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A Practical Method.to Examine the Stability of

a Class of Numerical Procedures

fi»&'ﬁ-ii st W %y W3] (Takashi Kitagawa)

€1. Introduction

In this paper, we developed a theory to examine the
stability of a class of numerical procedures. We analyze the
numerical stability and the effectiveness of the method of
regularization. We give several theorems to illustrate error
propagation for fhe class of the numerical pfocedures which
include solving an ill—posed problem as the first step. We also
study how the situation is changed by applying. the method of
regularization. We also mention the selection of the regulariza-

tion parameter.

82. Fundamental solution method

To illustrate the class of the numerical procedures, we
consider the fundamental solution method to approximate the

solution of the Dirichlet problem of Laplace equation of the form
(2.1) Au=0 in @

(2.2) . =g on 0,
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where
' 2
@= (wer | ol <p ).

The fundamental solution method approximates the solution u(x) by

n
(2.3) ‘ u (x) = % ¢ G(x,y) , X € Q

k=1

where G(x,y) is the Green's function for (A,Q),

1
G(x,y) = - — log llx - YH2 , X,y € R%.
2

Points yk's, called charge points, are chosen appropriately and

ck’s are constants to be determined. The vector c¢ = (cl, Cy

,...,cn)t € R® is called charge and determined in such a way

that un(x) satisfies the boundary condition

(2.4) »un(xj)'i= g(xj) j=1,2,...,n,

-

where xj's are properly chosen n collocation points on the bound-

ary. Let the charge points yl,yz,...y be on the auxiliary

n
boundary which is the outer circle with radius R (with "outer" we

imply R > p).
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2n :
. o (k-1)1i
With the collocation points Xk = p e and the
2n
o (k-1)1i
charge points yk =R e , k=1,2,...,n, the following

results stating that the approximate solution u, ~converges to

the solution u exponentially with respect to n are’known

Theorem 2.1.(Katsurada[1l0]) a) Suppose that the harmonic exten-

sion of u exists in

Q = {w | HmH2< ro} with p < r

r, 0’

then we have, for sufficiently large n,

(2.5) | u _ u

o e S
2 n/3
sup fu(x) | {(1+C(R,P)) (p/r) +
Ixllg= vy 1 - p/rg
4(p/R)/3y )

where C(R,P) is a constant depends on R and P of the form
VC(R,D) = max { 1, log(R™ p™)/|10og(R™-p"™)]| }.

We call n "sufficient large" if (p/R)"s 1/2, n log R 2 4(p/R)™

2n/3

and (pP/R) = n log R.
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b) The condition humber of the coefficients matrix of the equa-
tion (2.4) which détermines the charge c grows exponentially with
respect to n. Approximately the condition number Cond(n,R) can be

estimated by

log R ' R n
(2.6) Cond(n,R) ~ —— n (—)M2 |

‘Since the estimate (2.5-6) follows from the fact that the

coefficient matrix for the particular location of xk and yk is
circulant, Theorem 2.1 is only valid for the circular domain and
cannot be applied to more complicated regions. The result (b) is
also obtained by Christiansen [1]. For the properties of cir-
culant matrices, see e.g. Davis[2]. Numerical stability of this

method is studied in Kitagawa[l2].

83. Stability of the numerical procedures

3.1 Formulation and Basic Results
The method of Section 3 reduces to the numerical process of

the following two steps:

1) We first solve an ill-conditioned linear system to determine

the charge ¢ in the form of

(3.1) "Tc=g
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for given data g which may be cOntaminated by some perturbation

Ag, where g€ Y=R", c € X = R® and I':X » Y with

[

(r C)j = - Cp G(wj,yk) = g(wj), w, € C(p), j =1,2,...,n,

k=1 J

where C(pP) denotes the disc with radius p.

2) We use thé‘intermediate solution ¢ to obtain the final result

f by

(3.2) f=ANc,

where f € X and A : X » Y with

) Cr G(Xj,yk) = (A C)j, XJ;E Civx), J =

Due to the ill-conditioning of (3.1), some 'large' perturba-
tion Ac may be introduced to the intermediate solution c. One may
assume intuitively that the error ||Af|| in the final result f,‘
where AT = N Ac, is on a level with ||Ac|| or as large as ||IAll llacl].
If this is the case, the method of regularization (Groetsch{[7]
and Tikhonov et al.[16]), applied to (3.1) may be very effective.
But this is not always. true. Even if the error llacll is very
large, ||afll can be very small. In this case, we do not neces-
sarily have to use the method, or in some cases, we may have

worse result by using the method. To examine whether the method



192

of regularization is effective or not for this class of numerical

procedures, we have the following results.

