‘ooooobooog
06970 19890 1-15 v 1

Initial Literal Shuffles

" M.ItoD) and G.Tanaka?2)

1R T2 CRIPEEA -9 B ERER (GBEEX - 7

Abstract : In this paper, we will study several properties of initial
literal shuffles which B. Berard introduced as a more constrained form
of the well-known shuffle operation. Especially, we are interested in
the denseness of initial literal shuffles and principal congfuenccs

determined by initial literal shuffles.

Introduction.

In [1], B. Berard introduced the literal shuffle and initial literal
éhuffle of two languages as more constrained forms of the well-known
shuffle operation and investigated several properties of these opera-
tions. For instance, she proved that the families of regular languages, of
context-sensitive languages and of recursively enumerable sets are
closed under literal shuffle operation and initial literal shuffle opera- |
tion. On the other hand, in [7] G. Tanaka called the initial literal shuffle
of two languages the alternating product of two languages without

knowing the existence of the papér of B. Berard and proved that the ini-

1) Faculty of Science, Kyoto Sangyo University, Kyoto 603, Japan

2) Department of Management Science, Hiroshima Shudo University,
Hiroshima 731-31, Japan

tial literal shuffle of two prefix codes becomes a prefix code and the
initial literal shuffle of two prefix codes is maximal if and only if each
prefix code is maximal. In the present paper, we will study further
properties on initial literal shuffles of languages which have not been
treated in [1]. Namely, we are interested in the denseness of initial lit-
eral shuffles and principal congruences determined by initial literal

shuffles.

1. Preliminaries.

Let X be a nonempty finite set, called an alphabet, and let X* be the
free monoid generated by X. By 1 we denote the identity of X *. Any
element of X* is called a word over X and 1 is often called the empty
word. The length of a word x is expressed as IxI. Moreover, by X* we
denote X* \ {1}. In what follows, we do not distinguish the element of a
singleton set from a singleton set itself. Therefore, for instance, X* can
be expressed as X* \ 1. Any subset of X* is called a language over X.
Let A, B be languages over X, i.e. A, B ¢ X*. Then AB means' the lan-
guage {xy | xe A,y e B} and A'means AA' for any integer i >1.
Moreover, A°=1, i.e. A°= {1}, and A* = U,:1Ai- A word x over X is
called primitive if x = y* (y € X*) implies n = 1. The set of all primitive

words over X is denoted by Q.

2. Initial Literal Shuffles.

In this section, we define initial literal shuffles of two words and of

two languages.

Definition 2.1. Let x,y € X*. Then the initial literal shuffle x¢y of x
and y is defined as follows :
(1) fx=1ory=1, then xey = xy.
(2) Let x = ayas - ap and let y = b1by - by
where a;,bje X.
Then xey = aibiazbs - aghgageiaq+2+- ap ifp 2 g,
=a1biasby - apbpbpi1bpss - by if g >p.
Let A, B ¢ X*. We define now the initial literal shuffle Ae B of A
and B.

Definition 2.2. The initial literal shuffle Ae B of A and B is defined
as AeB ={xey | xe A, ye B}.

3. Denseness of Initial Literal Shuffles.

A language A c X* is called dense if X*uX* n A # @ for any ue X*.
On the other hand, a language which is not dense is called thin. A lan-
guage A ¢ X* is called right dense if uX* A # @ for any u € X*. More-
over, a language A < X* is called left dense if X*u n A # @ for any u e
X*. In this section, we investigate relationships between these concepts
and initial literal shuffles. First, we provide /a hecessary and sufficient

condition for A ¢ B to be dense.

Proposition 3.1. Let A, B c X* be nonempty languages. Then AeB
is dense if and only if at least one of A and B is dense.

