TO THE EXTENSION OF SOLUTIONS OF DIFFERENTIAL SYSTEMS Giuseppe Zampieri (Padova Univ.)

ABSTRACT We use the theory of microlocalization of sheaves of [K-S-2], and especially its formulation in [S] for boundary value problems to treat the extension of regular solutions of systems of P.D.E. across an 1-codimensional singular set. Let M be a real analytic manifold, X a complexification of M, N an analytic hypersurface of M, Ω an open component of M \times N. For a suitable involutive manifold $V \subset T_M^*X$, invariant under the Hamiltonian flow of N x T_M^*X , we introduce a new complex $B_{\Omega | X}^a$ of hyperfunctions in Ω with real analytic parameters and study its applications to non-characteristic boundary value problems. In particular we show that the trace morphism preserves the analytic parameters. The analysis of $\mathcal{B}^{\mathtt{a}}_{\Omega \, \mathsf{I} \, \mathsf{X}}$ could be performed from the viewpoint of the 2nd microlocalization at the boundary along V developped in [U-Z]; but we do not need to refer to such a general theory for the purpose of the present paper. We then consider a differential system M at x, $x \in \mathbb{N}$, and a closed set S, S $\subset \mathbb{N}$, $x \in \partial S$. We denote by \forall the union of the leaves of $V^{\mathbf{C}}$ issued from V, we let ρ be the projection $Y \times T^*X \rightarrow T^*Y$, and make the following hypotheses: the conormals to N at x are non-microcharacteristic for M along V in $\pi^{-1}(x)$; char $M \cap \rho^{-1} \rho(\{x\} \times V) \subset V$; i $N_{X}^{*}(S) \subset V$ $\rho(\{x\} \times V)$. We then prove that $H^0(\mathcal{B}_{M|X}^a)$ -solutions of M on $M \setminus S$ extend to Mat x. Under some additional assumptions on "propagation in the interior" we also obtain the extension of $A_{
m M}$ -solutions. We refer to [Kan], $[\hat{0}]$, and [U-Z] for other results on continuation of (regular) solutions.

§ 1. THE COMPLEXES $B_{\Omega \mid X}^2$ AND $B_{\Omega \mid X}^a$

Let M = M'xL be real analytic manifolds with complexifications X = X'xZ and

dimensions $n = n_1 + n_2$. For a locally closed set A = A'xL of M, put A' = A'xZ and define (cf [K-S-2], [S])

$$(1.1) C_{A|X}^{h} = \mu_{\chi}(O_{\chi}) \otimes \omega_{M'/\chi'}[n_{1}] ,$$

$$(1.2) B_{A|X}^{2'} = R \Gamma_{T}^{*}_{X' \times L} (C_{A|X}^{h}) \otimes \omega_{L/Z}[n_{2}] .$$

We often consider the case A=M or A=N for an analytic submanifold $N=N^{+}xL$ of M of codimension 1, or else $A=\Omega$ where $\Omega=\Omega^{\pm}$ are the components of $M \cdot N$. The following triangle will play an essential role:

$$(1.3) B_{N|X}^2 \rightarrow B_{M|X}^2 \rightarrow B_{\Omega}^2 + X \oplus B_{\Omega}^2 - X \rightarrow +1$$

REMARK 1.1. By the results of [U-Z] we could give a canonical definition of the complexes $C_{*|X}^h$ and $B_{*|X}^2$, *=M, N, Ω , associated to a smooth conic regular involutive manifold V $\subset T_M^n X$ such that

(1.4) V and N x
$$T_{M}^{*}X$$
 intersect transversally,

and N \times V is regular involutive M

We recall from [K-L] that for *=M, N, $\mathcal{B}^2_{*|X}$ is concentrated in degree 0 and the natural morphism $C_{\!\!\!|X|}|_{\mathsf{T}^*X'\times L}\to \mathcal{B}^2_{*|X}$ is injective, $C_{*|X}$ being the sheaf of usual microfunctions. (As for the case $*=\Omega$ it is proven in [U-Z] that $(\mathcal{B}^2_{\Omega|X})_{\mathsf{T}^*_{\mathsf{M}^*}X'\times L}$ is concentrated in degree 0 but that the corresponding result on injectivity does not hold any more. However this is not needed here.)

