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g1. Preliminaries.

Let G be a non-compact connected linear simple Lie group and
K a maximal compact subgroup of G. We assume throughout this
note that G/K carries a structure of hermitian symmetric space
and that G/K is holomorphically equivalent to a tube domain. The
Lie algebras of G and K are denoted respectively by g and ¥.
Let g = f + p . be a Cartan decomposition with the associated
Cartan involution 6. Since G/K is a hermitian éymmetric space,

there is a linear operator J on p such that J commutes with
2

(Ad k)lp (k € K) and J° = —1D. One‘knows that J 1is written
as J = (ad ZO)lp for some element ZO in the center ¢ of f.
Note that since G 1is assumed to be simple, ¢ 1is necessarily of
one dimension,

Let t be a maximal abelian subalgebra of f. Then one can

prove that t 1is a (compact) Cartan subalgebra of g. Let A be
the root system with respect to (QC’tC) and we denote by g%

(¢ € A) the root subspace corresponding to the‘root x € A. Then,
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g% c f@ or g% c pe Let a4, (resp. An) be the set of all
roots o € A such that g% c fC‘ (resp. 9% c pc). A root o« in
A, (resp. in An) is said to be compact (resp.‘non—compact). We

introduce an order in A compatible with the complex structure of
G/K so that the +i (resp. -i)-eigenspace by (resp. p_) of the

J extended to by complex linearity coincides with the sum of

Pe
all root subspaces corresponding to non-compact positive (resp.

negative) roots. The set of all positive roots is denoted by A+
and Ag (resp. A;) stands for the set of all compact (resp.
non-compact) positive roots. Both P, and p_ are abelian

subalgebras of normalized by K

8¢ c’
Let Yirvees Yy be a maximal system of strongly orthogonal

non-compact positive roots constructed as follows: for each j,

v is the largest positive non-compact root strongly orthogonal to

Let B be the Killing form of For every

YJ‘+1)“" YQ. 9@'
o
o € A, we choose Ha € t@ and Xa € g SO that

B(Ha;H) = a(H) (vH € tC)’ Xa - X-a €t + ip, -
(1.1)
ZHa
l(XC( + X"C() € f + 1p, [XCX’X-Q} - a—(—H;T = H
Then H_ € it and one can prove that a:= 3 R(X + X_ ) is a -
o 1gige Vi Vi
maximal abelian subspace of p. Hence @ 1is equal to the real rank
of G,
Let C-(E be the complexification of G. We denote by KC and
Pi the analytic subgroup of GC corresponding to f@ and P,
respectively. Then, every element‘ X in P+K@P_ can be expressed

in a unique way as
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X = exp §+(X)-k(x)-exp g (x)

with gi(x) € b, amd k(x) € KC' Furthermore G c P+KCP_. Since
§+(Xk) = g+(x) (k € K@), we have a mapping ¢: G -~ Py defined by
y(gK) = ¢, (g) (g € G). The ¢ is a holomorphic diffeomorphism
onto a bounded symmetrio domain % in p, - The image 9 = ¥(G/K)

c py is called the Harish-Chandra realization of G/K. Let

q € 2. If g € GC satisfies g exp q € P+KCP_, then g-q € P,
well-defined and is given by §+(g exp q). Moreover, for g € G
and x € G/K, g-¢(x) is always well-defined and we have

g-¢(x) = ¢¥(gx). Let

(1.2) m, = exp nZO.

It is clear that my lies in the center of K and 6 = Ad my

’Thus m, € NK(A), the normalizer of A:= exp a in K. Now it is
easily seen that ‘my-q = -q (vq € 92), so m, gives the. symmetry

of 9 at the origin 0 € 2.

Put
(1.3) 4 % ( )
. ci= exp X - X_ € G
3 j=1 Yi Yi ¢
Then ¢ € P+K€P_.' Setting
(1.4) % % % ‘ %
Xn:= X HA:= H Y := X
077481 vy’ 077581 vy’ 077351 T-vy’

we have

(1.5) g, (c)= X, k(c) = exp(log /Z)H), g_(c) = -Y,.
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Let 1t be the conjugation in 8¢ relative to the compact real
form ¢t + ip. One knows that (x,y):= -B(x,ry) (x,y € QC) defines

- [ +
Let t := 5 RH c it and t

a hermitian inner product on g..
C j=1 Y

J
be the orthogonal complement to t~  in it. Set v = AdG c, where
C

c 1is the element in GC defined by (1.3)., Then v 1is an

isometry of and we have

8¢

v(X +X _ ) = H! , v(X =X y = X - X s -
Yj Yj YJ Y

(1.6)

v(H;j) = —(XY +X ).