Proof. (=) Suppose that neither A nor B is dense. Then there
exist u,v € X* such that X*uX* " A= and X*vX* "B =O. Letw = uv.
Obviously, X*wX* n A =@ and X*wX* n B=0. We can assume that lwl >

0. Let w =aja; ...a, where a;e X for any i (i=1, 2, ---,r). Then

(wew)w = a,%a,? - a,’a1ay - a,. Since A e B is dense, X*(wew)wX™ n
(AeB) = @, i.e. there exist x,y € X* such that x(wew)wy € AeB. Let
x(wew)wy = axe B where @« € A and Be B. It is easy to see that o €
X*wX* if lal > 1Bl and B e X*wX™ if IBl > lal. This means that X*wX* N A =
 or X*wX* N B # &, a contradiction. Therefore, one of A and B must be
dense.

(<) We consider only the case where A is dense. Let w € X* and
let u e B. Since A is dense, there exist x,y € X* such that xwy € A. We
can assume that Ixi> lul without loss of generality. Consider xwyeu =
(xew)wy € X*wX*. Therefore, X*wX* N (A +B)#J. QED.

Now we consider right dense languages.

Proposition 3.2. Let A,B < X*. If both A and B are‘right dense,
then Ae B is right dense.

Proof. Let w e X*. We show that wX* N (AeB) = &. We can assume
that lwl is even without loss of generality. Let w = aibiazb, --- a,b,
where a;bje X (i,j=1,2,--,r). Since A and B are right dense, there
exist a,B € X* such that aja; - a,a e A and b,b, --- b, e B. Hence
(a1az - ara) ¢ (b1by - b,P) = (a1b1azby --- a;b,)(axe B) = w(aeB)e A+ B.
This means that wX* N (A¢B) = 3. Q.E.D.

The fact that A e B is right dense gives no information on A and B.

Example 3.1. Let A = X™ and let B =X. Then A is right dense and B

vis not so. On the other hand, A ¢ B is right dense.

Example 3.2. Let X = {a, b}, let A = (X*\abX*) U auUab and let B =
bX* U abX* U a U b. Then neither A nor B is right dense. However,
A e B is right dense, because A ¢ B 2 abX* U a*X* U a?bX* U ba’X* U

babX* U b%aX* U b3X*.

Unlike the case of dense languages, the statement, A ¢ B: right dense

& A: right dense or B: right dense, is not true.

Example 3.3. Let X = {a, b}, let A = {a} and let B =X*. Then A¢B =

aX* and thus AeB is not fight dense though B is right dense.

However, we can set up some relationship between A ¢ B and B
when A is a prefix code. A nonempty language A < X™ is called a codfz
over X if for xq, X2, -~ , Xn, Y1,¥2, - » Ym € A the equality xixz e Xp =
Y1y2 -~ Ym implies that n = m and x; =y; for i (i = 1, 2, -, n) (for de-
tails, see [2] and [3]). One of the typical codes is a prefix code. A
nonempty language A — X is called a prefix code over X if AX* n A =@.
Let v = ux where u,v,x € X*. Then u is called a left factor of v. By u <v

we mean that u is a left factor of v.

Lemma 3.1. Let uu’',v,v' e X*. If uev = u'ev’, then we have at least
one of the following :

() wuswu', (i) w<u, (i) vsv, (iv) v'<v.

Proof. Case 1. lul =min{lul, Wi, lu’l, v'1}. Let u = a1a, --- ap where
a;e X. Moreover, let v = b1by - by, W' = ai’ay’ - d,’ and let v' = by'by’
-« by where bj’,ak',b,’é X and p < gq,r,s. Then uev = abiazb, - ap by
bp+1 bq =u'ev' =ai’bi'ar’by’ - ap’bp'[(ap+1'ap+2’ e dr’)e (bp+1' bp+2'
--- bg")]. Therefore, we have a; =a;’ fori (i=1, 2, ---,p). This implies
that u <u’. |

Case 2. Wl =min{lul, Wi, lu’l, w1}. Letv = b1bs - bgwhere b; e X.
Moreover, let u = aiay - ap, u’' = a’'ay’ - a,’ and let v' = bi’by’ --- by’
where aj’,ar’.b,"e X and g < p,r,s. Then uev = a1biazbs - aghgagsy -
ap=wev = ar'bi’ar’by’ + ag'by(ag1'age2’ -~ @) ¢ (bgur’bgea’ - bl
This implies that v <v’.

