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§1. Introduction.

There is a lot of variants and generalizations of the well-known Cauchy - Bun-

yakovskii- Schwarz’ inequality:.

THEOREM CBS. If z,y are vectors in an inner product space 'H, then

| <z |y> <lelPllll

In Bombieri’s text [3] on analytic number theory, a variant of the Cauchy -
Bunyakovskif- Schwaiz’ inequality is referred to A. Selberg. The inequality goes as

follows:

THEOREM S. If @1,%2,...,%s, and T are non zero vectors in an inner product

space H, then

n

|<z|z>]?

< lell®.
i=1 Z?Zl! < Ti ' :D] > {

It is easy to see that this inequality is nothing but the Cauchy-Bunyakovskii-

Schwarz’ incquality if » = 2, and Bessel’s inequality

Yol<z e > < el
=1 )

if the vectors &1, &9, ...,%p are chosen to form an orthonormal system.
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In Bombieri’s text [3], -af proof to Selberg’s inequality which is similar to- the
well-known proof of the Ca.uchy-BunyakoVski‘i—Schwa,rz’ inequality is ‘given.

In the first part of this talk, we obtained another proof to the Selberg’s inequality,
based on what we call diagonal majorization method hereafter. By this method, we
mean a general algorithm to obtain a diagonal majorant of a given positive semidef-
inite matrix. Several inequalities have matrices whosc positive semidefiniteness is
equivalent to the inequality itself. While R. Bellman [1] emphasized the importance
of the identity that makes an inequality trivial, we call attention to the importance
of getting positive semidefinite matrix that makes an inequality trivial. From this
viewpoint, there can be some inequalities related to Selberg’s.

In the second part, we will ta,lk about a few examples of applications of Sel-
berg’s. The examples are chosen from the theory of positive semidefinite functions
On semigroups.

At last, we will talk about another dpplica.tion of the diagonal majorization
method.

This is a note of my talk at the Research Institute of Mathematical Sciences,

Kyoto University. The detailed paper will be published elsewhere.
§2. A Proof of Selberg’s Inequality.

It is quite attractive that the Cauchy - Bunyakovskil- Schwarz’ inequality or
Bessel’s inequality is equivalent to the positive semidefiniteness of the following 2 x 2

or (rn +1) X (n + 1) matrix respectively:

(II-‘sz <xly>)
<glez> |lF )7

or
=])? <z|lz1> ... <zlr,>
(;2‘!1'27) 1
. . b
<z, |lz> Q 1



respectively.
Thus we think it natural to ask some matrix whose positive semidefiniteness is

equivalent to Selberg’s inequality. A candidate for such matrix is given as follows:

lelf? <eler> .. <azlel>
< <zile> Fill<a |z >] ©
<eale> 0 Tl<ea]e >

Thus we have only to show the positive semidefiniteness of this (n+1) x (n+1)
matrix. And we call attention to the fact that these matrices are offsprings of the

so-called Gram’s matrix. The definition of Gram’s matrix goes as follows:

DEFINITION. Let z4,22,...,2, be an n-ple of vectors in an inner product space
H. The Gram matrix of the z;’s denoted by G(z1, 2, ...,z ) is given by the following

_equation:

(;(xl;mﬁﬁ"')$n)

<zi|e1> <zi|lz2> .. <zy|Th >
<z |21> <zp|X2> ... <3228 >

<xuixl> {x,,im) <3:,,ia:,,>
It is well-known that a Gram matrix of arbitrary size is positive $emideﬁnite.
Remark also that the Gram matrx G(z,zq,...,z,) differs from the matrix S in
the n x n lower nght square. Comparing them, you will be suggested the following

majorization theorem, which makes the positivity of the desired matrix trivial,

LEMMA. [fey,@2,...,2,, and £ are vectors in an inner product space H, then
Gley, o, .. Tp)
<
n n n
diag(Z] <z |e> ),ZI <z |z >‘),...,Z| <zz |z >)),
j=1 - §=1 5=1
where
1 O
. \ 2
diag(ay, @y, ...,a,) =

\O : Qg



We have a proof of this LEMMA using the well-known eigenvalue-location the-
orem due to Gersgorin. Of course there can be a proof without using the eigenvalue

location theorem, but we have a clear perspective from the location theorem.

