Fourier transform of holomorphic discrete series — the case of tube domains —

by

Takaaki NOMURA (野村隆昭)

Department of Mathematics, Faculty of Science
Kyoto University (京大理)

§1. Preliminaries.

Let G be a non-compact connected linear simple Lie group and K a maximal compact subgroup of G. We assume throughout this note that G/K carries a structure of hermitian symmetric space and that G/K is holomorphically equivalent to a tube domain. The Lie algebras of G and K are denoted respectively by g and f. Let g = f + p be a Cartan decomposition with the associated Cartan involution θ . Since G/K is a hermitian symmetric space, there is a linear operator J on p such that J commutes with $(Ad \ k) \mid_{p} (k \in K)$ and $J^2 = -1_p$. One knows that J is written as $J = (ad \ Z_0) \mid_{p}$ for some element Z_0 in the center c of f. Note that since G is assumed to be simple, c is necessarily of one dimension.

Let $\mathfrak t$ be a maximal abelian subalgebra of $\mathfrak t$. Then one can prove that $\mathfrak t$ is a (compact) Cartan subalgebra of $\mathfrak g$. Let Δ be the root system with respect to $(\mathfrak g_{\mathbb C},\mathfrak t_{\mathbb C})$ and we denote by $\mathfrak g_{\mathbb C}^{\alpha}$ $(\alpha\in\Delta)$ the root subspace corresponding to the root $\alpha\in\Delta$. Then,

 $g_{\mathbb{C}}^{\alpha} \subset f_{\mathbb{C}}$ or $g_{\mathbb{C}}^{\alpha} \subset \mathfrak{p}_{\mathbb{C}}$. Let $\Delta_{\mathbf{C}}$ (resp. $\Delta_{\mathbf{n}}$) be the set of all roots $\alpha \in \Delta$ such that $g_{\mathbb{C}}^{\alpha} \subset f_{\mathbb{C}}$ (resp. $g_{\mathbb{C}}^{\alpha} \subset \mathfrak{p}_{\mathbb{C}}$). A root α in $\Delta_{\mathbf{C}}$ (resp. in $\Delta_{\mathbf{n}}$) is said to be compact (resp. non-compact). We introduce an order in Δ compatible with the complex structure of G/K so that the +i (resp. -i)-eigenspace \mathfrak{p}_{+} (resp. \mathfrak{p}_{-}) of the J extended to $\mathfrak{p}_{\mathbb{C}}$ by complex linearity coincides with the sum of all root subspaces corresponding to non-compact positive (resp. negative) roots. The set of all positive roots is denoted by Δ^{+} and $\Delta_{\mathbf{C}}^{+}$ (resp. $\Delta_{\mathbf{n}}^{+}$) stands for the set of all compact (resp. non-compact) positive roots. Both \mathfrak{p}_{+} and \mathfrak{p}_{-} are abelian subalgebras of $\mathfrak{g}_{\mathbb{C}}$ normalized by $K_{\mathbb{C}}$.

Let $\gamma_1,\ldots,\gamma_\ell$ be a maximal system of strongly orthogonal non-compact positive roots constructed as follows: for each j, γ_j is the largest positive non-compact root strongly orthogonal to $\gamma_{j+1},\ldots,\gamma_\ell$. Let β be the Killing form of $\beta_\mathbb{C}$. For every $\alpha\in\Delta$, we choose $\beta_\alpha\in\beta_\mathbb{C}$ and $\beta_\alpha\in\beta_\mathbb{C}$ so that

$$(1.1) \quad B(H_{\alpha}, H) = \alpha(H) \quad (\forall H \in t_{\mathbb{C}}), \quad X_{\alpha} - X_{-\alpha} \in f + i\mathfrak{p},$$

$$i(X_{\alpha} + X_{-\alpha}) \in f + i\mathfrak{p}, \quad [X_{\alpha}, X_{-\alpha}] = \frac{2H_{\alpha}}{\alpha(H_{\alpha})} = :H_{\alpha}'.$$

Then $H_{\alpha} \in i_{t}$ and one can prove that $\alpha := \sum_{1 \leq i \leq \ell} \mathbb{R}(X_{\gamma_{i}} + X_{-\gamma_{i}})$ is a maximal abelian subspace of \mathfrak{p} . Hence ℓ is equal to the real rank of G.

Let $G_{\mathbb{C}}$ be the complexification of G. We denote by $K_{\mathbb{C}}$ and P_{\pm} the analytic subgroup of $G_{\mathbb{C}}$ corresponding to $f_{\mathbb{C}}$ and p_{\pm} respectively. Then, every element x in $P_{+}K_{\mathbb{C}}P_{-}$ can be expressed in a unique way as

$$x = \exp \xi_{+}(x) \cdot k(x) \cdot \exp \xi_{-}(x)$$

with $\xi_{\pm}(x) \in \mathfrak{p}_{\pm}$ and $k(x) \in K_{\mathbb{C}}$. Furthermore $G \subset P_{+}K_{\mathbb{C}}P_{-}$. Since $\xi_{+}(xk) = \xi_{+}(x)$ $(k \in K_{\mathbb{C}})$, we have a mapping $\psi \colon G \to \mathfrak{p}_{+}$ defined by $\psi(gK) = \xi_{+}(g)$ $(g \in G)$. The ψ is a holomorphic diffeomorphism onto a bounded symmetric domain \mathscr{D} in \mathfrak{p}_{+} . The image $\mathscr{D} = \psi(G/K)$ $\subset \mathfrak{p}_{+}$ is called the Harish-Chandra realization of G/K. Let $q \in \mathscr{D}$. If $g \in G_{\mathbb{C}}$ satisfies $g \exp q \in P_{+}K_{\mathbb{C}}P_{-}$, then $g \cdot q \in \mathfrak{p}_{+}$ is well-defined and is given by $\xi_{+}(g \exp q)$. Moreover, for $g \in G$ and $x \in G/K$, $g \cdot \psi(x)$ is always well-defined and we have $g \cdot \psi(x) = \psi(gx)$. Let

$$m_* = \exp \pi Z_0.$$

It is clear that m_* lies in the center of K and $\theta = \operatorname{Ad} m_*$. Thus $m_* \in N_K(A)$, the normalizer of A:= $\exp \alpha$ in K. Now it is easily seen that $m_* \cdot q = -q$ ($\forall q \in \mathcal{D}$), so m_* gives the symmetry of \mathcal{D} at the origin $0 \in \mathcal{D}$.