- +
Hence t = v(a), and t(D + Qg = v

) 1is a Cartan subalgebra

of 8¢ For every o € A, res _a will stand for the restriction

t
of @ to t . We denote still by Y the restriction res ¥y
i
Let aj:z Vjev (j =1,2,...8). Since we are assuming that

G/K is holomorphically equivalent to a tube domain, the restricted

root theorem due to Moore [6] can be stated as follows.

Theorem 1.1 (Moore). Let A(a) be the a-root system. Then,

+
the positive swystem A(a) of afa) is described as

ata)t = {Flagrey); lsksmse} U {z(a, -0y ); lsk<mse}.

For any o € A(a), we denote by 9 the corresponding a-root

subspace. Put
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T i= i( - X + X ) k = e .
(1 ) uk 1 Yk Vk _Yk ( 1,2, y 2)
Since H! € it and X - X € ip (cf. (1.1)), we see that
Y Y -Y
k k k
u,_ € g. Moreover, (1.6) leads us to val(X ) = iu,., so that
k Yk k
u € g .
k ka
Let
(1.8) 5 (1) 5 L )
. s:= u, € g ani= X + X_ € a
k=1 & ’ 0" k=1 2 Yk ¥k
Then, ad ag is semisimple. Let m be the centralizer of a in
f and put
= + + +
g(0) " a k%m (Q(Qm—ak)/2 g—(am—ock)/2)’
g (1) :kzm S oty tey ) /27 g(-1) :kzm S (o toy ) /2"
Then, g = g(-1) + g(0) + g(1), an orthogonal direct sum of vector
subspaces. It is easy to see that g(k) 1is the k-eigenspace of

ad ag- Letting g(k) = {0} for |k| > 1, we have
(1.9) [g(k),g(m)] c g(k+m).
We also have

(i) dim g = 1 for all 1xgkgsg,
oy

. il : ‘: i : ! 1 i i t
(1.10) (i) a dim g(am_ak)/z dim Q(am+ak)/2 is independen

of m, k (m > k).
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§2. Realization of G/K as a tube domain.

2.1. Basic facts about Jordan algebras. We begin this
section with the definition of Jordan algebra. Our reference is
the book [1]. Let % be a finite dimensional vector space over [
(K = Ror C). A product X,y » xy in U 1is, by definition, a
bilinear mapping % x % - 3. The associative law is not assumed
here. The vector space 1, equipped with a product, is called a

Jordan algebra if

(J-1) Xy = VX,

X(Xzy)

1]

(J7-2) %2 (xy)

hold for all x,y € 2. Now let #H be a Jordan algébra with the

unit element e. For x € I, we define a linear operator L(x)

on U by

(2.1) L(x)y = xy.

Then we have L(x)y = L{(y)x and the assignment x -» L(x) 1is

clearly linear. In terms of these operators, (J-2) is rewritten as
2

We know that any Jordan algebra is power-associative, that is,

defining the power x™  of an element x € U by < = XXn_l
inductively, we have men = Xm+n. Therefore the subalgebra Klx]
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generated by e and x 1is associative. Set

2

(2.2) P(x) = 2L(x)% - L(x%) (x € 1).

The mapping x » P(x) 1is called the quadratic representation of .

It is well—known that P(xn) = P(x)n (n =1, 2,...). Furthermore

we have the following formula named as the Ffundamental Fformula:
(2.3) P(P(x)y) = P(x)P(y)P(x) (vx,y € ).

An element x € Y% is said to be invertibie if one of the following

three mutually equivalent conditions holds:

(i) The operator P(x) 1is invertible, that is, det P{(x) = 0.

(i) There is y € K[x] such that xy = e.

H
0]

(i) There is y € 21 such that [L(x),L(y)] = 0 and xy

Then, if x 1is invertible, the y in (i) or (ii) is uniquely given

by vy = P(x)-lx, and will be written as x_l. The set of all

invertible elements of 3 is denoted by TIa

1

Moreover
P(x—l) = P(x)~ holds for any x € u~.

