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§ 1. Introduction.

Let R = (-»,») and E be an infinite dimensional Banach
space with norm I-IE. Let X = E or R. Denote by Qi, YER,
the space of continuous functions ¢ : (-»,0] - X having the

limit 1im eyQW(G) with the norm

fo-
e x = sup ey9!$(9)lx.
14 -0<g<0
Y
If X ! (-o,0+a) = X, 0<a<w, then for any t€(-«,0+a) we define

Xy (-2,0] » X by xt(e) = X(t+0), -«<0<0.

The purpose of this paper is to give Kneser type theorem on
the set of solutions for the Cauchy problem of the functional
differential equation(FDE) with infinite delay in a Banach space

(for brevity, CP(1.1)),
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[N

X

el f(t.xt), X = ¢ € ¢ (1.1)

under the condition that { : [o,o+a]xgs(¢,r) - E, Qs(w,r) i =

{WGQEI lo-¥ | g<r}., is a uniformly continuous mapping. The

v
argument in the proof of the main theorem(Theorem 3.4) is besed
Eo
¥
the one obtained in [10] and is closely related to the one due to

¢

on the idea in (9] and on properties of € Oour result extends

Kubiaczyk [2] for ordinary differential equations(ODE's).

§ 2. Some Lemmas.

In this section, we shall sﬁow a differential inequality and
a comparison theorem. For a continuous function w : (a,b) = R
and for t€(a,b), (D+w)(t), (D_w)(t) and (5+w)(t) dendte the
right hand derivative, the left hand lower derivative and the

right hand upper derivatpve, respectively.

Lemma 2.1. Let w : [og,0+a) » R be a continuous func-
tion such that (D w)(t) exists for all t€lo,0+a). Then the
following inequalities hold

1) |

D, sup w(s) < I(D+w)(t)|.
o<s<t

2) If w(t) 2 0, then



f !(D+w)(t)l if y=0
5+ sup ey(s—t)w(s) <
gss<t \ _ e
I(D+w)(t)l - ¥ sup e}’(S t)w(s) if 7v<o0.
- o<s<t
Proof. For a proof of the assertion 1) refer to [1,6].

Set u(t) = sup{w(s)|o<s<t), z(t) = sup{e °w(s)|o<s<t) and 1=

[o,0+a). Clearly, z(t) is nondecreasing in te€l. Let any
t€l be a fixed number and Vv€(-«,0). Then we have, for h > O,
Yto
z{(t+h) - z(t) = e w(tO) - z(T) for some toetr,t+h]
< eyt sup w(s) - eyt sup w(s)
o<s<T+h 0<s<T

e’ T{ult+h) - u(oy,.

from which it follows that

D sup eysw(s) < eyt5+ sup w(s).
o<s<t o<s<t

It is easy to prove the assertion 2) in case where Y is a

negative number. Let v =2 0. Then by the assertion 1) we have
5+ sup eY(S_t)w(s) < —Ye_Yt sup eYSw(s) + e—ytﬁ+ sup eYSw(s)
o<sxt o<s<t o<s<t
< —Ye_yt sup e'Sw(s) + eyyt]D+(eytw(t))l
o<s<st

3
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< 1D,w ()|

as required.

Lemma 2.2. Let v 2 0 and U : Eo,o+a]xR+ - R+ be a

R+ = [0,®). Assume that

continuous function, where

(1 u* : [o,0+a] - R+ is the maximal solution of the scalar

differential equation

u(o) = u0 > 0 ; and

o

SY o yt,uct)),

-

(2) m : (-=,0+a] = R 1is a continuous function such that

€

M

[oc,0+a] such that im, |
t R
IQY

€ QS and m(t) =2 0 on [o,0+al, and that, for every t1

m(tl); the differential inequality

(D_m) (t)) )< UCt ,m(t D)

is satisfied.
If Imol < Ugs then

R
g?

m(t) £ u*(t) for tefo,o+al.