Put

(1.3)
$$c := \exp \frac{\pi}{4} \sum_{i=1}^{Q} (X_{\gamma_i} - X_{-\gamma_i}) \in G_{\mathbb{C}}.$$

Then $c \in P_+ K_{\mathbb{C}} P_-$. Setting

(1.4)
$$X_0 := \sum_{i=1}^{\ell} X_{\gamma_i}, \quad H'_0 := \sum_{i=1}^{\ell} H'_{\gamma_i}, \quad Y_0 := \sum_{i=1}^{\ell} X_{-\gamma_i},$$

we have

(1.5)
$$\xi_{+}(c) = X_{0}$$
, $k(c) = \exp(\log \sqrt{2})H_{0}$, $\xi_{-}(c) = -Y_{0}$.

Let τ be the conjugation in $\mathfrak{g}_{\mathbb{C}}$ relative to the compact real form $\mathfrak{f}+\mathfrak{ip}$. One knows that $(x,y):=-B(x,\tau y)$ $(x,y\in\mathfrak{g}_{\mathbb{C}})$ defines a hermitian inner product on $\mathfrak{g}_{\mathbb{C}}$. Let $\mathfrak{t}^-:=\sum\limits_{j=1}^{\ell}\mathbb{R}H_{\gamma_j}$ c it and \mathfrak{t}^+ be the orthogonal complement to \mathfrak{t}^- in it. Set $\nu=\mathrm{Ad}_{\mathbb{G}_{\mathbb{C}}}$ where c is the element in $\mathbb{G}_{\mathbb{C}}$ defined by (1.3). Then ν is an isometry of $\mathfrak{g}_{\mathbb{C}}$ and we have

$$v(X_{\gamma_{j}} + X_{-\gamma_{j}}) = H_{\gamma_{j}}', v(X_{\gamma_{j}} - X_{-\gamma_{j}}) = X_{\gamma_{j}} - X_{-\gamma_{j}},$$

$$(1.6)$$

$$v(H_{\gamma_{j}}') = -(X_{\gamma_{j}} + X_{-\gamma_{j}}).$$

Hence $t^- = \nu(\alpha)$, and $t^+_{\mathbb{C}} + \alpha_{\mathbb{C}} = \nu^{-1}(t_{\mathbb{C}})$ is a Cartan subalgebra of $g_{\mathbb{C}}$. For every $\alpha \in \Delta$, res $_{-}\alpha$ will stand for the restriction of α to t^- . We denote still by γ_j the restriction res $_{+}-\gamma_j$.

Let $\alpha_j := \gamma_j \circ \nu$ ($j = 1, 2, \ldots \ell$). Since we are assuming that G/K is holomorphically equivalent to a tube domain, the restricted root theorem due to Moore [6] can be stated as follows.

Theorem 1.1 (Moore). Let $\Delta(a)$ be the a-root system. Then, the positive system $\Delta(a)^+$ of $\Delta(a)$ is described as

$$\Delta(\alpha)^{+} = \left\{ \frac{1}{2} (\alpha_{m} + \alpha_{k}); 1 \le k \le m \le \ell \right\} \cup \left\{ \frac{1}{2} (\alpha_{m} - \alpha_{k}); 1 \le k \le m \le \ell \right\}.$$

For any $\alpha\in\Delta(\alpha)\,,$ we denote by g_{α} the corresponding $\alpha\text{-root}$ subspace. Put

$$(1.7) u_{k} := \frac{i}{2} \left(H_{\gamma_{k}}^{\prime} - X_{\gamma_{k}} + X_{-\gamma_{k}} \right) (k = 1, 2, ..., \ell).$$

Since H_{γ_k} \in it and $X_{\gamma_k} - X_{-\gamma_k} \in$ ip (cf. (1.1)), we see that $u_k \in g$. Moreover, (1.6) leads us to $v^{-1}(X_{\gamma_k}) = iu_k$, so that $u_k \in g_{\alpha_k}$.

(1.8)
$$s := \sum_{k=1}^{\ell} u_k \in g(1), \quad a_0 := \sum_{k=1}^{\ell} \frac{1}{2} (X_{\gamma_k} + X_{-\gamma_k}) \in \alpha.$$

Then, ad \mathbf{a}_0 is semisimple. Let \mathfrak{m} be the centralizer of α in \mathfrak{k} and put

$$g(0) = m + \alpha + \sum_{k \le m} (g(\alpha_m - \alpha_k)/2 + g_{-(\alpha_m - \alpha_k)/2}),$$

$$g(1) = \sum_{k \leq m} g(\alpha_m + \alpha_k)/2,$$
 $g(-1) = \sum_{k \leq m} g_{-}(\alpha_m + \alpha_k)/2.$

Then, g = g(-1) + g(0) + g(1), an orthogonal direct sum of vector subspaces. It is easy to see that g(k) is the k-eigenspace of ad a_0 . Letting $g(k) = \{0\}$ for |k| > 1, we have

(1.9)
$$[g(k),g(m)] \subset g(k+m).$$

We also have

(i) dim
$$g_{\alpha_{1}} = 1$$
 for all $1 \le k \le \ell$,

(1.10) (ii) a:= dim
$$g(\alpha_m - \alpha_k)/2 = dim g(\alpha_m + \alpha_k)/2$$
 is independent of m, k (m > k).