THEOREM G (Gersgorin, cf, [5]). Let A = [a;;] € Mo(C), and let

n

Ri(4)= > layl, 1<i<n

JELI=1
denote the deleted absolute row sums of A. Then all the eigenvalues of A are located

in the union of n discs, { so called Gerigorin discs)

[ {z € C |z = ais] S Ri(A)} :=G(A).

=1

PRrROOF OF LEMMA. Consider the following matnx

n n n‘
diag(} | < ey |2, >, Y [ <zalz; >, ) | <l >])
i=1 §=1

§=1

—Gley, 22, .., Tp)

Tl <o) e > - <z |2 > —< 21|z >
— <z | x> Yigzl <@z > . — <z |z, >
= + l . . ?
—< x5y e > —<ea|T2> 0 Yl <za | >

whose Gerégorin discs obviously lie in the right half plane, and hence the eigenvalues
lie in the right half of the real axis. Thus the matiix is positive semidefinite.

Q.E.D.

Beckenbach and Bellman shows a refinement of the Cauchy - Bunyakovskii-
Schwarz’ inequality in their text [1]. The diagonal majorization method is available
to prove the refinement, but much more. It will be shown that the method implies

the following refinement of Selberg’s inequality. The proof will be omitted here.

COROLLARY. Ifzy,%2,...,2y, and z,y are non zero vectors in an inner product
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space, then

' 7
<z|lzi><zi|ly>,
|<zly>- ‘ l
;E?:ll<m5’mj>'

<

n . 2 n . 2
Belf? = 3" b=z lzi >l e g~ _I<ulei>P
=1 =1

Ll <eifz > Lijal<zilz>|

§3. Applications of Selbergs Inequality.

Through the representation theorem of the positive definite functions, cf., [2],
Selberg’s inequality yields several inequalities. Only a few results will be introduced

here.

PROPOSITION 1.

2“: cos?(z — ;) P
po Z;',___l |cos(z; — ;)] =
forz,z1,22,...,2, € R satisfying

T (NgZ,1<ii<n),

.'C,'—:L']‘#

Set n = 2 in PROPOSITION 1, one obtains the following inequality:

COROLLARY.

|cos @y F cos wg) < |sinzy Lsinay),
Jor z1,22 € R satisfying
cos(zy — x3) > 0.
In the branch of probability theory, we obtain the following.
PROPOSITION 2.

 (P{ANA;) — P(A)P(A;))?
T (P(A N 4)) — P(A)P(4;))

< P(A)(1 - P(4)),

)



for A € A and pairwise independent Ai, Ag, . A, EA, where (Q, A, P) denotes a

probability space.

A Cauchy-Bunyakovskii-Schwarz’ inequality with a linear operator weight was

discussed by T. Furuta [4].

THEOREM F. For any bounded linear operator T on a Hilbert space H, vectors

z,y € H, and any real number a € (0,1), the inequality
[<Tz|y>P << T2 | 2 ><|TPO" %y |y >
holds true.

Let T = U|T| be the polar decomposition. With a couple of replacements of
vectors

e |T|*z, and z; — |T" Uz,
in Selberg’s inequality gives the following weighted form of Selberg’s inequality.

COROLLARY. Let T be a bounded linear operator on a Hilbert space 'H, and

a€(0,1). Ifzy,22,...,2, ¢ Kex(T), and « are vectors in.'H, then

o <Te|z; > -
Z TR | * 2|(1_.a) | < T elf®.
o L= <7 i |z >|

Set n =1, and we have THEOREM F. Of coures, we have the refinement of this

COROLLARY 1n the same way as that of Selberg’s.
§4. Another Application of Diagonal Majorization.

From the Euclidean or unitary woild of Hilbert space, we shall immigrate our-
selves into the hyperbolic world. Conside the unit disc Hy of the Hilbert space H.

Then the inner product < z | y > in the Eunclidean world H corresponds to the

quantity
1
1_<.$ly>: ( 24 e iy,



in the hyperbolic world H;. Thus we have the following matrix that corresponds to
the Gram matrix.

DEFINITION. Let T1,&2,..., 2Ty be an n-ple of vectors in the open unit disc H, of
an inner product space H. The Hua matrnix of the z,;’s denoted by H(zy, z2,...,2,)
1s given by the following equation:

1 n
H= .
1—<$;|$J'>,

=1

The following theorem corresponds to the positivity of Gram matrices.