Proof. - For any - € > 0 we denote by u(t,g) dny solution

of the differential equation
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u(t) =-UCt,u(t)) + g, u(o) = u, * €. 2.1)

Then, by Lemma 1.3.1 in [4], we have

lim uct,g) = u'(t)
g0+

uniformly on [o,0+al. Thus it is sufficient to show that for

every € > 0, sufficiently small,
m(t) £ u(t,g) on [o,0+al.
Suppose; on the contrary, that the set

Z = {t€lo,o+al | m(t) > u(t,e))

is nonempty and define t1 = inf Z. Then we have t1 > o{
because !molgR < u, < uO#S. Moreover, since m(tl) = u(tl,s)
Y

and m(t) < u(t,e) for te[o,tl), it is easy to see that

D m(t,) 2 lim inf l{u(t +h,g) - u(t,,g)}
== 1 h 1 1
h » 0-

= U(tl,m(tl)) + € by (2.1D).
Hence, we have

D_m(ty) > UCt;,mCt;)), (2.2)

1
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On the other hand, since U(t,s) 2 0 and u(t,g) is

nondecreasing in t, we have

Im, | o = sup e"imct +0) 1
1 ¢ 8<0
Y

= max{ sup eyeim(t1+9)l, sup eyelm(t1+6)l)

Ggo-tl o—tlseso
Y(s—t1+o)

= max{sup e Im(o+s) |, m(tl))
s<0
Y(a—tl) .

= max{e !molgR . m(tl))

Y
= m(t,).

Thus, from the assumption 2) we are led to the inequality

D_m(t;) < UCt;,m(t)),

which is incompatible with (2.2). This implies that the set 2Z
is empty. Therefore the proof is completed.
A function n : (o0,0+alx[{0,2r] 2 R 1is said to be a Kamke-

type function if the following conditions hold

(nl) n = nt,s) is a real-valued function, defined on
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(0,0+alx[0,2r], which is Lebesgue measurable in t for each

fixed s€(0,2r]1 and is continuous in s " for a.a. te€lo,o+al:
*(nz) There exists a function o, defined on (o,0+al and

locally integrable there, such that ln(@,s)lvs a(t) for a.a.

te (o,0+al and all s€[0,2r13.

The following result is a modification of the one given by

[8, Lemma 3.117. The proof is obvious.

Lemma 2.3. Let n(t,s) : (0,0+alx[0,2r] »= R be a Kamke-

type function and let {wn

functions wO and 20 on [o,0+al as n = o, respectively.

} and (zn) converge pontwise to

Assume that

1) there are a constant H > 0 such that
[wh(t) - w(s)I<HIt-s| for all t,s€{o,0+al and all n€N ; and

2) w and zn' are related to each other as

%T W < et 2"y v o for a.a. t€(o,o+a),

where onzo and o_ = 0O as n - o«
Then
d

ETWO(t) <nct,2%t))  for a.a. te(o,o+a).
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§ 3. Main results.

For a bounded set § of E, the a-measure of § is defined

as follows
a(Q) = inf(d>0 | 9 has a finite cover of diameter < d}.

Let % be the set of functions x on (-«,0+al, 0<a<«®, into
E such that x is continuous on [o,0+a] and X, € gy. For a
subset % ¢ ¥, we will use the following notations

Lty = (x(L)EE | x€1y, A, = (x

¢ | xeqy for te€lo,o+a)

t
and

Allec,dl = (xllc,d) | x€%1),

y ‘
where c¢,d€lo,0+a) and xil[c,d] is the restriction of x to

[c,d]. We denote by C(f[a,b],E) the set of all the continuous
functions x : [a,bl] = E with supremum norm. For brevity, we
denote @Y the phase space QE when X = E. The following

lemma is concerned with the phase space Qy.