Now let 2 be a real Jordan algebra. 2 is said to be
Formally real if

(FR-1) x% 4 y2 = 0 implies x = y = O.

It is known that (FR-1) is equivalent to the following (FR-2):

(FR-2) the symmetric bilinear form x,y » tr L(xy) is positive

definite.
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We remark here that the linear form % 3 x » tr L(x) is

associative in the sense that

(2.4) tr L((xy)z) = tr L(x(yz)) (vx,y,z € U).

In particular, the operators L(x) (hence P(x), too) are symmetric
with respect to the bilinear form tr L{xy).

We assume now that 2 is a formally real Jordan algebra. Then
2l has the unit element e. The positive cone § 1is, by
definition, the interior of the squafes,-i.e., Q = Int{xz; x € U}.
@ is an open convex cone in vﬂ and selfdual with respect to the

inner product tr L(xy):

Q = {y € U; tr L(xy) > 0 for all x € (Co Q)\{0}}.

We note:

(i) @ coincides with the connected component of %~

containing e.
(i) x € ©§ if and only if L(x) 1is positive definite.

(ii) If x € Q, then P(x) 1is positive definite.

Finally, since the mapping Q 3 X » X2 € Q0 is a diffeomorphism (its

-

tangent mapping at XO € Q is 2L(XO)), its inverse mapping will
be denoted by § 3 y - yl/z‘e Q.
2.2. Jordan algebra structure on g(1)., We retain the

notation of 81 and recall the element s defined by (1.8).
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Lemma 2.1. (i) The real vector space g(l) has a structure
of Jordan algebra by Xy = - % [[x,08],y] (x,y € g(l1)). The
unit element is S.

(ii) Leﬁ L(x) be the operator defined by L(x)y = x-¥y (x,y €
g(1)). Then, tro(1)b(x-y) = -2B(x,0y), so that g(l) with the

product in (i) <8 a formally real Jordan algebra.

Henceforth we denote by 3 the formally real Jordan algebra
described in Lemma 2.1. Now consider the qomplexification g(l)c.
The product x-y in g{(l), which is a real bilinear mapping, is
naturallyyextended to a complex bilinear mapping Q(I)C X Q(I)C -

Q(l)C' It is easy to see that the complex vector space Q(l)C

with this complex bilinear product becomes a Jordan algebra. We
denote by ﬂ@ the complex Jordan algebra thus obtained. The
multiplication operators, the quadratic representation of ¥ are

C
still denoted by L(x), P(x) respectively.

Consider the tube domain T.:= A + 1iQ c ¥

Q C’

Lemma 2.2. (i) One has TQ c (ﬂc)x, that is, every 2z € TQ

is invertible in the Jordan algebra ﬂC.

. -1

(i) 7f =z € Toy» then -z € To. Moreover the mapping To 3 z »
—z—1 = —P(z)_lz € TQ is holomorphic and has the unique fixed point
is, where s {5 the unit element of UC defined by (1.8).

Sketch. Let =z € T, and put z = x + iy with x € U and

Q
y € Q. (i) Set u = y1/2 € Q. Then,
(2.5) x + iy = P(u)(P(u) " tx + is).

Thus it suffices to consider the elements of the form x + is
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(x € ). ’But~the following formula shows that x + is 1is .

invertible:
. . 2
P(x+is)P(x-is) = P(x"+s),

because x2 + 8 € Q. (i) Since ‘~(x+is)—1 = —(X2+s)—1(x~is)

(this computation is done in the associative algebra (C[x]), we

see immediately -(x+is) ) € TQ. Thus by (2.5), —z_1 € TQ for

any z € TQ. For the rest, it suffices to solve the equations

x2 - y2 + s =0, x-y = 0., Q.E.D.

On the other hand, one knows that ¢-2 c by and that

v—loc(g) = TQ (note v(g(l)c) = p+). Thus ‘TQ realizes G/K and
G acts on TQ by
(2.6) gz = v (e (2g-q)) (2 €G, z € Tg),

-1

where q = ¢ {v(z)) € 2. We will make (2.6) more explicit for
some elements of G.