Case 3. W'l = min{lul, v, lu’l, Iv’l}. In parallel to Case 1, we have u’

Su

Case 4. W'l = min(lul, v\, lu’l, w1}. By the same reason as above, we |

have v'<v. Q.E.D.

Lemma 3.2. Let uu’,v,y'e X* and let uev =u'ev’' . If lul = lu’l, then
u=u and v=v'. |

Proof. Case 1. lul <lvl. Note that lue vl = lu’ev’l = lul + vl = lu'l + V'l
Hence lul =W’ <ivl=WI| Letu=aiay-- a,,u =ai’ay” - a,’,v=>b1by
- by and let v' = b;'by" --- by’ where aj,aj’,ar,b,"e X and s 2 r. There-
fore, a1b1a2b2 a,b,b,+1 bs = dl'b1'(12'b2' a,'b,'brﬂ’ bs'.
Obviously, a;=a; " fori (i=1,2,.-,r)and bj=b; " forj(j=1,2, -,
s). Thus u =u' and v =v".

Case 2. lul>1Ilvl. Letu=aay--a,,u =ai’ay’ - a’,v=>bby -
bs and let v = by’by’ --- by’ where‘ aja;,ag,b,’ e X and r >s. Therefore,
aibiazby - agbsagyy - ar = ai’by’az’by’ -+ ag’bg’agyy’ - a," and a; = a;’
fori(i=1,2,-,r)and bj=bj forj(j =1, 2, ---\,s). Thus 4 = u’ and v
=v. QED. |

Lemma 3.3. Letu,u’',ve X*. Ifuev<u'evandlullu’l 2 Wl, then u <

Proof. Note that lul < lu’l. Let (uev)a =u’ev where @« € X*. Since
luly‘z vl, (uev)a = ua ¢v. Therefore, ux ¢v=u'ev. By Lemma 3.2, ua =

u,ie.u<u’. QE.D.

Lemma 3.4. Let A, B, K c X* where K is a finite language and A is a
prefix code. Then A e B is right dense if and only if Ae (B\K) is right
dense.

Proof. (.«) Obvious. (=) To prove this part, it is enough to. show
that A ¢ (B \ u) is right dense for any u € X*. Suppose that Ae (B \u) is

not right dense for some u € X*. Then there exists v e X* such that vX*

Nn[Ae(B\u)]l =. We can assume that Ivl > 2lul without loss of gen-
erality. Since A ¢ B is right dense, there exists a;, € X * such that vea, €
AeB. Therefore, va; = ae B for some e A and Be B. From the fact that
vo, e Ae(B\u), we have vo; = e u. By the same reason, there exists o,
e X* such that va,a, = a’eu where a’e A. Consequently, o ¢u < o’eu.
Note that la Lla’l 2 lul. By Lemma 3.3, ¢ < o’. Since A is a prefix code, o
=o' and o, = 1, a contradiction. Therefore, A ¢ (B \ K) must be right

dense. Q.E.D.

Lemma 3.5. Let u,u’,v,v'e X* and let uev =u’ev’. Iflul <lu’l and u
is not a left factor of u’, then Iv’l < lul. |

Proof. Suppose vl > lul. Since lul < lu’l, vl 2 Iv'l and vl = lul. Let u =
ajaz - ap, v=>biby .. br(x, u'=ai’'ay’ ---a,p and v'=b,’by’ --- b,y
where a;,a;',by,b,’ € X and a,B,ye X*. Since iuv =u'ev’, we have
aibiaszb, - ab,o = ay’bi’ay’by’ - a,'b,'(Be j/). Therefore, a; = a;’ for any
i(i =1, 2, ---,r). This means that u < u’, i.e. u is a left factor of u’, a

contradiction. Hence Ivi<lul. Q.E.D.