We assume that given data g g + Ag and the intermediate

solution ¢ = ¢ + Ac . We have T ¢c = g as well as (3.1). Let sy

b2 s, zkl.. 2 o 2 0 be singular values of I and {ui} i=1,2,...,m,

{Vj} J=1,2,...n be singular vectors of I'. Reflecting the ill-
conditioning of I', we assume that L 2 0 as n » o, We can see
that HACH29 ® as & > 0 from

1

n
(3.3) Ac = .Z - (Ag, ui) v

i=1 1 l«

Next, we suppose that the final result f is given by f = f +

-~

Af. We have F = A ¢ as well as (5.2). Let &12 &2 2...20,20

be singular values of A and {ui} i=1,2,...,m,’{vj} j=1,2,...n be
singular vectors of A. As for ||Af]|, we have the following result

from Theorem 4.1 in Kitagawa[1l2].

-

Theorem 3.1. Let {ui, Vi; ci} and {ui, Vi Ui} for i= 1,2,...,n

be the orthonormal singular systems for I' and A_respectively.
Then we have

(3.4) s, s N « el llael,

where
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(3.5b) ®=(8,,) , 8,.= (v,, v.), 1,j=1,2,...,n,

= *0 répresents the Hadamard product of the matrices = and ©

and H-HF denotes the Frobenius norm.

Making use of singular value decomposition, we can construct

numerically. Then we can examine the numeri-

[1]

the matrices 8 and
cal stability of the procedures which consist of two steps

denoted in the form of (3.1) and (3.2).

3.2. On the matrices = and O

~The elements Ei.

j of E,;Which we called explosive factor

matrix in [12-13], represent the upper bound of the magnification

of the ui—component (Ag,ui) of perturbation Ag to uj— component-
(Af,uj) of Af. To clarify what "magnification of (Ag,ui) to

(Af,uj)" means, we define it precisely.
Definition 3.2. We call the partial derivative

a'(/_'xf,ﬁj)
3 (Ag,ui)
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the magnifiéation of (Ag,ui) to (Af,uj).

The following fundamental theorem about the magnification is

‘the basis of the further discussion.

- -~

Theorem 3.3. Let {ui,(v.; di} and {ui, K di} for i= 1,2,...,n

1

be the orthonormal singular systems for I' and A respectively.
Then the magnification of (Ag,ui) to (Af,uj) is given by Eij Bij’
where Eij and Bij represent the ij-th elements of the matrices =

and 8 respeétively defined in (3.5a-b).

Proof. Note that the singular vectors {ui} and {ui} form

orthonormal bases of X, and {Vi} and.{vi} form those of Y. First,

we have the following relations of the Fourier coefficients of Af

€ Y, Ac € X and Ag € Y from the relations of T Ac = Ag and A Ac =

FAY S
. : 1 »

(3.86) (Ac, Vi) = _E; (Ag, ui) for i = 1,2,...,n
and
(3.7) Uj (Ac{ Vj) = (Af, uj) for j = 1,2,...,n.
By expanding Ac by {Vi} i=1,2,...,n, we have

)

Ac = (Ac, Vv,) v,.
i=1 o

Putting this into (3.7), we have
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n

( ¥ (Ac, Vi) vy, ;.).
i=1

(3. Lu.) = o,
(3.8) (af uJ) o . i j

J

Substituting (3.8) into (3.8), we obtain

. R n 1 -
Af, u.) = o, — (Ag, u.) v,, Vv.).
( Py L e up) vy vy
Thus we have
3 (Af,uj) . 1 . )
3 (Ag,u;) = Gj ( —;; Vi Vj) for i,j = 1,2,...,n,
or
= %55 iy
from the definition of = and 6. Q.E.D.

For instance, the largest element Eln gives the upper bound

of cl/ cnvwhich coincides with the straight forward upper bound

with the spectral norm H°HS of matrix given by HAsz s Hr-lﬂs

a

. -1 _
HAHS HﬂgHz, since ||T ”s HAHS = o,/ &, . On the other hand, the

elements Bij of O, which we call distortion coefficients matrix,
represents the actual ratio of propagation of (Ag,ui)Jto (Af,uj).

The actual magnification»of propagation of (Ag,ui) to (Af,uj) is
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given by Eijx Bij (Theorem 3.3) and the upper bound of the total
propagation of Ag to Af is given by the square root of the sum of

squares of Eij* eij’ or || = GHF (Theorem 3.1).

84. Effectiveness of the Method of Regularization

4.1. Basic Result
The method of regularization applied to the equation (3.1)

with perturbation Ag can be written as
' ot - t
(4.1) (T''r+uI)c = T(g +Ag)

We write the solution of (4.1) c(u,Ag). To examine the effective-
ness of the method of regularization, we have the next result
from Theorem 3.1 in Kitagawa[l13]. We use the notations of
f(p,8g) = A c(n,Ag) and Af(n,Ag) = f(u,Ag) - £(0,0) in the

theorem.