$\S 2$. Realization of G/K as a tube domain.

2.1. Basic facts about Jordan algebras. We begin this section with the definition of Jordan algebra. Our reference is the book [1]. Let $\mathfrak U$ be a finite dimensional vector space over $\mathbb K$ ($\mathbb K=\mathbb R$ or $\mathbb C$). A product $x,y\to xy$ in $\mathfrak U$ is, by definition, a bilinear mapping $\mathfrak U\times \mathfrak U\to \mathfrak U$. The associative law is not assumed here. The vector space $\mathfrak U$, equipped with a product, is called a Jordan algebra if

$$(J-1) xy = yx,$$

$$(J-2) x2(xy) = x(x2y)$$

hold for all $x,y \in \mathcal{U}$. Now let \mathcal{U} be a Jordan algebra with the unit element e. For $x \in \mathcal{U}$, we define a linear operator L(x) on \mathcal{U} by

$$L(x)y = xy.$$

Then we have L(x)y = L(y)x and the assignment $x \mapsto L(x)$ is clearly linear. In terms of these operators, (J-2) is rewritten as

$$[L(x), L(x^2)] = 0.$$

We know that any Jordan algebra is power-associative, that is, defining the power x^n of an element $x \in \mathcal{U}$ by $x^n = xx^{n-1}$ inductively, we have $x^mx^n = x^{m+n}$. Therefore the subalgebra K[x]

generated by e and x is associative. Set

(2.2)
$$P(x) = 2L(x)^2 - L(x^2)$$
 (x $\in \mathfrak{U}$).

The mapping $x \mapsto P(x)$ is called the quadratic representation of \mathfrak{U} . It is well-known that $P(x^n) = P(x)^n$ (n = 1, 2,...). Furthermore we have the following formula named as the fundamental formula:

$$(2.3) P(P(x)y) = P(x)P(y)P(x) (\forall x, y \in \mathcal{U}).$$

An element $x \in \mathcal{U}$ is said to be *invertible* if one of the following three mutually equivalent conditions holds:

- (i) The operator P(x) is invertible, that is, det $P(x) \neq 0$.
- (ii) There is $y \in K[x]$ such that xy = e.
- (iii) There is $y \in \mathcal{U}$ such that [L(x), L(y)] = 0 and xy = e.

Then, if x is invertible, the y in (ii) or (iii) is uniquely given by $y = P(x)^{-1}x$, and will be written as x^{-1} . The set of all invertible elements of $\mathfrak U$ is denoted by $\mathfrak U^{\times}$. Moreover $P(x^{-1}) = P(x)^{-1}$ holds for any $x \in \mathfrak U^{\times}$.

Now let $\mathcal U$ be a real Jordan algebra. $\mathcal U$ is said to be formally real if

$$(FR-1)$$
 $x^2 + y^2 = 0$ implies $x = y = 0$.

It is known that (FR-1) is equivalent to the following (FR-2):

(FR-2) the symmetric bilinear form $x,y \mapsto tr L(xy)$ is positive definite.

We remark here that the linear form $\mathcal{U} \ni x \mapsto tr L(x)$ is associative in the sense that

(2.4)
$$\operatorname{tr} L((xy)z) = \operatorname{tr} L(x(yz)) \qquad (\forall x, y, z \in \mathcal{U}).$$

In particular, the operators L(x) (hence P(x), too) are symmetric with respect to the bilinear form tr L(xy).

We assume now that $\mathfrak U$ is a formally real Jordan algebra. Then $\mathfrak U$ has the unit element e. The positive cone Ω is, by definition, the interior of the squares, i.e., $\Omega = \operatorname{Int}\{x^2; x \in \mathfrak U\}$. Ω is an open convex cone in $\mathfrak U$ and selfdual with respect to the inner product $\operatorname{tr} L(xy)$:

$$\Omega = \{ y \in \mathcal{U}; \text{ tr } L(xy) > 0 \text{ for all } x \in (C\ell \Omega) \setminus \{0\} \}.$$

We note:

- (i) Ω coincides with the connected component of \mathfrak{U}^{\times} containing e.
- (ii) $x \in \Omega$ if and only if L(x) is positive definite.
- (iii) If $x \in \Omega$, then P(x) is positive definite.

Finally, since the mapping $\Omega \ni x \mapsto x^2 \in \Omega$ is a diffeomorphism (its tangent mapping at $x_0 \in \Omega$ is $2L(x_0)$), its inverse mapping will be denoted by $\Omega \ni y \mapsto y^{1/2} \in \Omega$.

2.2. Jordan algebra structure on g(1). We retain the notation of §1 and recall the element s defined by (1.8).

Lemma 2.1. (i) The real vector space g(1) has a structure of Jordan algebra by $x \cdot y = -\frac{1}{2}[[x, \theta s], y]$ $(x, y \in g(1))$. The unit element is s.

(ii) Let L(x) be the operator defined by $L(x)y = x \cdot y$ (x,y \in g(1)). Then, $\operatorname{tr}_{g(1)}L(x \cdot y) = -2B(x, \theta y)$, so that g(1) with the product in (i) is a formally real Jordan algebra.