We set now:

$$(1.5) B_{*|X}^{a} = R \Gamma_{M}(O_{X}|_{*xZ}) \otimes \omega_{L/Z} [n_{2}], * = M, N, \Omega.$$

For * = M, Ω we have a distinguished triangle

$$(1.6) B_{*|X}^{a} \rightarrow R \Gamma_{*}(B_{M}) \rightarrow R \pi_{*}(B_{*|X}^{2}) \rightarrow +1$$

($\mathcal{B}_{\mathbf{M}}$ being the sheaf of hyperfunctions); for *= N we have to shift

by -1 the first term of (1.6). Using (1.6), the results of [K-L], (and also the trick of the dummy variable for * = N), one easily sees that $\mathcal{B}^a_{*|X}$, * = M or N, are concentrated in degrees 0 and 1 with $H^1(\mathcal{B}^a_{*|X}) \neq 0$. The same should be proven for * = Ω ; but this is complicated and needless

here.

The detailed study of the complexes (1.5) is left to [U-Z]; we only treat here their applications to boundary value problems. Thus let η be a coherent \mathcal{D}_{χ} -module on an open set of M. We assume all through this section that Y, the complexification of N, is non-characteristic for η .

PROPOSITION 1.2. The natural morphisms

(1.7)
$$H^0(\mathbf{R} \operatorname{Hom}(\mathbf{M}, C_{\Omega|X}))|_{\mathsf{T}^*X'xL} \rightarrow H^0(\mathbf{R} \operatorname{Hom}(\mathbf{M}, B_{\Omega|X}^2))$$
,

(1.8)
$$H^0(\mathbf{R} \, \mathcal{H}^{\mathrm{om}}(\, \boldsymbol{\eta} \, , \, \mathcal{B}^{\mathrm{a}}_{\Omega \, | \, \chi} \,)) \rightarrow \mathcal{H}^{\mathrm{om}}(\, \boldsymbol{\eta} \, , \, \Gamma_{\Omega}(\, \mathcal{B}_{\mathrm{M}} \,))$$
 are injective.

PROOF. By the results of [K-L] it is enough to prove (1.7) and (1.8) in $T_{N}^{*}X'xL$ and N respectively. As for (1.7), set $F = T_{M}^{*}X \oplus N^{*}(\Omega)^{a}$ ("a"= antipodal) and consider the commuting diagram

(1.9)
$$c_{\Omega|X} \rightarrow B_{\Omega|X}^{2}$$

$$R \Gamma_{F} C_{N|X} [1] \rightarrow C_{N|X} [1] \rightarrow B_{N|X}^{2} [1] .$$

Then the conclusion follows from:

(1.10) μ om(M, $C_{N|X}$) = 0, μ om(M, $B_{N|X}^2$ / $C_{N|X}$) $|T_{N}^*, X^* \times L$ = 0, which are in turn easy consequences of division formulas for $C_{N|X}$ and $B_{N|X}^2$ (cf [K-S-1]).

As for (1.8) we only need to recall (1.6) for $*=\Omega$, and use (1.3), and (1.10). The proof is complete.

Let m_{Y} denote the induced system by m on Y and let $\gamma: \mathcal{H}om(m, \Gamma_{\Omega}(B_{M})) \rightarrow \mathcal{H}om(m_{Y}, B_{N})$ be the trace morphism (cf [S]). By collecting all above results we get:

PROPOSITION 1.3. We have

$$(1.11) \qquad H^{0}(\mathbf{R} \operatorname{Hom}(\mathcal{M}, \mathcal{B}^{\mathbf{a}}_{\Omega \mid X}))_{X} = \{u \in \operatorname{Hom}(\mathcal{M}, \Gamma_{\Omega}(\mathcal{B}_{M}))\}_{X} :$$

$$SS(\gamma(u)) \cap (T_{N}^{*}, Y' \times L) \subset T_{Y}^{*}Y$$
, $x \in M$.