A prefix code A c X* is called maximal if for any prefix code B c X*
with A ¢ B we have A =B. It is well known that A ¢ X is maximal if

and only if uX* n AX* # @ for any u e X*.

Proposition 3.3. Let A < X* be ‘@ maximal prefix code over X and let
B c X*. Then A'§B is right dense if and only if B is right dense.

Proof. (=) Letue A with lul=min{lxl | xe A }andlet K =0,
wXi. By Lemma 3.4, Ae(B\K) is right dense. We show that B\ K is
right dense. Suppose that B \ K is not right sense. Then there exists v €
X™ such that vX* n (B\K) = @. We can assume that Ivl > lul without loss
of generality. Since A ¢ (B \K) is right dense, there exists w € X * such

that (uev)we Ae(B\K). Let (uov)w_= ue(vw) =u’ez where u’ e A and

ze (B\K). By Lemma 3.1, we have at least one of the following :
() usw, (@) w<u, @) w<z, (@(v) z<vw.

The case (i) or (ii) implies that u = u’".- In this case, by Lemma 3.2, vw =
z. This contradicts the fact that vX* n (B\K) = @. Consider the case
(iii). Obviously, we have z € vX*, a contradiction. Now consider the case
(iv). In this case, lul < lu’l. If u < u’, then' u = u’ and hence vw =z, a con-
tradiction. Therefore, u is not a left factor of #’. Then, by Lemma 3.5, IzI
< lul. This contradicts the fact that ze (B \K). Consequently, B \K is
right dense and thus B is right dense.

(<) Letw e X*. We prove that wX* n (A+B) = @. We can assume
that lwl > 0 and Iwl is even without loss of generality. Let w = a1bia,b;
- a,b, where apbje X (i,j=1,2,..,r). lSince A is a maximal prefix \
code, we have the following two cases :

(1) dae X¥, alazk wayae A, (2) 3t(1st<r), aas - aie A.

Case 1. Since B is right dense, there exists B € X* such that bbb,
--b,Bp e B. Therefore, (aja, --- a,ax)e (b1b,y --- b,B) = aibiazb, ---
arb,(a ¢ B)e wX* " (AeB). Hence wX* N (AeB) = D. |

Case 2. Since B is right dense, there exists B € X* such that bb,
- bia1ber - ab,Be B. Consider (a1az - a;) ¢ (b1bs - biat1b41
-~arb,B) e AeB. Obviously, (aijas ---a;)e (biby --- biaie1bs1 -
a;b,p) = arbyazb, - a,b,p € wX*. Therefore, wX* N (AeB) = &.

In any case, we have wX* N (A¢B) # &, i.e. A is right dense. Q.E.D.

Remark 3.1. The maximality of A is necessary as a condition in
Proposition 3.3. For instance, let X = {a, b}, let A = {a} and let B = X*.

Then AeB =aX™ is not right dense though A is a prefix code and B is
right dense.

Finally, we deal with left dense languages.

Proposition 3.4. Let A, B k; X* be nonempty languages. If one of A

8

and B is left dense, then A+ B is left dense.

Proof. We consider only the case where A is left dense. Let u e X*.
We show that X*u n (AeB) = @. Letve B. Since A is left dense, there
exists w € X* such that wu € A. We can assume that Iwl > lvl without
loss of generality. Consider wueve AeB. Then wuev=(weviue X*u.

Therefore, X*un (A¢B) = 3. Q.E.D.
The converse of the above proposition does not hold.

Example 3.4. Let X = {a, b}, let A =X*a and let B = X*b. Then nei-

ther A nor B is left dense. However, A ¢ B is left dense. The reason is

the following :
Let u e X*. We prove that X*u N (AloB) # . We can assume that
lul > 0 without loss of generality. If u € X*a, then abu = aueb e AeB. If

ue X*b, then au =aeuec AeB. In any case, X*un (AeB) 2 &.