Henceforth we denote by $\mathfrak A$ the formally real Jordan algebra described in Lemma 2.1. Now consider the complexification $\mathfrak g(1)_{\mathbb C}$. The product $\mathbf x\cdot \mathbf y$ in $\mathfrak g(1)$, which is a real bilinear mapping, is naturally extended to a complex bilinear mapping $\mathfrak g(1)_{\mathbb C}\times\mathfrak g(1)_{\mathbb C}\to \mathfrak g(1)_{\mathbb C}$. It is easy to see that the complex vector space $\mathfrak g(1)_{\mathbb C}$ with this complex bilinear product becomes a Jordan algebra. We denote by $\mathfrak A_{\mathbb C}$ the complex Jordan algebra thus obtained. The multiplication operators, the quadratic representation of $\mathfrak A_{\mathbb C}$ are still denoted by $L(\mathbf x)$, $P(\mathbf x)$ respectively.

Consider the tube domain $T_0:=\mathcal{U}+i\Omega\subset\mathcal{U}_C$.

Lemma 2.2. (i) One has $T_{\Omega} \subset (\mathfrak{U}_{\mathbb{C}})^{\times}$, that is, every $z \in T_{\Omega}$ is invertible in the Jordan algebra $\mathfrak{U}_{\mathbb{C}}$.

(ii) If $z \in T_{\Omega}$, then $-z^{-1} \in T_{\Omega}$. Moreover the mapping $T_{\Omega} \ni z \mapsto -z^{-1} = -P(z)^{-1}z \in T_{\Omega}$ is holomorphic and has the unique fixed point is, where s is the unit element of u_{Γ} defined by (1.8).

Sketch. Let $z \in T_{\Omega}$ and put z = x + iy with $x \in \mathcal{U}$ and $y \in \Omega$. (i) Set $u = y^{1/2} \in \Omega$. Then,

(2.5)
$$x + iy = P(u)(P(u)^{-1}x + is).$$

Thus it suffices to consider the elements of the form x + is

 $(x \in \mathcal{U})$. But the following formula shows that x + is is invertible:

$$P(x+is)P(x-is) = P(x^2+s),$$

because $x^2 + s \in \Omega$. (ii) Since $-(x+is)^{-1} = -(x^2+s)^{-1}(x-is)$ (this computation is done in the associative algebra $\mathbb{C}[x]$), we see immediately $-(x+is)^{-1} \in T_{\Omega}$. Thus by (2.5), $-z^{-1} \in T_{\Omega}$ for any $z \in T_{\Omega}$. For the rest, it suffices to solve the equations $x^2 - y^2 + s = 0$, $x \cdot y = 0$.

On the other hand, one knows that $c\cdot \mathcal{D}\subset \mathfrak{p}_+$ and that $v^{-1} \cdot c(\mathcal{D}) = T_\Omega \quad (\text{note } v(\mathfrak{g}(1)_\mathbb{C}) = \mathfrak{p}_+) \,. \quad \text{Thus } T_\Omega \quad \text{realizes G/K and G acts on } T_\Omega \quad \text{by}$

$$(2.6) g \cdot z = v^{-1}(c \cdot (g \cdot q)) (g \in G, z \in T_{\Omega}),$$

where $q = c^{-1} \cdot (\nu(z)) \in \mathcal{D}$. We will make (2.6) more explicit for some elements of G.

Let $G(0) = Z_G(a_0)$, the centralizer in G of the $a_0 \in \alpha$ defined by (1.8). Then, g(0) = Lie G(0) and G(0) is reductive. Let $G(1) = \exp g(1)$ and $P_0 := G(1)G(0)$. Then, P_0 is a maximal parabolic subgroup of G with G(0) a Levi part, G(1) the unipotent radical. We have $cP_0c^{-1} \subset P_+K_{\mathbb{C}}$, so that

(2.7)
$$g \cdot z = v^{-1} \xi_{+}(cgc^{-1} \exp v(z))$$
 $(g \in P_{0}, z \in T_{0}).$

Now let $g_0 \in G(0)$. Then $cg_0c^{-1} \in K_{\Gamma}$, and so

(2.8)
$$g_0 \cdot z = (Ad g_0) z$$
 $(g_0 \in G(0), z \in T_{\Omega}).$

For a $\in g(1)$, recalling $v(g(1)_{\mathbb{C}}) = p_+$, we see easily that

(2.9)
$$(\exp a) \cdot z = z + a$$
 $(a \in g(1), z \in T_{\Omega}).$

Finally for the element m_{*} defined by (1.2), we get

$$m_* \cdot z = -z^{-1}.$$

Since P $_0$ and the element m $_*$ generate G, the formulas (2.8) \sim (2.10) describe the G-action on $\rm T_{\Omega}.$

§3. Holomorphic discrete series.

- 3.1. Realization on D. We retain the notation in the preceding sections. Let Λ be a K-dominant K-integral form on t_{Γ} : thus
- (i) $\Lambda(H_{\alpha}) \ge 0$ for all $\alpha \in \Delta_{c}^{+}$,
- (ii) $\xi_{\Lambda}(h) := \exp \Lambda(\log h)$ is a character of T:= exp t.