PROOF. Let $\mathcal{F} = \mathbf{R} \ \mathcal{H}om(\mathcal{M}, \mathcal{O}_{\chi})$, put $\widetilde{\Omega} = \Omega' \times Z$, and note that the natural diagram

$$(1.12) \qquad \pi^{-1} \ \mathsf{R} \ \Gamma_{\Omega} (\mathcal{F}) \qquad \rightarrow \qquad \mathsf{R} \ \Gamma_{\mathsf{T}}^{*} \chi^{\mathsf{T}} \times \mathsf{L}^{\mathsf{L}} \widetilde{\Omega} (\mathcal{F})$$

$$\downarrow^{\mathsf{L}} \mu_{\Omega} (\mathcal{F}) |_{\mathsf{T}}^{*} \chi^{\mathsf{T}} \times \mathsf{L}$$

is commuting. Thus recalling (1.6) and applying Proposition 1.2, we get

$$(1.13) \qquad H^{0}(\mathbf{R} \operatorname{Hom}(\mathcal{M}, \mathcal{B}_{\Omega \mid X}^{\mathbf{a}}))_{X} = \{ u \in \operatorname{Hom}(\mathcal{M}, \Gamma_{\Omega}(\mathcal{B}_{M}))_{X} : \\ SS_{\Omega}^{\mathcal{M}, 0}(u)_{\Omega}(\mathsf{T}^{*}X' \times \mathsf{L}) \subset \mathsf{T}_{X}^{*}X \}$$

where $SS_{\Omega}^{M,0}(u)$ is the support of u identified to a section of $H^0(\mathbf{R} \text{ Hom}(M, C_{\Omega X}))$ (cf [S]). According to [S] this is in turn equivalent to (1.11).

REMARK 1.4. When considering $\mathcal{B}_{M|X}^{a}$ one can use the injectivity of $C_{M|X}|_{T_{M}^{*}X'\times L}$ $\to \mathcal{B}_{M|X}^{2}$ and $H^{0}(\mathcal{B}_{M|X}^{a}) \to \mathcal{B}_{M}$ as a substitute of Proposition 1.2. (Note that the latter injectivity follows from (1.6) and the (conical) flabbiness of $\mathcal{B}_{M|X}^{2}$ (cf [K-L]).) Then using (1.12) one easily gets (1.14) $H^{0}(\mathcal{B}_{M|X}^{a})_{x} = \{u \in (\mathcal{B}_{M})_{x} : SS(u) \cap (T_{M}^{*}X' \times L) \subset T_{x}^{*}X\}$, $x \in M$.

REMARK 1.5. For a regular involutive manifold V defined on the whole T_M^*X and satisfying (1.4), we can intrinsecally define $\mathcal{B}_{*|X}^a$, *=M, N, Ω , by replacing in (1.5) $\overline{*} \times Z$ by $\pi(\widehat{V}_{\overline{*}})$ (and $\mathbf{w}_{L/Z}$ by $\mathbf{w}_{V/\widehat{V}_{M}}$), where $\widehat{V}_{\overline{*}}$ is the union of the leaves of $V^{\mathbf{C}}$ issued from $\overline{*} \times T_M^*X$; (we also write $\widehat{V} = \widehat{V}_M$). One can also intrinsecally define the right hand sides of (1.11), (1.14) just by replacing $T_{N}^*Y' \times L$ and $T_{M}^*X' \times L$ by $\rho \overline{\omega}^{-1}(V)$ and V respectively (ρ and $\overline{\omega}$ being the natural mappings from $Y \times T_M^*X$ to T_M^*Y and T_M^*X resp.).

It is then clear that if for some coordinates on M we can write

$$V = T_{M}^* X' \times L, \qquad N = N' \times L,$$

then (1.11) and (1.14) still hold. More generally owing to the invariance of $B^2_{*|X}$ under contact transformation preserving V, N x V, and $\omega_{N/M}$ (cf [U-Z]), one could prove that (1.6) is fulfilled. But this refined argument is not needed here.

