} \subset S_n$ for $n \in \mathbb{N}$. If S_n is connected for every $n \in \mathbb{N}$ and if $\alpha(S_n) \to 0$ as $n \to \infty$, then the set $\bigcap_{n=1}^{\infty} cl S_n$ is nonempty, compact and n=1 connected, where cl A stands for the closure of A.

Assume that $f: [\sigma, \sigma+a] \times \mathcal{C}_{\gamma}(\phi, r) \to E$ is a uniformly continuous function such that $\|f\|_{E} \leq M$. Then a function $u: (-\infty, \sigma+\xi] \to E$, $0 < \xi \leq a$, said to be an $\frac{1}{n}$ -approximate solution for CP(1.1) if the following conditions hold:

- (1) u is continuous on J, $J=[\sigma,\sigma+\zeta]$, and $u_{\sigma}=\varphi\in\mathcal{B}$;
- (2) u has the right hand derivative $(D_+u)(t)$ such that $|(D_+u)(t)|_F \leq M \quad \text{on} \quad [\sigma,\sigma+\xi), \text{ and satisfies}$

$$u(t) = \varphi(0) + \int_{\sigma}^{\beta} (D_{+}u)(s)ds$$
 for $t \in J$; and

(3)
$$|(D_+u)(t) - f(t,u_t)|_E \le \frac{1}{n}$$
 for $t \in [\sigma,\sigma+\xi)$.

We denote by $Q^n[d]$ the set of all the $\frac{1}{n}$ -approximate solutions, defined on $(-\infty,\sigma+d]$, for CP(1.1). Then there is a $\xi>0$ and the set $Q^n:=Q^n[\xi]$ is nonempty(see [8, Lemma 2.1]).

<u>Lemma 3.3</u> (Shin [9]). Let $f : [\sigma, \sigma+a] \times \mathcal{Q}_{\gamma}(\phi, r) \to E$ be

unifomly continuous and $\|f\|_E \le M$ on $[\sigma, \sigma+a] \times \mathcal{O}_{\gamma}(\phi, r)$. Then Q^n is nonempty and $Q^n \|J\|$ is connected in C(J, E) for every $n \in \mathbb{N}$.

Now, we state the main result in this paper, which is related to the result due to Kubiaczyk[2] for ODE's.

Theorem 3.4. Assume that $f: [\sigma, \sigma+a] \times \mathcal{C}_{\gamma}(\phi, r) \to E$ is a uniformly continuous function such that $\|f\|_{E} \leq M$ on $[\sigma, \sigma+a] \times \mathcal{C}_{\gamma}(\phi, r)$, and that there exists a Kamke-type function $\omega(t,s): (\sigma, \sigma+a] \times [0,2r] \to \mathbb{R}^{+}$ such that

- 1) $\omega(t,s)$ is nondecreasing in s;
- 2) $\omega(t,z(t)) \rightarrow 0$ as $t \rightarrow \sigma+0$ and $\int_{\sigma}^{t} \omega(s,z(s))ds < \infty$

whenever $z: [\sigma, \sigma+a] \to [0,2r]$ is an absolutely continuous function satisfying the condition $(D^+z)(\sigma) = z(\sigma) = 0$, where $(D^+z)(\sigma) := \lim_{t\to\sigma+} \frac{z(t)}{t-\sigma}$;

3) $z \equiv 0$ is the unique absolutely continuous function, mapping $[\sigma, \sigma+a]$ into R^+ , which satisfies the initial condition $(D^+z)(\sigma)=z(\sigma)=0$ and the scalar differential equation

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \left\{ \begin{array}{ll} \omega(t,z(t)) & \gamma \geq 0 \\ & \text{for } \alpha.\alpha. \ t \in (\sigma,\sigma+a) \ ; \ \text{and} \\ \\ \omega(t,z(t)) - \gamma z(t) & \gamma < 0 \end{array} \right.$$

4)

$$\underline{\underline{D}}_{-}\alpha(A(t)) := \lim_{h \to 0^{-}} \inf_{-} \underline{\frac{1}{h}} [\alpha(A(t)) - \alpha((x(t) - hf(t, x_t) : x \in A))]$$

$$\leq \omega(t,\alpha(A_t))$$

for a.a. $t\in(\sigma,\sigma+a]$ and for any subset $A\subset\mathfrak{T}$ such that $A|[\sigma,\sigma+a]$ is equicontinuous and that $A_{t}\subset\mathscr{C}_{\gamma}(\phi,r)$ for all $t\in[\sigma,\sigma+a]$.