We denote by τ_{Λ} the irreducible unitary representation of K on a finite dimensional Hilbert space E_{Λ} with highest weight Λ . The inner product on E_{Λ} is written as $(\cdot,\cdot)_{\Lambda}$. We describe here a realization of holomorphic discrete series of G following Vergne-Rossi [9]. Let $U(\mathfrak{g}_{\mathbb{C}})$ denote the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$. Every element of $U(\mathfrak{g}_{\mathbb{C}})$ is canonically considered as a left invariant differential operator on G. Let $\mathfrak{G}(\Lambda)$ be the space of all E_{Λ} -valued C° -functions on G such that

(i)
$$\varphi(xk) = \tau_{\Lambda}(k)^{-1}\varphi(x)$$
 (x \in G, k \in K),

(ii) $X\varphi = 0$ for all $X \in \mathfrak{p}_{-}$,

(iii)
$$\int_{G} |\varphi(x)|^{2} dx < \infty,$$

where dx is the Haar measure on G. We define an inner product on $\mathcal{O}(\Lambda)$ by

$$(\varphi_1,\varphi_2):=\int_G (\varphi_1(\mathbf{x}),\varphi_2(\mathbf{x}))_{\Lambda} \ \mathrm{d}\mathbf{x}.$$

Then, one knows that $\mathfrak{O}(\Lambda)$ with this inner product is a Hilbert space. G acts on $\mathfrak{O}(\Lambda)$ by left translations: $L_{\Lambda}(g)\varphi(x) = \varphi(g^{-1}x)$. The representation $(U_{\Lambda}, \mathfrak{O}_{\Lambda})$ of G is irreducible and belongs to holomorphic discrete series of G if dim $\mathfrak{O}(\Lambda) > 0$. By Harish-Chandra [4], the condition dim $\mathfrak{O}(\Lambda) > 0$ is equivalent to

(3.1)
$$(\Lambda + \rho)(H_{\beta}) < 0 \text{ for all } \beta \in \Delta_{n}^{+},$$

where $2\rho = \sum_{\alpha \in \Lambda^+} \alpha$.

We will assume from now on that Λ satisfies (3.1), so that $\mathfrak{O}(\Lambda) \neq \{0\}$. In order to get a relization of holomorphic discrete series on a function space on D, one needs a map $\Phi \colon G \to \mathrm{GL}(E_{\Lambda})$ such that

$$\Phi(gk) = \Phi(g)\tau_{\Lambda}(k) \qquad (g \in G \ k \in K),$$

$$X\Phi = 0 \qquad \text{for all} \quad X \in \mathfrak{p}_{-}.$$

We note that since $P_0 = G(0)G(1)$ is a parabolic subgroup of G, one has $G = P_0K$. Thus recalling $cP_0c^{-1} \subset P_+K_C$, we get

(3.2)
$$cG \subset cP_0K \subset (cP_0c^{-1})cK \subset P_+K_CP_+K_CP_-K \subset P_+K_CP_-,$$

so that $k(cg) \in K_{\mathbb{C}}$ is well-defined for any $g \in G$. Extending τ_{Λ} to a holomorphic representation of $K_{\mathbb{C}}$, we now set, after Vergne-Rossi [9, p.18],

$$\Phi_{\Lambda}(g) = \tau_{\Lambda}(k(c))^{-1}\tau_{\Lambda}(k(cg)).$$

Then we have immediately that $\Phi_{\Lambda}(e) = 1_{E_{\Lambda}}$ and

$$\Phi_{\Lambda}(gk) = \Phi_{\Lambda}(g)\tau_{\Lambda}(k) \qquad (g \in G, k \in K),$$

$$X\Phi_{\Lambda} = 0 \qquad \text{for all} \quad X \in \mathfrak{p}_{\perp}.$$

We further extend τ_{Λ} to a representation of the semidirect product $P_+K_{\mathbb{C}}$ by defining $\tau_{\Lambda}(p) = 1_{E_{\Lambda}}$ for all $p \in P_+$. Noting that for $g \in P_0$, we have $k(cg) = k(cgc^{-1})k(c)$ by (3.2), we see

$$\Phi_{\Lambda}(g) = \tau_{\Lambda}(k(c)^{-1})\tau_{\Lambda}(cgc^{-1})\tau_{\Lambda}(k(c)) \qquad (g \in P_0).$$

Thus $\Phi_{\Lambda}|_{P_0}$ is a representation of the parabolic subgroup P_0 . Moreover by (1.5) and (1.6), we have

$$\Phi_{\Lambda}(g_{0}) = \tau_{\Lambda}(cg_{0}c^{-1}) \qquad (g_{0} \in G(0)),$$

$$(3.5) \qquad \Phi_{\Lambda}(exp \ x) = 1_{E_{\Lambda}} \qquad (x \in g(1)).$$

We remark here that $[\det P(t)]^{-1/2} dt$, dt being the Lebesgue measure on g(1), is a P_0 -invariant measure on Ω , where $t \to P(t)$ is the quadratic representation of the Jordan algebra $\mathcal U$ described in Lemma 2.1 (recall that P(t) is positive definite for $t \in \Omega$).

Let $S = (\exp \sum_{\alpha \in \Delta(\alpha)} + g_{\alpha})A$, the Iwasawa solvable subgroup of G. Put $S(0) = G(0) \cap S$. We denote by η_0 the diffeomorphism of Ω onto S(0) such that $(\operatorname{Ad} \eta_0(t))s = t$ $(t \in \Omega)$.

With these preparations, we now introduce a Hilbert space $H(\Lambda) \quad \text{of} \quad E_{\Lambda}\text{-valued holomorphic functions} \quad F \quad \text{on} \quad T_{\Omega} \quad \text{such that}$

$$\|\mathbf{F}\|^2 := \int_{\mathbf{T}_{\Omega}} \|\boldsymbol{\Phi}_{\Lambda}(\boldsymbol{\eta}_{0}(\mathbf{y}))^{-1} \mathbf{F}(\mathbf{x} + \mathbf{i}\mathbf{y})\|_{\Lambda}^{2} \frac{d\mathbf{x}d\mathbf{y}}{\det P(\mathbf{y})} < \infty.$$

Letting $\alpha(g) = g \cdot is \in T_{\Omega}$ ($g \in G$), we define

$$T_{\Lambda}F(g) := \Phi_{\Lambda}(g)^{-1}F(\alpha(g))$$
 (F \in H(Λ), $g \in G$).