Unlike the case of right dense languages, the statement, A ¢ B is left
dense < B is left dense for any maximal prefix code A c X*, is not true

though the direction <« is true

Example 3.5. Let X = {a, b} and let A = U, a’bX"*!. Obviously, A is
a maximal prefix code which is left dense. Therefore, A ¢ B is left dense

even for a language B which is not left dense.

4. Principal Congruences on X* Determined. by Initial Literal

Shuffles.

Principal congruences play an important role to combine the com-

binatorics theory and the algebraic theory of languages. Let A cX*

Then the principal congruence P, on X* determined by A is defined as -

10

follows : _
u=v (Py) © (xuye A & xvye A) for any x,y e X*.
For example, let A ¢ X*. Then A is regular if and only if P4 is of finite
index, i.e. the number of congruence classes of P, is finite. By IP4l we
denote the index of P4. The fact that the family of regular languages is
closed under initial literal shuffle operation can be restated as follows :
If 1P|, IPpl < +oo , then Py 4pl < + .

There are languages, called disjunctive, which are located on the oppo-
site side of regular languages (see [5]). A language A ¢ X* is called dis-
junctive if P4 is the identity, i.e. every congruence class of P4 is a sin-
gleton set. An example of a disjunctive language is Q, i.e. the set of all
primitive words over X. One might expect that, like the case of regular
languages, the initial literal shuffle of two disjunctive languages is dis-
junctive. However, this is not true. For example, O ¢ Q is regular though
Q is disjunctive (see Section 5). Let A ¢ X* be a language over X. Then
P4 is called left can‘cellative if xu = xv (P4) implies u =v (P4) for any
u,v,x € X*. A language A c X* is called left cancellative if P4 is left can-
cellative. An example of left cancellative language is a disjunctive lan-
guage. In this section, we deal with relationships between initial literal
shuffles and left cancellative languages. |

A language A c X' is called left singular if there exists u € A such
that {u, v} is a prefix code for any v e A. Moreover, u is called a left
singular word of A. Note that any prefix code is a left singular lan-
guage. Let u e A be a left.singular word of A and let u = au’ where a €
Xand u' e X*. If aX* n A is thin, then u is called a thin left singular

word of A.

Proposmon 4.1. Let A cxt be a left singular language and let B c

X* be a left cancellative language If A has a thm left smgular word

10

11

then PaeB < Pp,i.e.x=y (Paop) implies x =y (Pp) for any x,y € X*.
Proof. Let u € A be a thin left singular word and let u = au’ where
ae X and ' € X*. Since aX* n A is thin, there exists z € X* such that
(X*zX*) N (aX* nA)=@. We can assume that Izl > lul without loss of
generality. Let x =y (Paop). We prove that x =y (Pp). Let az(zez)zxp e
B where «a,Be X*. Consider ue [az(zez)zxB]l € AeB. Note that
weo[az(zez)zxB]l = (ue az)(zez)zxBe AeB. Since x=y (Paeg),
ue[az(zez)zypl = (ue az)(zez)zyfe A ;B. Let ue [az(zez)zyBl =vew
where ve A and w € B. Suppose Iwl < lvl. Then it is easy to see that v
e X*zX*. On the other hand, v € aX*. Therefore, (X*zX*) N (aX* n A) #
@, a contradiction. Hence lvl < Ilwl. By the proof of Lemma 3.1, u<v orv
< u. Thus u = v. Moreover, by Lemma 3.2, w = oz(zez)zyp € B. This
means that oz(zez)zxf e B implies az(zez)zyf e B. By the same reason,
az(zez)zypf € B implies az(zez)zxp e B. Therefore, we have z(ze¢z)zx =
z(ze z)zy (Pg). Since Pp is left cancellative, x =y (Pg). This completes the

proof of the proposition. Q.E.D.

Corollary 4.1. Let A c X* be a left singular language and let B c X*
be a disjunctive language. If A has a thin left singular word, then A+ B

is a disjunctive language.

Corollary 4.2. Let A c X* be a thin prefix code and let Bc X* be a

disjunctive lavnguage. Then AeB is a disjunctive language.