Then the set of all the solutions for CP(1.1) defined on J (=[σ , σ + ξ]) is nonempty, compact and connected in C(J,E).

<u>Proof.</u> From Lemma 3.2 and Lemma 3.3 it is sufficient to see that $\alpha(Q^n|J) \to 0$ as $n \to \infty$. Since $Q^n|J$ is an equicontinuous subset of C(J,E), we have $\alpha(Q^n|J) \le \sup\{\alpha(Q^n_t) \mid t \in J\}$ by Theorem 2.1 in [5]. Thus we must prove that $\alpha(Q^n_t) \to 0$ uniformly on J as $n \to \infty$. From the properties of the α -measure of noncompactness, we have, for $t \in (\sigma, \sigma + \gamma]$ and h > 0,

$$\frac{1}{h} \{\alpha(Q^{n}(t)) - \alpha(Q^{n}(t-h))\}$$

$$\leq \frac{1}{h} \{\alpha(Q^{n}(t)) - \alpha(\{x(t) - hf(t,x_{t}) \mid x \in Q^{n}\})\}$$

$$+ \frac{1}{h} \alpha(\{x(t) - x(t-h) - hf(t,x_{t}) \mid x \in Q^{n}\}). \tag{3.1}$$

By the uniform continuity of f, for any $\varepsilon>0$ there exists a $\delta=\delta(\varepsilon)>0$ such that $|f(s,\phi_1)-f(t,\phi_2)|_E \le \varepsilon/2$ if $|t-s|<\delta$ and

 $|\phi_1-\phi_2|<\delta. \quad \text{Since} \quad \{x_t^n \mid x^n \in Q^n\} \quad \text{is uniformly equicontinuous on} \\ [\sigma,\sigma+\xi], \text{ we have, for any } x \in Q^n \quad \text{and} \quad h \in (0,\delta),$

$$|x(t) - x(t-h) - hf(t,x_t)|$$

$$\leq \left| \int_{t-h}^{t} [D_{+}x(s) - f(s,x_{s})]ds \right| + \left| \int_{t-h}^{t} [f(s,x_{s}) - f(t,x_{t})]ds \right|$$

$$\leq \frac{h}{n} + \frac{\varepsilon}{2}h. \tag{3.2}$$

Set $w^n(t) = \alpha(Q^n(t))$ and $z^n(t) = \alpha(Q^n_t)$ for all $t \in J$. Clearly, we have, for t,s $\in J$ and any $n \in \mathbb{N}$,

$$w^{n+1}(t) \le w^{n}(t), |w^{n}(t) - w^{n}(s)| \le 2M|t-s|$$

and, Lemma 3.1,

$$z^{n}(t) = \sup_{\sigma \le s \le t} e^{\gamma(s-t)} w^{n}(s).$$
 (3.3)

Hence we get

$$z^{n+1}(t) \le z^{n}(t)$$
 and $|z^{n}(t) - z^{n}(s)| \le 2M \sup_{-a \le \theta \le 0} e^{\gamma \theta} |t-s|$.

These imply that the sequences $\{w^n(t)\}$ and $\{z^n(t)\}$ converges to functions $w^0(t)$ and $z^0(t)$ uniformly on J, respectively.

Now, we shall show that $z^0(t) \equiv 0$ on J. From (3.1),(3.2) and the assumption 4) it follows that

$$\frac{\mathrm{d} w^n(t)}{\mathrm{d} t} \leq \omega(t,z^n(t)) + \frac{2}{n} + \epsilon \qquad \text{for $a.a.$ $t \in (\sigma,\sigma+\xi)$.}$$

Using Lemma 2.3 and the relation (3.3), we can obtain

$$\frac{dw^{0}(t)}{dt} \le \omega(t,z^{0}(t)) + \varepsilon \quad \text{for } \alpha.\alpha. \ t \in (\sigma,\sigma+\xi)$$
 (3.4)

and

$$z^{0}(t) = \sup_{\sigma \leq s \leq t} e^{\gamma(s-t)} w^{0}(s). \qquad (3.5)$$

Moreover, it is easy to see that $(D_+z^0)(\sigma)=z^0(\sigma)=0$. Using the assumption 2), we can put

$$u(t) = \int_{\sigma}^{t} \omega(s, z^{0}(s)) ds + \varepsilon(t-\sigma),$$

from which it follows that $w^0(t) \le u(t)$ for $t \in J$. Therefore we can obtain

$$0 \le \frac{du}{dt} = \omega(t, z^0(t)) + \varepsilon$$
 for $a.a.$ $t \in (\sigma, \sigma + \xi)$.