Let G(0) = Z(ay), the centralizer in G of the a, € a
defined by (1.8). Then, g(0) = Lie G(0) and G(0) is reductive.
Let G{(1) = exp g{(l) and PO:: G(1)G(0). Then, P0 is é maximal
parabolic subgroup of G with G(0) a Levi part, 7G(1) the

unipotent radical. We have oPOc:"1 c P,K., so that
.- -1 |
(2.7) g-2 = v §+(cgc exp v{z)) (g € PO’ Z € TQ).
Now let g, € G(0). Then Cgoc_1 € KC’ and so
(2.8) gp°2 = {Ad go)z '(go € G(0), =z € TQ).



137

For a € g(l), recalling u(g(l)c) = p,, We see easily that

(2.9) (exp a)+z = z + a (a € g(l), z € TQ).

Finally for the element m, defined by (1.2), we get

(2.10) My 2 = —z—l.

Since PO and the element my generéte G, - the formulas (2.8) ~

(2.10) describe the G-action on TQ.

83. Holomorphic discrete series.

3.1. Realization on D. We retain the notation in the
preceding sections. Let A be a K-dominant K-integral form on
t .. thus

C

. +
(i) A(Ha) =2 0 for all &« € Ass
(i) ﬁA(h)iz exp A(log h) 1is a character of T:= exp t.
We denote by TA the irreducible unitary representation of K on
a finite dimensional Hilbert space E with highest weight A. The

A

inner product on EA is written as (-,-)A. We describe here a

realization of holomorphic discrete series of G following Vergne-

Rossi [9]. Let U(gc) denote the universal enveloping algebra of

8¢ Every element of U(QC) is canonically considered as a left
invariant differential operator on G. Let 6(A) be the space of

all EA—Valued Cc”-functions on G such that
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(i) o(xk) = <, (k)"

(i) X = 0 for all X € p_,
) [ reo1? ax < -,
G ;

(P(X) (X € G, k € K)’

where dx is the Haar measure on G. We define an inner product

on 0(A) by
(@)105) = fG (@1 (x),05(x)), dx.

Then, one knows that ©@{(A) with this inner product is a Hilbert

1

space. G acts on 6{(A) by left translations: LA(g)@(x) = (g "x).

The representation (UA,GA) of G 1is irreducible and belongs to
holomorphic discrete series of G if dim 6{(A) > 0. By Harish-

Chandra [4], the condition dim 6(A) > 0 1is equivalent to
(3.1) (A+p)(Hy) < 0 for all B e al,

where 2p = 3 o«

We will assume from now on that A satisfies (3.1), so that

06(A) # {0}. In order to get a relization of holomorphic discrete
series on a function space on D, one needs a map ®&: G - GL(EA)
such that

o(gk) = o(g)c,(k) (¢ € G k € K},

Xp = 0 for all X € p_.
We note that since P0 = G(0)G(1) is a parabolic subgroup of G,

one has G = POK. Thus recalling CPéC—l c P+K€,/ we get

- 12 -
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(3.2) cG c cPyK ¢ (oPOc‘l)cKcPKPK

+KcPy @P_K c P+K

cF-

so that k(cg) € K is well-defined for any g € G. Extending <

C

to a holomorphic representation of K we now set, after

(E’
Vergne-Rossi [9, p.181],

(3.3) w,(8) = t,(k(c)) ', (k(ce)).

Then we have immediately that @A(e) = 1E and

(3.4) @

We further extend <« to a representation of the semidirect

A
product P+KC by defining rA(p) = 1EA for all p € P,. Noting
that for g € P;, we have k(cg) = k(cgc—l)k(c) by (3.2), we see
3,(g) = ¢, (k(c) e, (cae e, (k(c)) (g ePy.
A A A A 0

Thus is a representation of the parabolic subgroup PO'

mAlPO

Moreover by (1.5) and (1.6), we have

v

@A(go) = rA(cgoc ) (g9 € G(0)),

(3.5) @ (exp x) = 1 (x € g(1)).

A A
We remark here that [det P(t)]ﬁl/zdt, dt being the Lebesgue
measure on g{l), is a Pd—invariant measure on §, where t - P(t)
is the quadratic representation of the Jordan algebra 2 described

in Lemma 2.1 (recall that P(t) 1is positive definite for t € Q).
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Let S = (exp > + Qa)A’ the Iwasawa solvable subgroup of G.
a€A(a)

Put S(0) = G(0) N S. We denote by 70 the diffeomorphism of
onto S(0) such that (Ad ny(t))s = t (t € Q).
With these preparations, we now introduce a Hilbert space

H(A) of EA-valued holomorphic functions F on T such that

Q
iEn?:= fTQ 18, (g () T F (et iy) 12 m PPy ¢ .
Letting o(g) = g-is € TQ (g € G), we define
T F(g)i= 8,(2) 'Fla(g))  (F € H(A), g € G).