§ 2. EXTENSION OF SOLUTIONS WITH REAL ANALYTIC PARAMETERS

Let M be a real analytic manifold with complexification X, N an analytic hypersurface of M with complexification Y, $\Omega = \Omega^{\pm}$ the two components of M \ N, ρ and ϖ the canonical mappings from Y x T X to T Y and T X respectively. X Let $x \in M$, let U $\subset M$ be a neighborhood of x, and let V be a manifold in U x T X We assume that, in suitable coordinates on U:

(2.1)
$$M = M' \times L$$
, $X = X' \times Z$, $N = N' \times L$
 $V = T_{M'}^* X' \times L$, $\hat{V} = T_{M'}^* X' \times Z$.

Recall the complexes $\mathcal{B}_{M \mid X}^{a}$, $\mathcal{B}_{\Omega \mid X}^{a}$ (intrinsecally associated to V) and remember (1.11), (1.14). For any $p \in \pi^{-1}(x)$ recall the identification $T_{x}^{*}M \hookrightarrow T_{p}T^{*}X$ obtained through the embedding $T^{*}X \times T^{*}X \hookrightarrow T^{*}T^{*}X$ and the Hamiltonian isomorphism, and observe that $(T_{N}^{*}M)_{x}/R^{+}$ is just a pair of vectors $\pm \theta$.

THEOREM 2.1. Let N and V be defined, in suitable coordinates by (2.1), and let M be a coherent D_X -module at x which verifies

(2.2)
$$\pm \theta \notin C_p(\text{ char } M, \hat{V}) = \frac{\text{for } \pm \theta \in (T_N^*M)_x/R^+}{\text{and for any } p \in \hat{\pi}^{-1}(x) \cap V,}$$

(2.3)
$$\varpi^{-1}(\text{char } M) \cap \rho^{-1} \rho(\{x\} \times V) \subset T_{M}^{*} X$$

Let S be a closed subset of N with $x \in \partial S$ and

(2.4)
$$i N_{x}^{*}(S) \subset \rho \overline{\omega}^{-1}(V)_{x}$$
,

(in the identification i $T^*N \simeq T_N^*Y$). We then have, in a neighborhood of x,

(2.5)
$$\operatorname{Hom}(M, \Gamma_{M \setminus S}(H^0(\mathcal{B}^a_{M \mid X})) \stackrel{\sim}{\leftarrow} \operatorname{Hom}(M, H^0(\mathcal{B}^a_{M \mid X})).$$

PROOF. Let $\Omega = \Omega^{\pm}$ with $\Omega^{+} \cup \Omega^{-} = M \setminus N$; by reasoning as in § 1 and observing that

$$R_{\pi_*} R_{\Gamma_{(T_X^* X \cup_{\pi}^{\bullet}^{-1}(N))}(\mathcal{B}_{\Omega|X}^2)} = R_{\Gamma_{\Omega}}(\mathcal{B}_{M|X}^a),$$

we get a distinguished triangle

$$(2.6) \qquad \mathcal{B}_{\Omega|X}^{a} \rightarrow R \; \Gamma_{\Omega}(\mathcal{B}_{M|X}^{a}) \rightarrow R \; \mathring{\pi}_{*} \; R \; \Gamma_{\mathring{\pi}}^{\bullet} - 1_{(N)}(\mathcal{B}_{\Omega|X}^{2}) \qquad \stackrel{+1}{\rightarrow} \\ \text{Let } \mathcal{F} = R \; \text{Hom}(\mathcal{M}, C_{\Omega|X}^{h}) \Big|_{M \; \times \; T^{*}_{X}} \; \text{. We note that } (2.2) \; \text{implies } (p; \pm \theta) \not\in SS(\mathcal{F}) \\ \text{and thus also } R \; \Gamma_{\mathring{\pi}}^{\bullet} - 1_{(N)}(\mathcal{F}) = R \; \Gamma_{\mathring{\pi}}^{\bullet} - 1_{(M \times \Omega)}(\mathcal{F}) = 0. \; \text{By applying}$$

 $R \Gamma_{(N \times V \cap T_N^* X)}(.) [n_2]$ to the last equality $(N \times V)$ being defined similarly to \hat{V} and n_2 being the codimension of V), we then get, for a neighborhood U of x on N,

(2.7)
$$R \Gamma_{\pi}^{\bullet-1}(N) R \operatorname{Hom}(M, B_{\Omega|X}^{2}) |_{U \times V} = 0.$$
Note now that (2.2) (2.3) imply:

Note now that (2.2), (2.3) imply:

$$\varpi^{-1}(\text{ char }M)\cap \rho^{-1}\rho(U\times V)\subset U\times V$$
 ,

which gives, combined with (2.7):

(2.8)
$$R \pi_* R \Gamma_{\pi}^{-1}(N) R Hom(M, B_{\Omega|X}^2)|_{U} = 0.$$

By (2.6) this implies:

$$(2.9) \qquad \text{R } \mathcal{H}\text{om}(\ \textit{M}\ ,\ \mathcal{B}^{a}_{\Omega\,\big|\,X})\,\big|_{U} \ \simeq \ \text{R } \mathcal{H}\text{om}(\ \textit{M}\ ,\ \text{R } \Gamma_{\Omega}(\mathcal{B}^{a}_{M\,\big|\,X})\)\,\big|_{U} \ .$$
 For $u\in\mathcal{H}\text{om}(\ \textit{M},\Gamma_{M\smallsetminus S}(H^{0}(\mathcal{B}^{a}_{M\,\big|\,X})))$ let now $u^{\pm}=u\big|_{\Omega^{\pm}}$. Owing to (2.9) and (1.11) we get

$$SS(\gamma(u^{\pm})) \cap \rho(U \times V) \subset T_{\gamma}^{*}Y$$
.

We also clearly have

$$supp(\gamma(u^+) - \gamma(u^-)) \subset S.$$

Therefore the conclusion is an immediate consequence of the following two lemmas.

LEMMA 2.2 (cf $[\widehat{0}]$). Let F be a closed set of M and let $u \in (B_M)_X$, $x \in \partial F$.

Then

$$SS(u) \cap N_{X}^{*}(F) \subset \{0\}$$

$$\{ supp(u) \subset F \qquad \Leftrightarrow u = 0 \}$$

PROOF. Easy application of Kashiwara-Holmgren's theorem and of sweeping out procedure by Bony-Schapira.

LEMMA 2.3. Let
$$u \in Hom(M, \Gamma_{(M \setminus N)}(B_M))$$
; then

$$u \in \mathcal{H}om(M, H^0(\mathcal{B}_{N|X}^a)) \Leftrightarrow \{ \gamma(u^{\pm}) \in H^0(\mathcal{B}_{N|Y}^a) \\ \gamma(u^{\pm}) - \gamma(u^{-}) = 0. \}$$

PROOF. It is enough to recall the triangle

$$C_{\rm M|X} \rightarrow C_{\Omega}^+|_{\rm X} \oplus C_{\Omega}^-|_{\rm X} \rightarrow C_{\rm N|X}[1] \rightarrow {}^{+1}$$
 and the estimation

$$SS(u) \subset \bigcup_{\pm} SS_{\Omega^{\pm}}^{\uparrow \uparrow, 0} (u^{\pm}) \subset \rho^{-1} (\bigcup_{\pm} SS(\gamma(u^{\pm}))),$$
(cf [S]).

COROLLARY 2.4. In the situation of Theorem 2.1 assume in addition:

(2.10)
$$\operatorname{Hom}(M, \Gamma_S(C_{M|X}))_p = 0 \quad \forall p \in T_M^* X \setminus V, \pi(p) = x.$$

Then (for $A_M = O_X|_M$):

(2.11)
$$Hom(M,\Gamma_{(M \setminus S)}(A_M))_{X} \simeq Hom(M,A_M)_{X}$$

By the argument in the proof of (2.7) and by the injectivity of $C_{M|X|V} \rightarrow \mathcal{B}_{M|X}^2$, a sufficient condition for (2.10) is that (2.2) is fulfilled for some V_p and θ_p such that $p \in V_p$, $S \subset \{x \in M : \langle x, \theta_p \rangle \geq 0\}$.

