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Strongly compatible total orders on free monoids

T. Saito, T. Iwamoto, Y. Kobayashi, K. Kajitori

e ME (KREKX- &%) A4 K (FHILHE)
M ik (HEBX - BERFE) BN 8 (KEX - &%)

In this paper, we deal with a combinatorial problem which the
first author raised in relation to term-rewriting systems. To
‘complete' a grammar (as a term-rewriting system), one uses a
compatible total order on the set X" of all words ( an order < on X"
is said compatible if x <y implies uxv <uyv for all u,v) which
does not have an infinite descending sequence. An order < on X" is
said length-sensitive if x| < |yl implies x <y, where |x| for a
word x denotes the length of x. The length-sensitivity assures the
non-existence of an infinite descending sequence. Usually, a total
order that is used for the above purpose is the length-sensitive
lexicographic order ( which is clearly compatible). The problem
raised by the first author was to describe the all length-sensitive
compatible total orders on X'. He soon noticed that if we replace
the compatibility by a somewhat stronger property which we shall
call the strong compatibility, then the description of the orders
becomes strikingly simple especially when Card(X) = 2 (Card(X)
denotes the cardinality of the set X). In this paper, we take the
strong compatibility as a basic property on orders, and present
some results on such orders.

Let X = {a;,a,, - ,ap} be a set. We call X the alphabet and its

elements letters. The free monoid X' on X is the set of all words
over X (that is, finite sequences of letters including the empty
sequence, denoted 1, with concatenation as the operation). We

treat X itself as a subset of X' by identifying each letter a with
the word consisting of 'a’ alone. For any word x in X*, the length of
a word x is the number of letters occurring in x, and denoted by

Ix|. For each natural number n, X" denotes the set {we X*: Ix| =

n }, while X! denotes the set {we X*: Ix| <n}. We basically
follow the notations in [B-P].
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We consider an order relation < on X" with the following
conditions:
(P1) for letters, aj <a;<--<a, (x<y meansthat x<y and x
# Y. ), and for any words x,y € X, '

(P2) (The length sensitivity) if Ixl <lyl, then x <y.
(P3) (The compatibility) if x <y, then uxv <uyv forall uyve X

(P4) (The strong compatibility) if X =X;X5, ¥ =y;¥ and |x;l=ly,l,
Ixl=ly,l, then x <y implies x;ux; <yjuy, forallue X, where
X1, X2,¥Y1,Y2 € X"

(P5) < is a total order on X".

By (P1), we mean that we may (and do) fix 'the' ordering on the
letters of X without loss of generality. The length-sensitivity
(P2) is our another presumption on orders on X' and will be
implicit on any orders which will appear in the paper. It is easy to
check that (P4) implies (P3).

By the lexicographic order, we mean the order < on X"
determined by the rule: if x =X;X9:Xm, ¥ = Y1¥2:Ym and Xq--Xj.q

= y;-Yiq and x; <y;, then x <y, where x;yje X (i=1,-,m).
We denote this order by <.

If X =X;XpXm e X°, where xje X (i = 1,,m), then we denote
Xm-X2X1 by X

By the anti-lexicographic order, we mean the order < on X" such
that for any x,y e X5 X <jgx ¥ implies X<y. We denote this order
by <.

It is easy to see that both <, and <;, are strongly compatible.

Proposition 1. Suppose that < is a strongly compatible total order
on X*. If < coincides with <jgx ON XB1 then < in fact equals <jgx ON
the entire X*. In particular, if Card(X)2 3, then X3! above can be
replaced by X2,

Proof. We show the first assertion by induction on the length of
words. Suppose that on XM < coincides with <jex (M = 4). Let x,y
e XM be x = x;X5-Xp and y = y;y,+-ym and let i be the least such
that x; # y;. WLOG, we may assume that x; <y;. Then, since x <jgy
y, we have to show that x < y.