THEOREM 1. Ifeqy,22,...,2, 15 an n-ple of vectors in the open unit disc of the
mner product space H, then
H{zq,z2,...,25)
s positive scnudefinite.
PROOF. Since the inner products < z; | ¥ > have modulus strictly less than

1, one can represent the entr1e5»~w as the power series:

= <
}—-<m,]y, : Z 'T'lyl

And hence one has
H($13$27" mn) - ZG(xl)zz""’xn)(u)7
n=0
where M(*! denotes the puwer with respect to Schur (i.e., elementwise) product of a

matrix M. Tt is trivial that the matrix

11 1
. 11 1

Glzy,@o,...,2,) 0 =1
11 1

15 positive scmidefinite and 1s well known that the Gram matnx

G(zy,z2;...,2a)
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is positive semidefinite. Hence so are the powers with respect to Schur product. Thus
the Hua matrix represented as the (Schur-) power series of Gram matrix is positive
semidefinite. | o | |
Q.E.D.
We have shown that the positive semidefiniteness of Gram matrix yields not
only the Cauchy-Bunyakovskii-Schwarz inequality but also an inequality due to A.
Selberg. Just in the same way, we ob’pa,in a hyperbolic analogy of Selberg’s iﬁequa,lity
from the positive semideﬁniteﬁess of Hua matrix. Before describing the statement,
the concept of parallel sum must be introduced.
DEFINITION. Let ay,a2,...,a, be an n-ple of positive real numbers. Then their

parallel sum is defined by
S .
O erhH,
i=1

and 1s denoted by

THEOREM 2. Ifxy,22,...,%,, and ¢ are vectors in the open umit disc Hy of

an inner product space H, then’

s 2

o ‘1—{:6!:85)]
-2l <7 : .
I_Il I =< 2y >

The proof will be omitted.

" The following refinement of the preceding inequality is obtained in the same way.

COROLLARY. If &y, 22,...,%a, and &,y are vectors in the apen unit disc of an
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inner product space, then

n

iH (1—<z|x,>)(1 <z |y>)
IT;- rail-<e ]2 >

—l+<z|y>|?
<

(HH ,1—(1;‘]1',)‘2 ___1+“m”2)

i=1° [1—<:L',| '>|

X

T 1= <ylz > :
01 = o> P ).
=1 H

]:1'1—<$'|xl>!

As an example for the application, the following inequality is given.

PROPOSITION 2°.

P(AN A;) + P(A)P(4;))?
H H, L 1-P(A NA,) +P(A,)P(4;)) >1-P(A)(1 - P(4)),

for A € A and pairwise independent Ay, As, ..., Ay € A, where (2, A, P) denotes a

probability space.

It is well known that the unit disk is conformally equivalent to the upper (or
right) half plane. Hence it 1s natural to ask for the conformal equaivalent of the
inequality in THEOREM 2 for the complex plane.

The first siep is to prove the following positive semidefiniteness of the matrix

corresponding to Hua matrix.

THEOREM 3. If z1,22,...,2y s an n-ple of complex numbers. then the n X n

matriz

M= Rﬂ’(zl, Z2,-- 4, Zn)

defined by

1§ postiwve sernrdefinsie,



As a consequence of the preceding theorem and the diagonal majorization

method, we have the following inequality.

THEOREM 4. Ifz,21,22,...,2, 1s an n+1-ple of complex numbers in the open

upper half plane I' = {2 € C: R(z) > 0}. Then

. o+
z < o .
FTES H =t et lzi + 77}

In concluding my talk, we would like to express my hearty thanks to Prof. T.

Ando for many valuable suggestions for further study.
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ADDED IN PROOF.  The results stated here are first intmduced by Prof. F.
Kubo at the Eleventh Symposium on Apphed Functional Analysis. Hearing these
results, Prof. T. Furuta has realized me the interest of the equality condition for
Selberg’s inequality. (1. Furuta, When does the equality of Selberg type extension of
Heinz inequality hold 2, Preprint.) Thus Prof. M. Fujii, the organizer of the present
symposium urged him to give another talk. He also send me a note on an elementary

proof of the LEMMA of the diagonal majorization method.
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