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ON DECOMPOSABLE OPERATORS

(Decomposability of multipliers on Banach algebras)

Yamagata Univ. Sin—-Ei Takahasi

Faculty of Engineering. (BEIEEM)

1. Introduction. Every multiplier on a semisimple commutative
Banach algebra has the single-valued extension property but not necessa-
rily decomposable. In fact J. Eshméier [4] shows that there exists a
multiplier on the group algebra of ;»non—discrete locally compact
abelian group which is not decomposable. This is a negative solution of
Colojoara-Foias question [3].

The purpose of this talk is to investigate the decomposability of
multipliers on a semisimple commutative Banach algebra. W¥e show that
every multiplier whose Gelfand transform is continuous in the hull-
kernel topology is (strongly) decomposable. Applying this we ¢an show
the equivalence of the regularity of the algebfa and the decomposability
of the multiplication operators, which asserts the converse of Colojoara
-Foias'result [3] holds. We further give many measures on a locally
compact abelian group such that the corresponding multipliers on the
group algebra are decomposgble. The class of these measures contains
the class of measures whose continuous parts are absolutely continuous
and so our result contains Eschmeier's one given in'[4]. The proof makes

use of the natural embedding bf measure algebras considered by J. Inoue

[6].

2. Results. Let A be a semisimple commutative Banach algebra
with carrier space ®a and M(A) the multiplier algebra of A with
carrier space Pncay. We denote by TY the Gelfand representation of

T € M(A) and denote by T~ the restriction of TY to ®a. Then our
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main result is the following

Theorem 1. Let T € M(A) be such that T'- is continuous on ®nca)
in the hull-kernel topology and J be a T-invariant closed ideal of A.
Then TIJ ahd 7] are‘deoombosable and their spectral capacities are
‘resoeotively givén>b§ kef((Tll)"'(C\\F)) and ker((T/J) "' (C\\F))

for each closed set F in the complex plane C.

The following result is rapidly obtained from the above theorem

and [1, Theorem 1.7].

Corollary 2. Let T be as in the above theorem. Then T is

strongly decomposable.

The following lemma gives a sufficient condition for continuity of

TV in the hull-kernel topology.

Lemma 3. Let T € M(A). If T 1is constant on ®nca)\®a and
if T is continuous on ®a in'the hull-kernel topology, then TV is

continuous on ®mcay in the hull-kernel topology.

The above results imply immediately the following result obtained

by I. Colojoara and C. Foias [3]:

Corollary 4. If A 1is regular, then every multiplication operator

on A 1is strongly decomposablo

A bounded linear operator T on a Banach space. X is said to have
the weak 2-spectral decomposition property (abbreviated SDP) if for any
open covering o (T) C Gt U G2 there are T-invariant subspaces Xi and

X2 of X such that X = (X1 + X2)~ and o (T]X:) CGi (i =1, 2).

Theorem 5. If T € M(A) has the weak 2-SDP, then T  is continuous

on ®a in the hull-kernel topology.
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By combining Theorems 1, 5 and Lemma 3, we obtain the following

characterization of the decomposability of multiplication operator:

Corollary. 6. Let T : be an arbitrary multiplication operator on A.
Then the following four conditions are equivalent:
‘(i) T is strongly decomposable.
(ii) T is decomposable.
(iii) T has the weak 2-SDP.

(iv) T° is continuous on ®a in the hull-kernel topology.

Therefore the above corollary implies immediately the following

converse of Corollary 4:

Corollary 7. If every multiplication operator on A has the weak

Z—SDPY(in barticular is decomposable), then A is a regular algebra.

In particular since the measure algebra M(G) of a non-discrete
locally compact abelian group G is not regular, we have the following
result obtained by J. Eschmeier [4] : there exists a measure u € M(G)
such that the convolution operator : v — pu * ; (v € M(G)) does not
posseses the weak 2-SDP.

Now let G be a locally compact abelian group and denote by top(G)
the class of all locally compact group topologies on G which are equal

or stronger than.tﬁe original topology on -G. For each 7€ top(G), let
L1(G, r ) be the kernel of the hull of L'(G, t) in the measufe algebra
M(G, 7). Tﬁen ET(G,T ) can be regarded as a closedksubalgebra;of the
measure algebra M(G) of G (see [6]). Let L°(G) be the closed sub-
algebra of M(G) generated by"{fT(G, ) : t€ top(G)}.

The following result is’essentiaily pointed out by J. Inoue.