Then T is a unitary mapping from H(A) onto 6{(A). Let

nA(g)::AT;\lLA(g)TA (g € G). To describe nA(g), we set
(3.6) I (g,a(h))i= @, (gh)@, (h) " (6€G, hes).
Then{ one has
T (8185.2) = T (81,8,-2)7,(g,,2) (2,,8, € G, z € T).
Now, a simple computation yields
(3.7) nA(g)F(z) = JA(g‘l,z)'lF(g_l-z) (g € G, z € TQ).‘

We note that since QAIP is a representation, we have JA(g,z)

0
= @A(g) for all g € Py and z € TQ. We also note that by (3.3),
(3.8) JA(k,is) = ¢, (k) for all k € K.

A



141

3.2. Some integrals over Q. Let: us set <x,y>:= -B(x,0y)
for x,y € g(l). Then, <-,-> 1is an inner product of g(1)
relative to which Q 1is selfdual (cf. Lemma 2.1 (ii)), For

A € g{l) and u € EA’ define

v e - -2<A,t> -1_.2 - dt
FA(/\’V)“- IQ e "@A(’}()(t>) V"A am

EA()\)2= {v g E rA(,\;v) < o} .

A;
It is an immediate consequence of the Minkowski’s inequality that

EA(A) is a subspace of E Moreover, we have

A

r.(a;v) = « for all A ¢ C2 § and non-zero v € E

A A’
(3.10)

EA(A) = EA for all X € Q
{for a proof, see Rossi-Vergne [8, Lemmas 5.13 ~ 5.16]). Next we

set for A € Q.

(3.11) 1 (a):= fQ e ENE g (no () ¥, (ng ()Y gertErer

where mA(qo(t)_l)* denotes the adjoint operator of QA(no(t)_l).

Lemma 3.1. The integral in (3.11) is absoilutely convergent

Ffor any X € Q, so that T

A(,\) is a positive definite hermitian

orerator.

The following estimate of HFA(A)M plays an important role in
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the last part of Theorem 4.1 below.

Proposition 3.2. There is a positive constant Cp Such that
(A+p) (Hy)
Ir,(x)i 2 c, izl for all A € Q.
A A
84. Fourier transform of holomorphic discrete series.

4.1. Paley-Wiener theorem. First of all, we note that if

F € H(A), then for almost every vy € Q, the function .

-1 i
34 3 X » mA(no(y)) F(x+iy) € E,

is square integrable by Fubini’s theorem. Hence we can consider

its Fourier transform ¢y: letting ﬂtzz {x e U; xh < t}

(t = 1,2,...), we set
1 . -1 . -1<A,X>
(4.1) é_(A):= l1.i.m. b,(na(y)) F{(x+tiy)e ! dx
Y (2)™2 £S5 dy A0 ’

where: m = dim 3 = dim g(1).
On the other hand, recall the operator FA(A) (x € Q)
defined~by (3.11). We know by Lemma 3.1 that FA(A) is positive

definite hermitian. So, the positive definite square root

1/2

FA(A) is well-defined. We now introduce a Hilbert space fi(a)

of EA—valued measurable functions ¢ on § such that

2

(4.2) U= IQ urA(A)”2 2

¢(A)HA'dA { oo,
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Theorem 4.1. Let F € H(A) and define. ¢ by (4.1). Then,

y
there is a measurable EA—vaaued Ffunction ¢ on U wifth supp ¢ c
Ce @ such that
so(x) = e” M (iy)Tla(a) (x € ).