REMARK 2.5. It is clear from Lemma 2.2 that we can even consider in Theorem 2.1 some singular set S such that $N_{x_0}^*(S) = T_{x_0}^*N$. In fact for $M = M'xL \simeq R^{n_1}xR^{n_2} \ni x = (x',x'')$, we only need to assume that $N \setminus S$ contains spheres of the L-plane whose diameters are infinite over the distance to ∂S . For example this is the case of any $S \subset \{\phi \le 0\}$ for $\phi \in C^0(N)$ with $\phi(x_0) = 0$,

$$\partial x_{n_1} \Phi(x_0) \neq 0$$
, $\partial_{x_1} \Phi(x_0) = 0$, $\partial_{x_{n_1}} \Phi \in C^0$, $\partial_{x_1} \Phi \in C^0$.

REMARK 2.6. Theorem 2.1 extends the results of [Kan], $[\hat{0}]$. These are obtained by choosing $L \simeq \mathbb{R}^{n-2} \subset \mathbb{M} \simeq \mathbb{R}^n$ and by replacing \hat{V} with $T_M^* X$ in (2.2).

EXAMPLE 2.7. Let $M = M'xL \ni (x',x'')$, N = N'xL, $M' = RxN' x' = (x_1,\tilde{x})$, S = S'xL, $x_0 = 0 \in \partial S$. Let (z,ζ) , z = x+iy, $\zeta = \xi+i\eta$, be coordinates in T^*X , let $V = \{\eta'' = 0\}$ and consider

$$M : \zeta_1^2 - (z_1^r + \zeta^s)\zeta^2 + \zeta''^2$$
, r, s even, $r \ge 2$.

Then (2.2)-(2.4) hold with $\pm\theta=\pm dx_1$ (cf [S-Z]) and thus we get (2.5) and (2.11) (as (2.10) is trivial in the present situation).

EXAMPLE 2.8. In the above situation let $M' \simeq \mathbf{R} \times \mathbf{N}' \simeq \mathbf{R} \times \mathbf{R}^3$, let $V = \{\eta_3 = \eta_4 = \eta'' = 0\}$, and consider $M : (\zeta_1^3 + \zeta_3^3 + \zeta''^3, \zeta_2(\zeta_3^2 + \zeta_4^2))$.

For S = S'xL with $0 \in \partial S$ we have (2.2)-(2.4) and thus also (2.5). Moreover for any $p \in V$ and for $\pm \theta_p = \pm dx_1$ or $\pm dx_2$ we have (2.2) with $\hat{V}_p = T_M^*X$. Therefore if we let $S = \{x_1 = x_2 = 0\}$, we get (2.10) and (2.11). (This extends Example 1.1 of $[\hat{0}]$.)

REFERENCES

- [Kan] Kaneko, A., On continuation of regular solutions of linear partial differential equations, Publ. Res. Inst. Math. Sci., 12 Suppl. (1977), 113-121.
- [K] Kashiwara, M., Talks in Nice, (1972).
- [K-L] Kashiwara, M. and Y. Laurent, Théorèmes d'annulation et deuxième microlocalisation, Prépubl. d'Orsay, (1983).
- [K-S-1] Kashiwara, M. and P. Schapira, Microhyperbolic systems, Acta Math., 142 (1979), 1-55.
- [K-S-2] Kashiwara, M. and P. Schapira, Microlocal study of sheaves, Astérisque, Soc. Mat. de France, 128 (1985).
- [Ô] Ôaku, T., Removable singularities of solutions of linear partial differential equations - Systems and Fuchsian equations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 33 (1986), 403-428.
- [S] Schapira, P., Front d'onde analytique au bord I and II, C.R. Acad. Sci., 302 (10) (1986), 383-386, and Sém. E.D.P. Ecole Polyt. Exp. 13, (1986).
- [S-Z] Schapira, P. and G. Zampieri, Regularity at the boundary for systems of microdifferential equations, Pitman Research Notes in Math., 158

(1987), 186-201.

- [S-K-K] Sato, M., Kashiwara, M. and T. Kawaï, Hyperfunctions and pseudodifferential equations, Springer Lecture Notes in Math., 287 (1973), 265-529.
- [U-Z] Uchida, M. and G. Zampieri, 2-nd microfunctions at the boundary, to appear

Giuseppe Zampieri
Dep. of Math., Fac. Sci.
Univ. of Tokyo
Tokyo, 113 Japan
and
Dip. Mat. - Università
Padova, 35131 Italy