Then T_{Λ} is a unitary mapping from $H(\Lambda)$ onto $O(\Lambda)$. Let $\pi_{\Lambda}(g) := T_{\Lambda}^{-1} L_{\Lambda}(g) T_{\Lambda}$ ($g \in G$). To describe $\pi_{\Lambda}(g)$, we set

$$(3.6) J_{\Lambda}(g,\alpha(h)) := \Phi_{\Lambda}(gh)\Phi_{\Lambda}(h)^{-1} (g \in G, h \in S).$$

Then, one has

$$J_{\Lambda}(g_1g_2,z) = J_{\Lambda}(g_1,g_2\cdot z)J_{\Lambda}(g_2,z) \qquad (g_1,g_2\in G,\ z\in T_{\Omega}).$$

Now, a simple computation yields

(3.7)
$$\pi_{\Lambda}(g)F(z) = J_{\Lambda}(g^{-1},z)^{-1}F(g^{-1}\cdot z)$$
 $(g \in G, z \in T_{\Omega}).$

We note that since $\Phi_{\Lambda}|_{P_0}$ is a representation, we have $J_{\Lambda}(g,z)$ = $\Phi_{\Lambda}(g)$ for all $g \in P_0$ and $z \in T_{\Omega}$. We also note that by (3.3),

(3.8)
$$J_{\Lambda}(k,is) = \tau_{\Lambda}(k)$$
 for all $k \in K$.

3.2. Some integrals over Ω . Let us set $\langle x,y \rangle := -B(x,\theta y)$ for $x,y \in g(1)$. Then, $\langle \cdot, \cdot \rangle$ is an inner product of g(1) relative to which Ω is selfdual (cf. Lemma 2.1 (ii)). For $\lambda \in g(1)$ and $u \in E_{\Lambda}$, define

$$\begin{split} \Gamma_{\Lambda}(\lambda;\mathbf{v}) &:= \int_{\Omega} \, \mathrm{e}^{-2 \, \langle \, \lambda \,, \, \mathsf{t} \, \rangle} \, \| \Phi_{\Lambda}(\eta_0(\mathsf{t}))^{-1} \mathbf{v} \|_{\Lambda}^2 \, \frac{\mathrm{d} \mathsf{t}}{\mathrm{d} \mathrm{e} \mathsf{t} \, P(\mathsf{t})} \\ &(3.9) \\ &\mathbb{E}_{\Lambda}(\lambda) := \, \{ \mathbf{v} \, \in \, \mathbb{E}_{\Lambda}; \, \, \Gamma_{\Lambda}(\lambda;\mathbf{v}) \, < \, \infty \} \,. \end{split}$$

It is an immediate consequence of the Minkowski's inequality that $E_{\Lambda}(\lambda) \quad \text{is a subspace of} \quad E_{\Lambda}. \quad \text{Moreover, we have}$

$$\Gamma_{\Lambda}(\lambda; \mathbf{v}) = \infty \quad \text{for all} \quad \lambda \notin \mathsf{C}\ell \; \Omega \quad \text{and non-zero} \quad \mathbf{v} \in \mathsf{E}_{\Lambda},$$
 (3.10)
$$\mathsf{E}_{\Lambda}(\lambda) = \mathsf{E}_{\Lambda} \quad \text{for all} \quad \lambda \in \Omega$$

(for a proof, see Rossi-Vergne [8, Lemmas 5.13 \sim 5.16]). Next we set for $\lambda \in \Omega$

$$(3.11) \qquad \Gamma_{\Lambda}(\lambda) := \int_{\Omega} e^{-2\langle \lambda, \mathsf{t} \rangle} \, \Phi_{\Lambda}(\eta_0(\mathsf{t})^{-1})^* \Phi_{\Lambda}(\eta_0(\mathsf{t})^{-1}) \, \frac{\mathsf{d}\mathsf{t}}{\mathsf{det} \, P(\mathsf{t})},$$

where $\Phi_{\Lambda}(\eta_0(t)^{-1})^*$ denotes the adjoint operator of $\Phi_{\Lambda}(\eta_0(t)^{-1})$.

Lemma 3.1. The integral in (3.11) is absolutely convergent for any $\lambda \in \Omega$, so that $\Gamma_{\Lambda}(\lambda)$ is a positive definite hermitian operator.

The following estimate of $\|\Gamma_{\Lambda}(\lambda)\|$ plays an important role in

the last part of Theorem 4.1 below.

Proposition 3.2. There is a positive constant c_{Λ} such that

$$\|\Gamma_{\Lambda}(\lambda)\| \geq c_{\Lambda}\|\lambda\| \qquad \qquad for \ all \quad \lambda \in \Omega.$$

- $\S 4$. Fourier transform of holomorphic discrete series.
- 4.1. Paley-Wiener theorem. First of all, we note that if $F \in H(\Lambda)$, then for almost every $y \in \Omega$, the function

$$2i \ni x \mapsto \Phi_{\Lambda}(\eta_0(y))^{-1}F(x+iy) \in E_{\Lambda}$$

is square integrable by Fubini's theorem. Hence we can consider its Fourier transform ϕ_y : letting \mathfrak{U}_t := $\{x \in \mathfrak{U}; \|x\| < t\}$ (t = 1, 2, ...), we set

$$(4.1) \qquad \phi_{\mathbf{y}}(\lambda) := \frac{1}{(2\pi)^{\mathfrak{m}/2}} \underset{\mathsf{t} \to \infty}{\text{1.i.m.}} \int_{\mathfrak{U}_{\mathsf{t}}} \Phi_{\Lambda}(\eta_{0}(\mathbf{y}))^{-1} F(\mathbf{x} + \mathbf{i} \mathbf{y}) e^{-\mathbf{i} \langle \lambda, \mathbf{x} \rangle} d\mathbf{x},$$

where $m = \dim \mathcal{U} = \dim g(1)$.