Lemma 3.1 (Shin (7]1). If 10 is relatively compact in

@Y and if qlfo,t] 1is a bounded and equicontinuous set in

C(lo,t],E), then
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(L) = e Tt sup e"Sux(s)).

o<s<t
Lemma 3.2 (Shin [91). » Let (Sn) be a family of nonempty
bounded subsets of a Banach space Y such thét Sn+l C Sn for
neN. 1f 'Sn is connected for every n€N and if a(Sn) =+ 0 as

@

n » @, then the set n cl Sn is nonempty, compact and
n=1

connectéd, where ¢l A stands for the closure of A.

Assume that f : [o,o+a]xﬁy(w,r) - E 1is a uniformly
continuoué function such that lflE < M. . Then a function u
(~o,0+%] - E, 0<g<a, said to be an %—approximate solution for
CP(1.1) if the’folloWing conditions hold

(1) u is continuéus on J, J=[o,0+%], and uazweﬁ :

(2) u has the right hand derivative (D _u)(t) such that

l(D+u)(t)IE < M on [0,0+%), and satisfies
; i
u(t) = @0) + f (D+u)(s)ds for t€J ; and
Vo

1
(3) I(D;u)(t) - f(t,ut)IE < Py for telo,o+%).

We denote by Qn[d] the set of all the %-approximate solutions,

defined on (-»,0+d]1, for CP(l.1). Then there is a & > 0
and the set Qn 1= Qn[§] is nonempty(see [8, Lemma 2.11).
Lemma 3.3 (Shin [91). Let f : [o,o+a]xgy(@,r) - E be
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unifomly continuous and |flE,$ M on [o,o+a]xﬂy(@,r). Then Q©

is nonempty and inJ is connected in C(J,E) for every né€N.

Now, we state the main result in this paper, which is

related to the result due to Kubiaczyk[2] for ODE's.

Theorem 3.4. Assume that f : [o,o+a]xgy(¢,r) -+ E is a

uniformly continuous function such that I1fl_, < M on

E
[o,o+a]xgy(¢,r), and that there exists a Kamke-type function
w(t,s) : (o,0+alx[0,2r] » R'  such that

1) w(t,s) is nondecreasing in s

: t
2) w(t,z(t)) » 0 as t = o+0 and f 0(s,z(s))ds <
B g

whenever =z : [o,0+a] = [0,2r] 1is an absolutely continuous func-
tion satisfying the condition (D'z)(0) = 2(¢) = 0, where
(0*2)(0) := 1in 2
t-o
t-0+

3) 2 = 0 1is the unique absolutely continuous function,

mapping [o,0+a]) into R+, which satisfies the initial condition

(D+z)(o) = z(o) = 0 and the scalar differential equation
I wo(t,z(t)) Yy 20
%% = 1 for a.a. te€(o,o0+a) ; and
o(t,z(t)) - vz(t) Y <0
4)

/0
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D_o(ACt)) 1= 1im inf ——[a(ACt)) - o({x(t) - hi(t,x,) : X€A})]
- h » 0- L.

< m(t,a(At))

for a.a. t€(o,o+al] and for any subset A ¢ ¥ such that
Allo,0+al is equicontinuous and that - At c Qy(w,r) for ail

telo,o+al.

Then the set of all the solutions for CP(1.1) defined on J

(=[0,c+§]) is nonempty, compact and connected in C(J,E).

Proof. From Lemma 3.2 and Lemma 3.3 it is sufficient to
see that o(Q"1J) *_O as n - o, Since Q"1J is an equiconti-
nuous subset of C(J,E),kWe have a(inJ) < sup(a(Q?)l t€J} by
Theorem 2.1 in [5]. Thus we must prove that a(Q?) - 0 uni;
formly on J as n = =, From the properties of the o-measure of

noncompactness, we have, for t€(o,0+y]l and h > 0O,

—%—(Q(Qn(t)) - @™ (t-h)))

< —%—{a(Qn(t)) - a({x(t) - heCt,x,) | x€QM1))
+ é a({x(t) - x(t-h) - hf(t,x,) | xeQ™ ). (3.1)

By the uniform continuity of £, for any €30 there exists a

§=5(g)>0 such that [f(s,¢ ) - (1,001 < €/2 if It-si<s and

1

/7
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lwl-@2I<6. Since {(x" | x"eQ™ s uniformly equicontinuous on

t
(0,0+%]1, we have, for any X € Qn and h €(0,8),

Ix(t) - x(t-h) - hf(t,Xt)l

t t :
< lf (D,x(s) - f(s,x Ylds| + II [f(s,x ) - f(t,xt)]dsl
t-h ' S t-h s

h. (3.2)

Set w'(t) = a(Q"(t)) and z"(t) = a(Q?)) for all te€J.