Case 1 :i22. Then, xI Xm < Yi¥Ym by the induction hypotheS|s
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So, using the strong compatibility, we have that x = xj--Xj.; -
Xj>Xm < Y1¥Yi-1YiYm =Y. : ‘
Case 2 :i=1and x;<yjfor some j=i. Then, X;-Xji Xjs1Xm <
Y1Yj-1Yj+1--Ym by the induction hypothesis. So, using the strong
compatibility, we have that x = Xj-Xj.1XjXji1"Xm < Y1-¥j-1Y] Yj+1
...ym - y_ ‘ v v : : v ‘
Case 3 :i=1and x; >yjforallj#i Since by the case 1, we have
that x < x;a,m! and y;a;M! <y, it suffices to show that x;a,M"! <
yia;Mm-1. Suppose on the contrary, that y;a,™! < x;a,™1. Then, by
the strong compatibility, we have that y;x;a;Mm-1 < x,2a,M-1. But,
on the other hand, we have: | ’
' xi2ap™1 = xy(x;ap)ap™-2

< X1(@nX1)an™2 = X;ap(X;anM2)

< Xxjap(an™3a;?) = (x;ap™m2)a;?

< (y1x1a1Mm3)a;2 = y;x;a;M1, a contradiction.
We have proved the first assertion.

To show the second assertion, suppose that < coincides with

<iex 0N X2 It suffices to show that < coincides with <o, on X121,
Since in the above argument, m could be 3 until we showed the
claim that x;apm-! < y;a;M-1, we need only show the claim for m =
3, i.e., that x;ap? < y;a;2. Suppose that y;a,2 < x;a,2. Then, we have
that y;ana;? < xjap3. But, we have, if x; > a;,

X1@p3 = (X1an)an?

< (Yiaj)ap? = yj(a;ap)an
< Yi(X1@1)an = yixi(aian)
< yixi(apag) =yi(xjap)a;
< Yi(anxi)a; = yi1apa,?, a contradiction,

and if x; = a;,
X1@p3 = (Xj@p)an?
(a221)ap? = ay(ajap)an
a(aaj)an = ax%(a;ap)
ay2(ana;) = ax(azan)a;

< ay(apaj)a; < y1apa?, again a contradiction.
We have proved the proposition. '

A AN A

“An entirely similar proof shows the following:

Proposition 2. Suppose that < is a strongly compatible total order
3 «
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on X'. If < coincides with <5, on XB1 then < in fact equals <g on the
entire X'.

In particular, if Card(X)> 3, then X!3! above can be replaced by X1,

From now on until the end of the proof of Thedrem 7, we

restrict our attention to orders on X' with Card(X)= 2. We define
four orders other than <jex Or <5 and will show that these four

orders together with <jex and <4 exhaust all the strongly
compatible total orders on X* when Card(X)= 2.

Let c e X. For x e X*, the number of ¢ occurring in x is denoted
by Ixlc. We consider the following conditions on an order < on X =
{a,b}* (a<b): forxye X" with |x| =yl

(@) if Ixlp < lylp, thenx <y,

(b) if Ixlp = lylp and x <y ¥, then x < y,

(¢) if Ixlp=1lylp and y <4 x, then x < y,

(b)) if Ixlp = lylp and x <4 y, then x < y,

(¢) if Ixlp = lylp and y <jex X, then x < y.

It is clear that an order on X* satisfying (a) and one of (b),(c),(b",
(c) for all x,y e X* is a strongly compatible total order on X*. The

next four lemmas show that similar assertions to Proposition 1 2
are true for these four orders.

Lemma 3. Let X = {a,b} with a < b. Suppose that < is a strongly
compatible total order on X*. Then, if < coincides with the .

ordering defined by the conditions (a) and (b) on X!, then they
coincides on the entire X.

Lemma 4 Let X, < be as in the lemma 3. Théh,, If < coincides with

the ordering defined by the conditions (a) and (c) on X4 then they
coincides on the entire X".

Lemma 5. Let X, < be as in the lemma 3. Then, If < coincides

with the ordering defined by the conditions (a) and (b) on X[“] then
they coincides on the entire X'.

Lemma 6. Let X, £ be as in the lemma 3. Then, kIf < coincides

with the ordering defined by the conditions (a) and (c') on x4 then
they coincides on the entire X".