On the other hand, recall the operator $\Gamma_{\Lambda}(\lambda)$ ($\lambda \in \Omega$) defined-by (3.11). We know by Lemma 3.1 that $\Gamma_{\Lambda}(\lambda)$ is positive definite hermitian. So, the positive definite square root $\Gamma_{\Lambda}(\lambda)^{1/2}$ is well-defined. We now introduce a Hilbert space $\hat{H}(\Lambda)$ of E_{Λ} -valued measurable functions ϕ on Ω such that

$$\|\phi\|^2 := \int_{\Omega} \|\Gamma_{\Lambda}(\lambda)^{1/2} \phi(\lambda)\|_{\Lambda}^2 d\lambda < \infty.$$

Theorem 4.1. Let $F\in H(\Lambda)$ and define ϕ_y by (4.1). Then, there is a measurable E_{Λ} -valued function ϕ on u with supp ϕ c $Cl \Omega$ such that

$$\phi_{y}(\lambda) = e^{-\langle \lambda, y \rangle} \theta_{\Lambda}(iy)^{-1} \phi(\lambda)$$
 $(\lambda \in \mathcal{U}).$

Moreover, one has $\phi \in \hat{H}(\Lambda)$ and the correspondence $\mathcal{F}_{\Lambda} \colon H(\Lambda) \ni F$ $\mapsto \phi \in \hat{H}(\Lambda)$ is a unitary mapping. The inverse $\mathcal{F}_{\Lambda}^{-1} \colon \hat{H}(\Lambda) \ni \phi \mapsto F$ $\in H(\Lambda)$ is given by the absolutely convergent integral

(4.3)
$$F(z) = \frac{1}{(2\pi)^{m/2}} \int_{\Omega} \phi(\lambda) e^{i\langle \lambda, z \rangle} d\lambda.$$

The absolute convergence of (4.3) is a consequence of the Schwarz inequality and of Proposition 3.2 together with the fact $\|\Gamma_{\Lambda}(\lambda)^{-1/2}\| = \|\Gamma_{\Lambda}(\lambda)\|^{-1/2}.$

4.2. Holomorphic discrete series realized on $\hat{\mathbb{H}}(\Lambda)$. With the unitary mapping \mathcal{F}_{Λ} in Theorem 4.1 at hand let us set $\hat{\mathcal{H}}_{\Lambda}(g)$:= $\mathcal{F}_{\Lambda}\pi_{\Lambda}(g)\mathcal{F}_{\Lambda}^{-1}$ ($g\in G$). Then we get a holomorphic discrete series representation $\hat{\mathcal{H}}$ of G on $\hat{\mathbb{H}}(\Lambda)$. We will describe representation operators $\hat{\mathcal{H}}_{\Lambda}(g)$ ($g\in G$). Recall the element $m_*\in N_K(A)$ defined by (1.2). Since G is generated by m_* and P_0 , it suffices to describe $\hat{\mathcal{H}}_{\Lambda}(g)$ ($g\in P$) and $\hat{\mathcal{H}}_{\Lambda}(m_*)$.

If $g \in P_0$, then since $J_{\Lambda}(g,z) = \Phi_{\Lambda}(g)$ for all $z \in T_{\Omega}$, we have

$$\pi_{\Lambda}(g)F(z) = \Phi_{\Lambda}(g)F(g^{-1} \cdot z) \qquad (g \in P_0, F \in H(\Lambda)).$$

Suppose further $g = g_0 \in G(0)$. Then by (2.8), we have $g_0^{-1} \cdot z =$

 $(Ad g_0)^{-1}z$. Therefore

$$\hat{\pi}_{\Lambda}(\mathsf{g}_0)\phi(\lambda) \; = \; (\det_{\mathsf{g}(1)}\mathsf{Ad} \; \mathsf{g}_0)\Phi_{\Lambda}(\mathsf{g}_0)\phi((\mathsf{Ad} \; \mathsf{g}_0)^*\lambda) \qquad (\phi \in \hat{\mathbb{H}}(\lambda)),$$

where $(Ad g_0)^*$ is the adjoint to $(Ad g_0)$ with respect to the inner product $\langle \cdot, \cdot \rangle$. Next let $g = \exp a$ $(a \in g(1))$. Then by (2.9), $g^{-1} \cdot z = z - a$, so that by virtue of (3.5)

$$\hat{\pi}_{\Lambda}(\exp a)\phi(\lambda) = e^{-i\langle\lambda,a\rangle}\phi(\lambda).$$

To describe $\hat{\pi}_{\Lambda}(m_*)$ we need the following lemma.

Lemma 4.2. (i) Let r > 0. Then

$$J_{\Lambda}(m_{*}^{-1}, rz)^{-1} = r^{\Lambda(H_{0}^{\prime})} J_{\Lambda}(m_{*}^{-1}, z)^{-1}$$
 $(z \in T_{\Omega}).$

(ii) One has

$$\int_{\mathfrak{N}} \|J_{\Lambda}(m_{*}^{-1},z)^{-1}\| dx < \infty \qquad (z = x+iy \ with \ y \in \Omega).$$

We now define an operator valued function \mathscr{I}_{Λ} on $\Omega \times \Omega$ by

$$(4.4) \mathcal{I}_{\Lambda}(t,\lambda) := \frac{1}{(2\pi)^m} \int_{\mathfrak{A}} J_{\Lambda}(m_*^{-1},z)^{-1} \exp(-i(\langle \lambda, z^{-1} \rangle + \langle t, z \rangle)) dx$$

$$(z = x+iy, y \in \Omega),$$

where $m = \dim \mathfrak{U}$. We note that since $-z^{-1} \in T_{\Omega}$ if $z \in T_{\Omega}$, we have $\operatorname{Im} \langle \lambda, z^{-1} \rangle \langle 0 \text{ for } \lambda \in \Omega$. Therefore

$$|\exp -\mathrm{i} \left(\langle \lambda, z^{-1} \rangle + \langle t, z \rangle \right)| = \exp |\operatorname{Im} \left(\langle \lambda, z^{-1} \rangle + \langle t, z \rangle \right) \leq \mathrm{e}^{t - \operatorname{Im} |z|}.$$