PN

Theorem 4.1. Let {ui, vV, ci} and {ui, vy ci} for i= 1,2,...,n

i
be the orthonormal singular systems for I' and N\ respectively.

Then we have

(4.2)  latouell, s 56l liel, + 15,8l llagl,
where
- g _ - 2, .
. - p P 2
(4-3b) -':-p' =(£ij) s Eij = Gj_ O-J- / (6j+ }'l)

10
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and the rest of the symbols are: the.same as Theorem 5.1.

Based on the Theorems 3.1 and 4.1, we can examine the effec-

tiveness of the method of regularization very clearly. Letting

(4.4) 500 = £(1,0) - £(0,0)

and

(4.5) P(x,08) = T(u,08) - £(x,0),

we have

(4.86) Cllatonag)ll, s leGuag)ll, + 1500,

P(H,Ag) defined by (4.5) represents the error due to
solution f with regularization.

From the proof of Theorem 3.1 of [13], we have

(4.7) e, ae)ll, s lIE #0ll, llagll,
and
(4.8) lkooll, s lgg » ol llell,.

From Theorem 5.1, we also have

(4.9) | Iafll, s NE=8ll; llagll,.

Ag to the

If we compare the error due to Ag of (4.7) with that of f without

regularization of (4.9), we can recognize when the regularization

11
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is effective. Checking corresponding elements of Ep, E and 9, we
can examine the effectiveness of the regularization. The ine—‘
quality (4.8) suggests that we should avoid using the method of
regularization when it is not effective and we should choose the

regularization parameter u carefully.

We can actually construct the matrices EC ,Ep and 8 and we

examine how the method of regularization stabilizes the numerical

process and how we should choose the regularization parameter.

4.2. Matrlces Eg and zg

We first note that since the elements gij of the matrix 6 is

independent of the regularization parameter p, the distortion
coefficients matrix ® is common with that without regularization.

We also note that the matrices Ze and Ep as well as = and © do

not depend on g or Ag at all and, accordingly, we do not have to

construct these matrices for different functions of g.

First we examine the elements Egj of matrix Ep due to

perturbation Ag to study how the method;of regularization stabi-
lizes the numerical process 1) and 2) of Section 3.1. The
elements are again given by rounding off the fractions of

logarithm with basis 10. The matrix 2y represents the explosive

factor matrix with regularization. The elements EEJ of criti-
cal part of lower right corner ( i=n and j=n ) are significantly

—

smaller than those of E without regularization . This can be

12
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understood very easily if we compare the elements Eg and Eij of

J

% and Ep. As we have seen in Section 3.2 the elements Eij grow

large for large i and j mainly because the denominator Gj ap-
proaches to zero as j = n.

On the contrary, the denominator (d?+ ») of thé elements EEJ'
do not approach to zero even ifij 2 n and Gj approaches to zero
as far as the regularization parameter W >‘O. Since the numerator

of the elements Egj are independent from M, the elements EEJ for

large j's do not grow large as in the case of Eij of E without

regularization. Accordingly; the corresponding elements E?j* Bij
in lower right corner of matrix E;= ® are much smaller than those
of the matrix E+*0 .

Moreover the Frobenius norm of Ep*e may much smaller than

that of Z#0. This explains that the method of regularization
significantly reduces the magﬁificatidn of the propagation of the
perturbation Ag to the final .approximation f.

Another factor of error §(u) which is defined by (4.4),
however, shall be inevitably .introduced when we employ the method
of regularization. Though the upper bound of the err0r>§(ﬂ) is

given in (4.9), its interpretation is somewhat more delicate than

the case of Ep . The element Egjx gij of the matrix Eg*e involved

in (4.9) represents the magnification of the propagation of

13



200

(g,ui) to (Af,uj) due. to introduction of the regularization
parameter y. The size‘of (ag,ui) may not differ much among dif-
ferent i's, but the fourier coefficients (g,ui) of g may be quite

different in size. This is because the function g is harmonic and
very smooth, which may results in very rapid convergence of the

coefficients (g,u;) to zero.

The matrices Ec‘,Ep and 8 give us an idea on the choice of

the regularization parameter. We should choose M in such a way

that
i) we reduce the size of element E?j of Ep whose corresponding

elements of ei.

] of © are close to unity

ii)we avoid contaminating the elements E§J of Eg whose cor-

responding elements of gij of 8 are close to unity and the
corresponding j-th Fourier coefficients (g,uj) are

significant.
A detailed and illustrative examples for above discussions

are given in [14] which studies two contrastive cases.
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