Because the proofs of these lemmas aré similar,vwe exhibit only

4
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the broof of Lemma 3.

Proof of Lemma 3.

We show by induction on the length of a word. Suppose that on
X[m'”, < coincides with the order defined by the conditions (a) and
(b) (m = 5). Letx,y e XM be x = x;X3-Xy, andy = y;y,--ym. We have
to show that if either x|y = lylp and x <jex y, or Ixlp < lylp, then x
<Yy.

Case 1: Ixlp=lylp=kand X <exy. I X;Xiq =Yy;1-V¥i and Xj<
yi (2 <i <m), then | Xjxmlp = | Yi-Ymlb and Xj-Xm <iex Yi~¥Ym » SO
that by the induction hypothesis, XXy < Yi~Ym- By the
compatibility of <, x = Xy-Xi.1XjXm < Y1--¥i-1YiYm = Y. From
this fact, we can assume that x,y do not have a common initial
segment, and obtain that x < abkam-k-1 and bam-kpk-1 < y.
Therefore, it suffices to show that abkam-k-1 < bam-kpk-1, If 2k >
m, then we have :
| abm-kam-k-1| = |[pam-kpm-k-1| =2m 2k <m. .
Since | abm-kam-k-1| = | pam-kbm-k-1|, = m-k and abm-kam-k-1
<|ex bam-kbm-k-1 " we have that abM-kam-k-1 < pam-kpm-k-1 Then,
from the strong compatibility of <, we have :
abkam-k-1 = (abm-K)pZk-mgm-k-1 < (haMm-k)p2k-mpm-k-1 = pgm-kpk-1,

If 2k < m, then we similarly obtain that abkak-1 < bakbk-1, so that

abkam-k-1 = (abk)am-Zkgk-1 < (bak)am-2kpk-1 = pam-kpk-1,
In the case of 2k = m, suppose that bam-kbk-1< abkam-k-1. Then,
bakbk-1< abkak-1, so that bak+1bk-1 < a2bkak-1. On the other hand,
we have :

aZbkak-1 = a(abk-ZbZa)ak-Z
< a(bbk-2a2b)ak-2 (since abba < baab)
= (abk-l)(aZb)ak-Z
< (bak-1)(a2b)bk-2 (since abk-1ak-2 <« bak-1pk-2)

= bak+lbk-1  a contradiction.
Case 2: |xlp < lylp. Put Ixlp=s and lylp =t withs<t If s+t
<m, then xj=y;=a for somei (1<i<m), andif s +t>m, then xj
=Y; = b for some i (1<i<m). In the both cases, we have :
| Xy Xi.tXisr-Xmlb < | Y1-¥itYier~Ymlp,  so that
XpXi-1 Xjie1Xm < Y1Yi-1Yi+1'Ym-
Thus, X = XXX Xjg1Xm < Y1-¥i1Yi Yie1rYm = Y-

So, suppose that s+t = m. Then, from the case 1, we obtain
that x < bsa! and asbt <y. Thus, it suffices to show that bsal <

5
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asbl. If t-s =2, then since bSal"! < asb!! by induction, we have
bsat < asbt. Hence, lett = s+1(so m = 2s+1), and assume on the
contrary to our purpose that asbs+1 < bsas+1l. Then, asasbbs+! <
asbsbas+!. But, on the other hand, we have that
asbshas+! = (aSbS+1)aS+1

' (bSas+1)as+1
(bS-l)baS-l(aS+1)a2
(as-1)bas-1(abs)a2 (since bs-1las+l < aS-1abs)
(as-1)aas-1(abs)b2 (since bas-la? < aas-1b2) ---(*)
aSaSbbsS+1,  a contradiction.

AN A

At (*), we can use the induction hypothesis since |bas-1a2|= s+2 <
2s+1 (= m) by our hypothesis that m > 5. We have proved the lemma.

