2-Microlocal Boundary Value Problems and Their Applications

by Motoo Uchida (Univ. of Tokyo)

(内田耒夫)

1. Let M be a real analytic manifold, X a complex neighbourhood of M, and Y a complex hypersurface of X. Let Λ be a regular involutive conic submanifold of T_M^*X , Λ^C (resp. $\widetilde{\Lambda}$) a complexification (resp. a partial complexification) of Λ in T_M^*X . Let \mathfrak{M} be a coherent \mathfrak{E}_X -Module defined in a neighbourhood of Λ^C and assume that Y \longrightarrow X is non microcharacteristic along Λ^C for \mathfrak{M} (cf. Def. 2.2 of [1] and Def. 2.10.3 of [5]). Set $\Sigma = \Lambda_0 \pi^{-1}(Y)$, and denote by Λ_+ a domain of Λ with boundary Σ . Then we can define the microlocal boundary values along Λ to Σ for \mathfrak{B}_Λ^2 -solutions to \mathfrak{M} . To be precise, there exists the boundary value map

by : $\mathbb{R}_{X}^{\mathbb{H}}$ om $\mathbb{E}_{X}^{\mathbb{C}}$ ($\mathbb{R}_{A}^{\mathbb{C}}$)) $|_{\Sigma}$ \longrightarrow $\mathbb{R}_{X}^{\mathbb{H}}$ om $\mathbb{E}_{Y}^{\mathbb{C}}$ ($\mathbb{R}_{Y}^{\mathbb{C}}$), where $\mathbb{R}_{A}^{\mathbb{C}}$ denotes the sheaf of 2-hyperfunctions on \bigwedge due to Kashiwara (cf. [4], [10]), and \mathbb{R}_{Y} denotes the tangential system on Y of \mathbb{R} . We set

2. Let Ω be an open subset of M with real analytric boundary N = $\{\varphi=0\}$, Y the complexification of N in X . We denote by ρ the natural

projection $Y \times T^*X \longrightarrow T^*Y$. Take a point $y \times \in T^*_NY$ and a point $x \times \in T^*_MX \times N$ with $\rho(x \times) = y \times$. Let P be a microdifferential operator defined in a neighbourhood of $x \times$ with involutive double characteristics. Precisely we assume that the principal symbol $\sigma(P)$ of P is decomposed by homogeneous holomorphic functions p_1 , p_2 , q:

$$\sigma(P) = q \cdot p_1^{m_1} \cdot p_2^{m_2}$$

in a neighbourhood of x^* and they satisfy the following conditions:

- (1) p_1 and p_2 are real valued on $T^*_{M}X$,
- (2) $p_1(x^*) = p_2(x^*) = 0$, $q(x^*) \neq 0$,
- (3) $dp_1 \wedge dp_2 \wedge \omega \neq 0$,
- (4) $\{p_1, p_2\} = 0$ on $\bigwedge = \{p_1 = p_2 = 0\}$,
- (5) $\{\varphi, p_i\} \neq 0$ (i=1, 2).

In this situation we consider the microlocal boundary value problem

(.5)
$$\begin{cases} Pu = 0 & \text{at } x^*, \\ (9_x \cdot D_x)^{i} u|_{9 \to +0} = 0 & \text{at } y^* \ (0 \le i < \max\{m_1, m_2\}). \end{cases}$$

Remark that we take here the boundary value $(\varphi_X \cdot D_X)^i u|_{\varphi \to +0}$ of u in the microlocal sense from a neighbourhood of z^* .

Then we have the following results.

We denote by $SS_{\Omega}(u)$ the boundary analytic wavefront set of u (cf. [8] for the definition of the boundary analytic wavefront set).

Theorem 1.---Let Γ be a real bicharacteristic leaf of Λ passing through x^* . For any solution u of the microlocal boundary value problem (\mathfrak{D}), there exists a subset $\{x^*_{S}\}$ of $\Gamma_{\Lambda}\sum$ such that

 $SS_{\Omega}(u) \cap \Gamma$ = the closure in Γ of the union of $\{b_S^i; s, i=1,2\}$ and some of connected components of $\Gamma_+ \setminus \bigcup \{b_S^i; s, i=1,2\}$, where $\Gamma_+ = \Gamma \times \Omega$, and b_S^i denotes the half integral curve of H_{p_i} , the Hamilton vector field of p_i , issued from $x *_S$ into Γ_+ .

Corollary 2.---For any solution u of the microlocal boundary value problem (3),

 $\Rightarrow_{\substack{ x^* \notin SS_{\Omega}(u)}}^{b^1(x^*) \cup b^2(x^*)} \ \ \downarrow^{SS(u|_{\Omega})}$

Theorem 1 is obtained as an application of the theory of Section 1 (cf. [13]).

Remark.——As for the results in the interior domain for the same operator we refer to Tose [10, 11, 12]. We also refer to Lascar [6] for the similar result as Corollary 2 in the C^{∞} category. Note that we assume in Corollary 2 that at least one of the integral curves $b^1(x^*)$, $b^2(x^*)$ is not contained in SS($u|_{\Omega}$) in a neighbourhood of x^* .

References

- [1] Kashiwara M. and P. Schapira, Problèmes de Cauchy pour les systèmes microdifferentiels dans le domaine complexe. Invent. Math. **46**, 17-38 (1978).
 - [2] ---, Micro-hyperbolic systems. Acta Math. 142, 1-55 (1979).
- [3] ---, Microlocal study of sheaves. Asterisque 128, Soc. Math. France (1985).
- [4] Kashiwara M. and Y. Laurent, Théorèmes d'annulation et deuxième microlocalisation. Prépublication d'Orsay (1983).
- [5] Laurent, Y., Theorie de la deuxième microlocalisation dans le domaine complexe. Progress in Math. 53, Birkhauser (1985).
- [6] Lascar, R., Paramétrices microlocales de problèmes aux limites pour des équations pseudo-différentielles à caractéristiques de multiplicité variable. C. R. Acad. Sc. Paris 287, 441-443 (1978).
- [7] Schapira, P., Propagation at the boundary and reflection of analytic singularities of solutions of linear partial differential equations I. Publ. RIMS Kyoto Univ. 12 Suppl., 441–453 (1977).
- [8] ---, Front d'onde analytique au bord I, II. C. R. Acad. Sc. Paris **302**, 383-386 (1986), Sem. E.D.P. Ecole Polyt. Exp. 13 (1986).
- [9] Schapira, P. and G. Zampieri, Coll. Intern. "Hyperbolic Eq.", Padova, 1985.
- [10] Tose, N., On a class of microdifferential equations with involutive double characteristics. J. Fac. Sci. Univ. of Tokyo **33**, 619-634 (1986).
- [11] ---, The 2-microlocal canonical form for a class of microdifferential equations and propagation of singularities. Publ. RIMS Kyoto Univ. 23, 101-116 (1987).
- [12] ---, On a class of 2-microhyperbolic systemes. J. Math. pures et appl. **67**, 23-37 (1988).
- [13] Uchida, M., 2-Microlocal boundary value problems and their applications. Master Thesis, Univ. of Tokyo (1987), (in Japanese).