There is a case where Pao,p < Pp even though A is a left singular
language which does not contain any thin left singular word. Let A ¢

X*. By #A, we denote the value min{lul | ue A}.

Proposition 4.2. Let A c X* be a left singular language and let B c
X* be a left cancellative language. If lul < #B for some left singular word

ue A,then Psop < Pp.

11

12

Proof. Let ue A be a left singular word such that lul < #B. In the
proof of Proposition 4.1, we replace z(zez)z by z’ where z’ e X* and Izl >
lul. Then we can show that zx = z'y (Pgp) and thus x=y (Pp)ifx=y
(PaeB). Q.E.D.

Let X = {a, b} and let A = (U 2a'bX") U (U jSiblaX)). Moreover, let B
c X* be a left cancellative language over X. Then A is a left ~singular
language which does not have any thin left singular word. However, we

have the following result.

Proposition 4.3. Let A and B be the above mentioned languages.
Then Pa.p < Pp.
~ Proof. Let x=y (Pa+p) and z € X* with Izl > 3. Moreover, let azxf e
B. Consider abae azxp = (abae az)xBe AeB. Since x=y (Pa+B),
abae azyB = (abae az)yfe AeB. Let (abae az)yf =uev where u e A and
ve B. If aba < u, then u = aba. If aba is not a left factor of u, then
(abae az)ypB = (aw'bw)ev for some w € X*. Note that Iwl > 2. Let az €
cX* and v e dX* where ¢,d € X. Then we have ach --- =ada -, a
contradiction. Therefore, u = aba. By Lemma 3.2, v = azyf € B. That is,
azxP € B implies azyf e B. By the same way, we see that azyB € B
implies azxf € B. This show that zx = zy (Pg). Since B is cancellative, x

= y (Pg). Hence Paop < Pg. Q.E.D.

Conjecture 4.1. Let A < X* be a left singular language and let B ¢ X*

be a left cancellative language. Then Pao,p < Pp.

Finally, we consider the case where Pgp < Ps,p holds. Let A c X*.

By Io(A) we denote the set {ae X | aX*n A #@).

Proposition 44.4. Let A c X* be a language satisfying the following

condition :

12

13

aX* N A is thin for any a € 14(A).

Then Pgp < Pao.p if AeB is left cancellative.

Proof. Let I4(A) = {ai, aaz, ---, a,}. By definition, there exists z; €
X* such that X*z;: X*) N @X*nA)=Oforany i i=1,2,,r). Letz =
2122 -+ Zy. Assume that x =y (Pp). Let cxa(zez)zxfe AeB where ae X
and a,Be X*. Then aa(zez)zxB =uev for some ue A and ve B. By the
definition of I4(A), lul < laa(zez)|/2 and uev = (uev’)v”xp where Iv’l = lul
and v'v’xB =v. Hence v'vyBe B and ue (v'v'yp) = (uev’) v'yp =
oaa(zez)zyfe AeB. This means that ca(ze z)zxfe Ae B implies
ca(ze z)zyfPe AeB. By the same reason, xa(zez)zyBe AeB implies
aa(zez)zxBe AeB. Therefore, a(zez)zx = a(z4z)zy (Paep). Since A+ B is
left cancellative, x =y (P4 +8). This completes the proof of the

proposition. Q.E.D.

Corollary 4.3. Let A c X* be a thin language and B c X*. If AeB is

left cancellative, then Pp < PpeB.

Corollary 4.4. Let A c X* be a thin language and B cX*. IfAeB is

disjunctive, then B is disjunctive.

Corollary 4.5. Let A < X* be a thin language and B < X* be a regu-

lar language. If Ae B is left cancellative, then Ae B is regular.
5. Computation of Q¢ Q.
To conclude this paper, we compute Q ¢ Q where Q is the set of all

primitive words over X . It can be proved that Q is disjunctive (see [5]).

Let i > 1 be a positive integer. Then by Q) we denote the set {g' | g e

Q}. The following lemmas are well known (see [4] or [5]).