Lemma 8. Under the above notation, every Gelfand transform of
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measure in L-(G) is continuous on ®mcey in the hull-kernel topology.
He actually proves it from the following general viewpoint:
Lemma 9. Let X be a commutative Banach ngebra with identity

and B a Banach subalgebra of~ X. If B is regular, then for any

b € B its Gelfand transform b¥Y (considered as b € X) is continuous on

‘ ®x in the hull-kernel topology.

Therefore by combining Corollary 2 and Lemma 8 we have the follow-

ing
Theorem 10. The multiplier : f — pu *%f on L'(G) is strongly

decomposable for every measure g in Ei(G).
This contains the following result obtained by J. Eschmeier [4]:

Corollary 12 (Eschmeier). The multiplier: f — gz *f on L'(G) is
strongly decomposable for every measure g whose continuous part is

absolutely continuous.

Remark. We can from [8, Theorem 2.10] observe that there are many
locally compact abelian groups G such that the cardinality of top(G)

= 3. Then for such groups G, the class of measures on G whose con-

tinuous part are absolutly continuous is strictly contained L~(G) from

[6, Corollary 2.17].

3. Proofs. We have only to prove Theorems 1 and § and Lemmas 3, 8
and 9.

(1) Proof of Theorem 1. We shall prove the restricted case. The
quotient case can be proved by the same method too. We first show that
Jt(F) = ker ((T1J)""' (C\\F))
for each closed set F in C. Here Jr(F) denotes the set of all x € J

with o1ls(x) CF. To do this let F be any closed set in C. If x €

a
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J1(F), then for each A € C\F, there is xx €J with (A - T)xx = x,
so that x"() = 0 for all ¢ € (TIJ) "' (C\F). In other words, Jr(F)
C ker((T1J)"""(C\F)). It remains to prove the converse inclusion, but
it is sufficient to prove
C\F C p (Tlker ((T1J) """ (C\F)).
To do this let A € C\F be fixed. Since A - T°(f) # 0 for each
¢ € (TIJ)""'(F) and J is semisimple, it follows that
(A = T) | ker({TIJ)""'(C\\F)) is injective. Thus it remains only to
prove that (X - T)| ker((TlJ)*;‘(C\\F)) is surjective. To do this
let x € ker((T[J) "1 (C\F)) be fixed. Set
§ =inf{|l 2 - 2" | : X' €F}.
Then 6 >0 and | A - T°(P) | =26 for all ? € (T[J) "' (F). Now put
H={f€ Onear : | A -T(P) | 26}.

By the hull-kernel continuity of T¥, H is a hull in &)n(n). Then by
[8, Theorem 3.6.15], there exists S € M(A) such that ((2 - T)S)V(¥)
= 1 for all P € H. Set y = Sx.. Then y € ker((T|J) " "'(C\F)). Also
observe that ((A - T)y)"|I®Jy = x"|®s and hence (X - T)y = x by the
semisimplicityvof J. We thus obtain that (A § T) | ker ((T|J) "1 (C\\F))
is surjective. | v

We next show that T|J is decomposable. To do this let G and H
be a pair of open discs with G~ C H. Choose an open disc U with G
CUCU CH Then TV '(G3) N T '(C\U) = ¢. Also T '(G7) and
TY"'(C\U) are hulls in ®ncs» and ®ncar is compact. Therefore by
[8, Corollary 3.6.10], there exists S € M(A) such that SY | TV !'(G") =
1 and SY | TV P(C\U) = 0. Set

Fi (TY(TY "1 (CN\G)))~

and

Fo

(TV({? € Oncar = SY(F) # 0}))".
Then it is easily observed that Fi1 C C\G and Fz C H. Moreover set

Ji = ker((TI)""V(CN\Fi)) (1 =1, 2).