Moreover, one has ¢ € H(A) and the correspondence Fot H(A) 3 F
» g€ A(A) <3 a unitary mapping. The inverse '?th f(A) 2 ¢ » F

€ H(A) is given by the absolutely convergent integral

(4.3) -F(Z) = (—z—im ‘[Q ¢’()\)ei<x’z> dx.
. o) ,

The absolute convergence of (4.3) is a consequence of the

Schwarz inequality and of Proposition 3.2 together with .the fact

—1/2" -1/2

HFA(A) = HFA(A)H

4,.2. Holomorphic discrete series realized on fi(aA). With the
unitary mapping‘ ?A in Theorem 4.1 at hand let us set QA(g)::
g n (g)F; "

ATA A
representation "# of G on fi{A). We will describe representation

(g € G). Then we get a holomorphic discrete series

operators QA(g) (g € G). Recall the element m, € NK(A) defined

by (1.2). Since G  1is generated by m, and PO’ it suffices to

describe QA(g) (g € P) and QA(m*).

If g € PO, then since J,(g,z) = QA(g) for all =z € T we

A Q’

have

mA(8)F(2) = 0\()F(g7 -2) (g € Py, F & H(A)).

Suppose further g = 8o € G(0). Then by (2.8), we have gal-z =
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(Ad go)_lz. Therefore

X

Rp(20)#(2) = (det (1 )Ad go)B,(gg)e((Ad g0)*2) (8 € f(X)),

X
o)
inner product <-,->, Next let g = exp a (a € g(l)). Then by

—-1
(2.9), g ~-

where (Ad g is the adjoint to (Ad g,) with respect to the

z =z - a, so that by virtue of (3.5)

-i<a,a>

QA(exp a)e(r) = e é(x).

To describe QA(m*) we heed the following lemma.

Lemma 4.2. (i) Let r > 0. Then

-1 AHG) gy

JA(m;l,rz = r JA(m* ,Z) (z e TQ).

(i) One has

1 —1l

y %) ] dx < o (z = x+1iy with y € Q).

,fﬂ 1T 5 (my

We now define an operator valued function gA on 0 x Q by

1 exp—iL<A,z—1

-1 -1
(4.4) ~gL(t,a) = J yZ)
A (20)™ Iﬂ AT 0 E

>+<t,z>) dx

(z = x+iy, y € Q),

where m = dim 3. We note that since -—z“1 € TQ if z € TQ, we

have Im <A,Z~1> < 0 for A € Q. Therefore

|exp—i(<x,z—1>+<t,z>)| = exp Im(<x,z_1> + <t,z>) £ ot Im =z
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Thus the integral in (4.4) is absolutely convergent by Lemma 4.2.
We also note that since the integrand in (4.4) 1is holomdrphic,

;A(t,x) is indeed independent of y € Q. We call the function

ﬁA(t,A) - the Bessel kernel associated to the holomorphic discrete
series )TA.

Theorem 4.3. One has a realization QA of holomorphic
discrete series of G on ﬁ(A). The representation operators are
given by

. - , X
(i) Ry(ggle(t) = (det (1)Ad 20)@,(85)8((Ad g5) t)  (gp € G(0)),
(i) fy(exp a)s(t) = e M T1®g (1) (a € g(1)),
(i) Ry(me(t) = fQ g, (t,2)8(x) dx (6 € Co(Q,Ey)  f/A)).

We close this note by showing that ﬁA(t,A) is determined by
}A(t):z }A(t,s), where s is the unit element of the Jordan
algebra 3, that is, the element given by (1.8).

Since § 1is diffeomorphic to G(0) N exp p, there is, for
each t € Q, a unique element po(t) € G(0) N eip p such that
(Adg(1>p0(t))s‘= t., Recall here the quadrétic fepresentation P(-)

1/2

of the Jordan algebra 2. We have P(t )s = t for every t € Q.

1/2

Lemma 4.4. Adg(l)po(t) = P(t ) Ffor all t € Q.

Proposition 4.5. One has, for alli t,Ax € Q

2a(6,2) = (det_ 1,Ad Py (3))8, (pg(2)) g, (P12

A )t)QA(pO(A)).

It would be interesting to study the operator valued function
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g, in detail. For G = Sp(2,R), SU(L,) and SO'(42), £, 1is
essentially the reduced Bessel function investigated by Gross-Kunze
[3]. For G equal to one of the above three groups of SOO(Q,Z)

hut with =< one dimensional, igs essentially the Bessel

g
A A
function studied by Faraut-Travaglini [2].
Finally I thank H.Dib for discussions at Poitiers (summer,

1988) about the present work and his recent work concerning (scalar

valued) Bessel functions on formally real Jordan algebras.
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