Clearly, we have, for t,s€J and any neN,

VL < o, Wt - whsot < 2Mlt-s]

and, Lemma 3.1,

2"ty = sup/ey(s-t)wn(s). (3.3)
o<s<t
Hence we get
2n+1(t) < 2™ty and 12"ty - 2M(s)l < 2M sup eyelt—sl.

~a<6<0

These imply that the sequences (wn(t)) and (zn(t)) converges
to functions wo(t) and zo(t) uniformly on J, respectively.
Now, we shall show that 2z°C(t) = 0 on J. From (3.1),(3.2)

and the assumption 4) it follows that

/2
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dw? (t)
dt

< olt,z2m(t)) + i + g for a.a. t€(o,0+¢).

Using Lemma 2.3 and the relation (3.3), we can obtain

éﬂg%il cot,2%) + & for a.a. te(c,o+§§ ' (3.4
and
29Ct) = sup e? STV 05y (3.5)
o<sLt
Moreover, it is easy to see that (D+zo)(o) = 20(0) = 0. Using

the assumption 2), we can put

, t
u(t) = f m(s.zo(s))ds + g(t-0),

¢
from which it follows that w’(t) < u(t) for te€J. Therefore
we can obtain

0 < 9% = 0ct,z2%t)) + g for a.a. te€(o,o0+¢).

- Y(s-1) '
Put wv(t) = sup e u(s). Then, by Lemma 2.1 we can see that

o<s<t

/3
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for a.a. t€(o,0+%), (3.6

w0(t, 2% + g
dv j'
at < 1
0

m(t,zo(ﬁ)) - rvz (t) + €

On the other hand, since wo(t) < u(t), we have zo(t) < v(t)
by (3.5). Letting €& - 0 and using the assumption 1), we see

that the relation (3.6) becomes

] o(t,v(t))
dv < . for 'a.a. t€(o,0+§).
dt 1
a(t,v(t)) - yv(t)
It is easy to see that (D+v)(o) = v(o) = 0. Thus, by Lemma 4.1

0 and so,‘

in [6] and the assumption 3), we have v(t)
2%ty = 0. This implies a(Q™J) » 0 as n - =. Hence the

proof is complete.

Corollary 3.5. The conditions 1) - 4) in Theorem 3.4 can be

replaced as follows
1) the condition 3) in Theorem 3.4 is satisfied ;and

2)

a(f(t,B)) £ o(t,x(B)) for a.a. t€(o,o0+a) and all Bc@y(w,r).

Combining the argument in the proof of Theorem 3.4 and

Lemma 2.2, we have the following result.

Proposition 3.6. Let v 2 0. Assume that f

/¢
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[0,0+a]x€y(w,r) -+ E is a uniformly continuous function such that

£l

<, M on [q,c+a]x@y(¢,r), and that there exists a continuous

E
function o(t,s) : [0,0+alx[0,2r] » R such that

1) for every t1€[0,0+a] .such that a(At ) = a(A(tl)), where
‘ 1

A‘ is as ‘in Theorem 3.4, the differential inequality

D_a(ACt)) < @(t,a(Alt)),

is satisfied ; and
2) u(t)'= 0 is the unique continuous function, mapping

[oc,0+a] into [0,2r], which satisfies the scalar differential

equation

duCt) _ o(t,uct)), uco) = o.

Then the conclusion of Theorem 3.4 remains valid.
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