Put $v(t) = \sup_{\sigma \le s \le t} e^{\gamma(s-t)} u(s)$. Then, by Lemma 2.1 we can see that

$$\frac{\mathrm{d}v}{\mathrm{d}t} \le \begin{cases} \omega(t,z^{0}(t)) + \varepsilon \\ & \text{for } a.a. \ t \in (\sigma,\sigma+\xi), \\ \omega(t,z^{0}(t)) - \gamma z^{0}(t) + \varepsilon \end{cases}$$
 (3.6)

On the other hand, since $w^0(t) \le u(t)$, we have $z^0(t) \le v(t)$ by (3.5). Letting $\epsilon \to 0$ and using the assumption 1), we see that the relation (3.6) becomes

$$\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} \, \mathbf{t}} \leq \left\{ \begin{array}{l} \omega(\mathbf{t}, \mathbf{v}(\mathbf{t})) \\ \\ \omega(\mathbf{t}, \mathbf{v}(\mathbf{t})) - \gamma \mathbf{v}(\mathbf{t}) \end{array} \right. \quad \text{for } \alpha.\alpha. \ \mathbf{t} \in (\sigma, \sigma + \xi).$$

It is easy to see that $(D_+v)(\sigma)=v(\sigma)=0$. Thus, by Lemma 4.1 in [6] and the assumption 3), we have $v(t)\equiv 0$ and so, $z^0(t)\equiv 0$. This implies $\alpha(Q^n|J)\to 0$ as $n\to\infty$. Hence the proof is complete.

Corollary 3.5. The conditions 1) - 4) in Theorem 3.4 can be replaced as follows:

1) the condition 3) in Theorem 3.4 is satisfied ;and

2)

 $\alpha(f(t,B)) \leq \omega(t,\alpha(B)) \quad \text{for $a.a.$} \ t \in (\sigma,\sigma+a) \quad \text{and all} \quad B \subset \mathcal{C}_{\gamma}(\phi,r) \,.$

Combining the argument in the proof of Theorem 3.4 and Lemma 2.2, we have the following result.

<u>Proposition 3.6</u>. Let $\gamma \geq 0$. Assume that f:

 $[\sigma,\sigma+a]\times\mathbb{C}_{\gamma}(\phi,r)\to E$ is a uniformly continuous function such that $\|f\|_{E}\le M$ on $[\sigma,\sigma+a]\times\mathbb{C}_{\gamma}(\phi,r)$, and that there exists a continuous function $\omega(t,s):[\sigma,\sigma+a]\times[0,2r]\to R^+$ such that

1) for every $t_1 \in [\sigma, \sigma + a]$ such that $\alpha(A_{t_1}) = \alpha(A(t_1))$, where A is as in Theorem 3.4, the differential inequality

$$\underline{D}_{\alpha}(A(t_{1})) = \omega(t,\alpha(A(t_{1})),$$

is satisfied; and

2) $u(t) \equiv 0$ is the unique continuous function, mapping $[\sigma, \sigma+a]$ into [0,2r], which satisfies the scalar differential equation

$$\frac{du(t)}{dt} = \omega(t, u(t)), \quad u(\sigma) = 0.$$

Then the conclusion of Theorem 3.4 remains valid.

References

- [1]. Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, to appear.
- [2]. I. Kubiaczyk, Kneser type theorems for ordinary differential equations in Banach spaces, J. Differential Equations, 45, 139-146 (1982).
 - [3]. V. Lakshmikantham and S. Leela, Nonlinear

Differential Equations in Abstract Spaces. Pergamon Press, New York, 1981.

- [4]. V. Lakshmikantham and S. Leela, Differential and Integral Inequalities. Vol. I, II, Academic Press, New York, 1969.
- [5]. J. S. Shin, An existence theorem of functional differential equations with infinite delay in a Banach space, Funkcial. Ekvac., 30, 19-29 (1987).
- [6]. J. S. Shin, On the uniqueness of solutions for functional differential equations with infinite delay, Funkcial. Ekvac., 30, 225-236 (1987).
- [7]. J. S. Shin, Existence of solutions and Kamke's theorem for functional differential equations in Banach spaces, to appear in J. Differential Equations.
- [8]. J. S. Shin, Remarks on the existence of unique solution for functional differential equations in a Banach space, to appear.
- [9]. J. S. Shin, Kneser type theorems for functional differential equations in Banach spaces. to appear.
- [10]. S. Szyfla, Structure of the solutions set of ordinary differential equations in Banach space, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 21, 141-144 (1972).