13

14

Lemma 5.1. Let u,ve X*. Ifuve QW for some i21, thenvu e Q0.

Lemma 5.2. Let u,ve X*and leti,j21. If uandvJhave a com-
mon left factor of length lul + Ivl, then u and v are powers of a common

word.
Now we compute Q¢ 0.

Proposition 5.1. Q#0 =X2X*\U, .y a%".

" Proof. Let ue X2X* \U,cxa’a*. If u=a’® for some a e X, then u =
aseaec Q¢Q. Now assume that u ¢ a’a* for any a € X. Then u = a*bu’ for
some abe X,a=zb,k>21and u' e X*. First, consider the case k> 2.

Note that u #akbu' = ae(abbu’) = (a'b)e (@'u’) if k =2t and u = a*bu’ =
ae (a*'bu’) = (a‘u’)e (a*'b) if k = 2t - 1. Obviously, ¢t > k/2. Suppose
that a*'bu’ € QW and a'u’ e QY for some i,j=2. In this case, lu'l > k.
By Lemma 5.1, (w'a)a**'b e QP and u'a‘e OV. If (i, j) # (2, 2), then
we have

'l +¢ - (k+ Wi - (u'l +1)fj

=(1-1/i - 1plu’l + (1 - 1/t - kfi

lw’l/6 + (1 - 1/))k/2 - k/i
2k/3 - (1/2j + 1/i)k
2k/3 - (16 + 1/2)k
=0.

v

v

v

Hence, by Lemma 5.2, (u’a’)a**'b e w*and u’'a’e w* for somew e X*.
Thus a**'b e w*. This yields a contradiction, because w € X*a n X*b.
Therefore, (u’'a"a**'b e QP and u'a‘* e Q®@. Since I(u'a’)a** bl > 0 and
(u’at)a**'b I, is even, lu'a’ly, > O where vl means the number of occur-
rences of bin v. On the other hand, lu’a’l, must be even. Hence,
l(u’a’)a**'bl, is odd, a contradiction. Consequently, a* by’ € Q ora'u’ e

Q, and thus u € Q¢ Q. Now consider the case k = 1. In this case, u = abu’.

14

15

Let u =abu’ =aebu’ =au’sb. Suppose that au’ € Q¥ and bu’ e QV for
some i,j2 2. Then, by Lemma 5.1, w'a € Q¥ and u'b € QU. It can easily
be verified that lu’l 2 5 and (i, j) # (2, 2). Therefore, we have
'l - (1 +1luwl)i-@Q +Ww'fj =@ - 1/i - 1plu’t - (1/i + 1/))

2 lu’ll6 - 5/6

2 0.
By Lemma 5.2, u'a e wrand u'b e w‘+ for somew € X', a contradiction.
Therefore, au’ € Qor bu’e Q,i.e. u € Q¢ Q. Finally, we show that al e
Q¢Q for any a e X and i > 3. Obviously, if a‘ = uev, then u = a* and v = a'
for some s,t> 1 with s +¢ = i. Sirice iz3,a°¢ Qora‘e Q. Hence a’¢

Q¢ Q. This completes the proof of the proposition. Q.E.D.

References

[1] B. Berard, Literal shuffle, Theoret. Cotht. Sci. 51 (1987) 281-
299.

[2] J. Berstel and D. Perrin, Theory of Codes (Academic Press, New
York, 1985).
[31 G. Lallement, Semigroups and Combinatorial Applications

(John Wiley & Sons, New York, 1979).

[4] M. Lothaire, Combinatrics on Words (Addison-Wesley publ. Co.,
Reading, Mass., 1983). '

[51 H.J. Shyr, Free Monoids and Languages (Lect. Notes, Dep. Math.,
Soochow Univ., Taipei, 1979),

[6] G. Tanaka, Alternating products of prefix codes, Proceedings of
The 2nd Conference on Automata, Formal Languages and
Programming Systems, Salgotarjan, Hungary (1988), to appear.

15