Thus the integral in (4.4) is absolutely convergent by Lemma 4.2. We also note that since the integrand in (4.4) is holomorphic, $\mathcal{I}_{\Lambda}(\mathsf{t},\lambda)$ is indeed independent of $y \in \Omega$. We call the function $\mathcal{I}_{\Lambda}(\mathsf{t},\lambda)$ the Bessel kernel associated to the holomorphic discrete series π_{Λ} .

Theorem 4.3. One has a realization \Re_{Λ} of holomorphic discrete series of G on $\Re(\Lambda)$. The representation operators are given by

(i)
$$\hat{\pi}_{\Lambda}(g_0)\phi(t) = (\det_{g(1)}\operatorname{Ad} g_0)\Phi_{\Lambda}(g_0)\phi((\operatorname{Ad} g_0)^*t)$$
 $(g_0 \in G(0)),$

(ii)
$$\hat{\pi}_{\Lambda}(\exp a)\phi(t) = e^{-i\langle t, a \rangle}\phi(t)$$
 (a $\in g(1)$),

$$\begin{array}{lll} (ii) & \Re_{\Lambda}(\exp a)\phi(t) = e^{-1 \cdot t}, \alpha \neq (t) & (a \in g(1)), \\ (iii) & \Re_{\Lambda}(m_{*})\phi(t) = \int_{\Omega} \mathcal{I}_{\Lambda}(t,\lambda)\phi(\lambda) \; \mathrm{d}\lambda & (\phi \in C_{\mathbf{C}}^{\infty}(\Omega, E_{\Lambda}) \subset \hat{H}(\Lambda)). \end{array}$$

We close this note by showing that $\mathcal{I}_{\Lambda}(t,\lambda)$ is determined by $\mathcal{I}_{\Lambda}(t) := \mathcal{I}_{\Lambda}(t,s)$, where s is the unit element of the Jordan algebra u, that is, the element given by (1.8).

Since Ω is diffeomorphic to G(0) \cap exp \mathfrak{p} , there is, for each $t \in \Omega$, a unique element $p_{\Omega}(t) \in G(0) \cap \exp p$ such that $(Ad_{o(1)}p_0(t))s = t$, Recall here the quadratic representation $P(\cdot)$ of the Jordan algebra 2. We have $P(t^{1/2})s = t$ for every $t \in \Omega$.

Lemma 4.4.
$$\operatorname{Ad}_{g(1)} p_0(t) = P(t^{1/2})$$
 for all $t \in \Omega$.

Proposition 4.5. One has, for all $t, \lambda \in \Omega$

$$\mathcal{I}_{\Lambda}(\mathsf{t},\lambda) = (\det_{\mathsf{g}(1)} \mathsf{Ad} \; \mathsf{p}_{\mathsf{0}}(\lambda)) \Phi_{\Lambda}(\mathsf{p}_{\mathsf{0}}(\lambda)) \mathcal{I}_{\Lambda}(\mathsf{P}(\lambda^{1/2}) \mathsf{t}) \Phi_{\Lambda}(\mathsf{p}_{\mathsf{0}}(\lambda)).$$

It would be interesting to study the operator valued function

 \mathcal{I}_{Λ} in detail. For $G = \mathrm{Sp}(\ell,\mathbb{R})$, $\mathrm{SU}(\ell,\ell)$ and $\mathrm{SO}^*(4\ell)$, \mathcal{I}_{Λ} is essentially the reduced Bessel function investigated by Gross-Kunze [3]. For G equal to one of the above three groups or $\mathrm{SO}_0(\ell,2)$ but with τ_{Λ} one dimensional, \mathcal{I}_{Λ} is essentially the Bessel function studied by Faraut-Travaglini [2].

Finally I thank H.Dib for discussions at Poitiers (summer, 1988) about the present work and his recent work concerning (scalar valued) Bessel functions on formally real Jordan algebras.

References

- [1] H.Braun und M.Koecher, Jordan-Algebren, Springer-Verlag, Berlin, 1966.
- [2] J.Faraut and G.Travaglini, Bessel functions associated with representations of formally real Jordan algebras, J. Funct.

 Anal., 71 (1987), 123-141.
- [3] K.I.Gross and R.A.Kunze, Bessel functions and representation theory, I, J. Funct. Anal., 22 (1976), 73-105; II, Ibid., 25 (1977), 1-49.
- [4] Harish-Chandra, Representations of semisimple Lie groups VI, Amer. J. Math., 78 (1956), 564-628.
- [5] A.Koranyi and J.A.Wolf, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math., 81 (1965), 265-288.
- [6] C.C.Moore, Compactification of symmetric spaces II: The Cartan domains, Amer. J. Math., 86 (1964), 358-378.
- [7] T.Nomura, A description of a space of holomorphic discrete series by means of Fourier transform on the Silov boundary,

 To appear in J. Funct. Anal..
- [8] H.Rossi and M.Vergne, Representations of certain solvable Lie

groups on Hilbert spaces of holomorphic functions and the application to the holomorphic discrete series of a semisimple Lie group, J. Funct. Anal., 13 (1973), 324-389.

[9] M.Vergne and H.Rossi, Analytic continuation of holomorphic discrete series of a semisimple Lie group, Acta Math., 136 (1976), 1-59.