-5-
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By the first argument, Ji = Jr(Fi) - (i = 1, 2) and hence J1 and J2
are spectral maximal spaces of T|J such that o (TlJi) CFi (i =1, 2)
by [3, Proposition 1.3.8].  In this case, +J = J1 + Ja. In fact let x
€ J be fixed and set x1 = x - Sx, x2 = Sx, hence x = x1 + x2. By
the definition of F1, we have (TIJ)Y " !'(C\F1) C TV'!(G"), so that
x1 (P) = x"(P) - ST(P)x"($) = 0 for all ¢ € (TIJ) "' (C\\F1). Then xi
€ Ji. By the definition of F2, we have SY | T"'(C\F2) =0, so that
x2 (P) = ST(P)x"(P) = 0 for all P € (TlJ)""'(C\Fz2). Then x2 € Jo.
Therefore the desired conclusion follows from [7, Theorem 2.3]. Also
since JT(F) = ker ({(T{J) "' (C\F)) for F closed in C, it follows from
[5] or [2] that the spectral capacity for T|J is given by
ker ((T]J)""'(C\F)) for each closed set F in  C. ; Q.E.D.
(2) Proof of Lemma 3. Without loss of generality we can assume
that TY|®nay\®a = 0. Let G be an open set in € but fixed. If
G does not contain 0, then TY"'(G) = T "!'(G), so TY"'(G) is open
in the hull-kernel topology from the hull-kernel continuity of - T~ and
the hull-kernel openness of ®a  in O®wm(ar>. Then we may assume that G
contains 0. Choose & >0 such that | A | =2 ¢ for all A € C\G.
Since TY|®ncay\®a =0, it follows that T '(C\G) C {P € ®a :
| T°(#) | =2 e}. Then T I(CN\G) = T""'(C\G) 1is a hull in @a. Note
also that (P € ®a : | T (?). | 2 &} 'is compact, and hence so is
TY"'(C\.G). Then by [8, Theorem 3.6.7], there exists- e € A such that
e"(P) =1 for all ? € TV '(C\G). For each a € A, let pa(x) = ax
x €EA. Set S =1- pue. Then S € M(A) with SY|TV '(C\G) = 0. Let
? be any element of the hull-kernel closure of TY '(CN\G) in ®ncar.
Since S belongs to the kernel of TY~!'(CN\G) in M(A) it follows that
SY(P) = 0 and hence ue"(P) =1, so ? € ®a. In this case P €
TY"'(C\G). Otherwise, there is x € A such that x (P) # 0 and
x ITYV"'(CN\G) = 0 since TY " !'(C\G) is a hull in ®a. Then g x belongs

to the kernel of "TY"!'(CN\G) in M(A), so that .ugx"(¥) =0, hence
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x (P) = 0, a contradiction. Coneequently TV 1 (C\G) is a hull in
DQrear. In other words TY '(G) 1is open in the hull-kernel topoloéy.

1 4 Q.E.D.

(3) Proof of Theorem 5. Suppose that T € M(A) hae the weak SDP.

Let F be an érbitrary elosed set in € and E = T""!(F). Suppose
that fe is in ®a\E such that ’?alker(E) = 0. Choose as € A with
fo(ae) = 1 and set 2@ = T (fe), so Ae € C\F. Since {C\F, C\ {Aa}}
is an open covering of ¢ (T) and T has the weak 2-SDP, it follows that
there exist T-invariant subspaces A1 and A2 of A such that A =
(A1 + A2)", o (T| A1) CC\F and .0'(T| A2) € €\ {1e}. Then there

exist a1 € A1 and a2 € A2 such that a1 + az - ae || <1-/2. In this

case ai"(Pe) = 0 (i =1, 2). Indeed let % € E. Then T°(§) €FC

p (TIA1), and hence there is a bounded linear operator S1"on At such
that (T"(?) - TlA1)S1 = id|[A1. Therefore we have

(T(P) - T)St(ar)) " (¥)

T7(F) (S1(a1)) " (P) - (TS1(a1))"(¢)

= 0'

a1 (%)

whence a1 € ker(E). Since %alker(E) = 0, it follows that ai”(Pa)= 0.
Also eince La € p (TlAz2), there is a bounded linear operator Sz on Az
such that (Ao - TlA2)Ss = idlA2. We then obtain az"(Pa) = 0 by the
séme computation. We therefore have o |
1= [ai"(fa) + az"(Po) - aa"(Po) | < llar + 2z - ao || <12,
a contradfction. Consequently E must be cloéed in. the hull-kernel
topology. ' ‘ B Q.E.D
(4)‘Proof of Lemma 9. We can assume without loss of genereiity
that B contains the identity of X; Then it is sufficienf to show that
the restriction map # : ®x — ®s ; ¥ — ?|B is continuous in the |
hull-kernel topology. To do this let F be a closed subeet of ®s in
the hull-kernel topology. Then {? € O x :.?lker F =0} Caz '(F). Also

since ker F C kerz “L(F), it follews that hull{kerz "' (F)) C {? € O

-7~
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¢lker F = 0}. Therefore = “'(F) is closed in the hull-kernel topology.
In other words, = is continuous in this topology.

(5) Proof of Lemma 8. Since L'(G, v ) is regular, it follows from

[10, Lemma 4.3 (ii)] that fi(G.t ) is also regular. Then the desired

result follows from the preceding lemma.

4. Problems. It will be natural to propose the following two

problens

(1) Is a decomposable multiplier on A continuous on ®ncay in the
hull-kernel topology ?

(2) If every multiplier on A is decomposable, is the multiplier

algebra M(A) of A is regular ?

We note that these questions are, by Corollaries 6 and 7, correct

whenever A has an identity. If also (1) is true, then so is (2).
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