Now, our main theorem:

Theorem 7. Let X = {a,b} with a < b. Suppose that < is a strongly
compatible total order on X*. Then, < must be one of the following
six orders on X' ’

(1) the lexicographic order,

(2) the anti-lexicographic order,

(3)~(6) one which satisfies the condition (a) and one of the
conditions (b),(c),(b'),(c").

Proof.  For the sake of Proposition 1-2 and Lemma 3-6, it suffices
to check that if < is a strongly compatible total order on {a,b}",

then it coincides with <|gx Or <4 on X1 or with one of the other

four orders on X, So, let < be a strongly compatible total order
on {a,b}*. Then, since a < b, by the compatibility of <, there are
only two possibilities on X2:

. aa<ab<ba<bb, and

Il. aa <ba<ab < bb.
Suppose that the possibility | is the case. Then, the strong
compatibility of < imposes on the ordering on X3 that aaa < aab <
aba < (abb or baa) < bab < bba < bbb. The strong compatibility alone
can not determine if abb < baa or baa < abb. Therefore, we get
two possibilities:

[-(i). aaa < aab < aba < abb < baa < bab < bba< bbb, or

I-(ii). aaa < aab < aba < baa < abb < bab < bba < bbb. } _
If I-(i) is the case, then < coincides with <jgx ON XB! and we are
done. So, suppose that I-(ii) is the case. Then, the strong
compatibility of < imposes on the ordering on X4 that

aaaa < aaab < aaba < abaa < baaa < aabb < abab <

6
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< (abba or baab) < , ,

<baba < bbaa < abbb < babb < bbab < bbba < bbbb.
Here, again the strong compatibility fails to determine if abba <
baab or baab < abba. If abba < baab, then < coincides on X4 with
the order defined by the conditions (a) and (b), and if baab < abba,
then < coincides on X! with the order defined by the conditions (a)
and (c). Hence, we have shown the case | above. The case Il can be
treated similarly. ’

When Card(X) = 3, a description of the strongly compatible total
orders becomes much more complicated even when Card(X) = 3. We

are going to show that there are infinitely many strongly
compatible total orders on X' when Card(X) = 3.

Let X = {a;,a,, - ,ap} (n=3). Letf: X’> R be a mapping from X
into the set of real numbers satisfying : ' ’

(1) forge X, f(a;) <f(ay) < - < f(ap),

(2) for x = xyX5 -+ Xm e X", where x;e X (i=1, - ,m), f(x) =

m
PRCIE
t=1

Then, let < be the order on X" defined by:
(i if Ix] <lyl, then x <5y,
@iy if Ix| = lyl and f(x) < f(y), then x <y,
iy if Ix] = lyl, f(x) = f(y) and x <oy ¥y then x <;y.

Then, it is clear that <;is a strongly compatible total order on X'
for every f satisfying (1) and (2) above.

Proposition 8. Let X = {a;,a,, - ,a,} (n > 3). Then, the cardinality
of the set of all strongly compatible total orders on X' is that of
the set of real numbers. :

Proof. Let a,b,c be three distinct letters in X with a < b < c. For
each real number s e [0,1], let fg be a map : X’> R satisfying
(1),(2) above and such that fg(a) = 0, f5(b) = s, and fg(c) = 1.
Denote <f, by <s. We claim thatif 0 <s <t<1, then <sand <; are

not the same orders, which will show the theorem. To show the
claim, let p,q be natural numbers such that s < §< t (hence, ps < q

7
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< pt). Consider the words x = bP and y = c9aP-4. Since f4(x) = ps < q
= f5(y), X <s y. On the other hand, since fi(x) = pt > q = fi(y), y < x.
Hence, <g and <; are not the same.

Finally, we answer the following question :

Q. Does there exist a compatible total order which is not strongly
compatible?

The answer is 'positive’. To show an example, we modify the
above <; so that an evaluation of a word also counts a weight on

the 'location' of each letter in the word.
Let the alphabet X = { aj,az, -, an }. As before, f puts weight
(a real number) on each letter:
f(a1) < f(az) < -+ < f(an).
Let s be a positive real. Then, fg evaluates a word x = XjX3 - X
(where x;e X) by :

m
509 = Y0 6.
=1

Then, let < be the order on X" defined by:

() if IxI <lyl, then x <y,

(iy if [x| = [yl and fs(x) < fs(y), then x <.
It is clear that if s |s a transcendental real, then sf is a total
order. To see that <} is compatible, it suffices to observe that

fs(uv) = fg(u) + fs(v)s’UI for u,v e X". But, for some s, < _f is not
strongly compatible. For example, let s be a transcendental
number in the interval (1,1_*‘215 ), and let f(a) = 0, f(b) = 1 for a,b e X.

Then, it is easy to see that s? < s+1 and aab <{ bba. If <{ were -
strongly compatible, then aaak-2b <{ bbak-2a for every k. But, for a

sufficiently large k, fs(aaak-2b) = sk > s+1 = fg(bbak-2a) and
bbak-2a <{ aaak-2b. Hence, this <{ is not strongly compatible.

Appendix.

In this appendix, we present some complimentary results on <f -
orders in the case that the alphabet X = {a,b}.

First of all, we get rid of an unnecessary complication on f.

8
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Suppose that we are given an order < on {a,b}" for some f and
(a transcendental) s. Then, for x = x1x2 - Xm, (Where X;je {a,b}),

we have:

m m . m .
fs() = D f(x) s = (f<b)-f<a>){2 a(x>s"‘] + Y fa)s
=1 i=1 =1

where 3;(x) = 1 if x; =b, else 0. From this, we conclude that an
order sf on {a,b}" with f(a) < f(b) is equivalent to the order sg

with g(a) = 0 and g(b) = 1. Hence, in the followings, we consider
only orders s? with f(a) = 0 and f(b) =1, and omit the subscript f as
<5

Proposition A.  For s > 2 (resp. O< s < % ), <8 coincides with <

(resp. Siex)-
Proof. We only prove the case for s > 2. It suffices to show that

for every k > 1, 1+ s + s2 ++sk1 < sk because L.H.S. = fs(bka) and

R.H.S. = fs(akb). But, since s > 2, .és‘_ll <sk1 ie. | %—1_1< K ie.

1+ S + 82 +--48k1 < K,

Proposition B. For s e(%, 1)u(l, 2), <° is not strongly compatible.

Proof. We prove only the case for s (1, 2). We first show that <°
# <g), for which it suffices to prove that there is a k = 1 such that

sk < 1+ s + s2 +-+sK1 since then akb <® bka. But, if se(1, 2), then
for a sufficiently large k, it holds that 1 < (2-s)sk, i.e., 1-sk < (1-
s)sk, i.e. _iil_l >sK ie., 1+ s + s2 +-+sk1 5 sk, On the other hand,
there is an m such that 1+ s + s2 +-+sk-1 < sk+M _ For such an m,
we have that aka™bS > bkaMa. Hence, <% is not strongly compatible.

Put for each k > 2, py(s) = sk*1 -2sk +1. Then, as in the above
proof, for each k > 2, and for each s € (1, 2), |
pyls) >0 iff  akb <5 bKa
(<) (°>)
For each k > 2, since pk(s) = sK{(k+1)s - 2k}, it is easy to see
that there is a unique root oy of pk(s) = 0 in the interval (1, 2).
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| y=Pi(s)

¢ s
0 1IN~ 2

Then, {oklkso is a strictly increasing sequence (converging to 2).
For, if 2 <k < m, then pp(og) = o™ ! -204M + 1 = oMK oy K+ 1-
200K + 1) + 1 - akm'k = 1- akm'k < 0, which means that ok < ap.
The convergence is proved by a similar argument to the proof of
Proposition B.

Proposition C. There are at least countably many compatible total
orders on {a,b}".

Proof. Let 2<k<m and se(oag, aks1) t€(otm, ameq). Then, it
suffices to show that <% and <! are distinct orders. Since s <
<om, Pm(s) <0, ie., bMa<Sam™b. But, since am<t, py(t) >0, ie.,
t

aMb <!bMa. Hence, <!'# <5.
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