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On some branched surfaces which admit expanding immersions
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Abstract. We deal with the class of branched surfaces K
such that 1) the branch set S . of K is an embedded
circle, 2) all connected components of K S are
orientable and their number is two or threé. We show that
in this class only two topological types admit expanding
immersions. In the proof of the result, the Euler class

of the tangent bundle of - K plays an important role.

0. Introduction

R. Williams [1],[{2],[3] introduced the concept of branched
manifolds and expanding immersions in order to study the dynamics of
expanding attractors. Using his:'own tools, he succeeded in
classifying 1:dimensional expanding attractors. Our final aim is to
study the topological conjugacy classes of 2‘dimensiona1 expanding
attractors, As the first step toward it we propose the following
problem:
Find some topological invariants of braﬁched surfaces which admit
expanding immersions,

As an approach to solve this problem, we consider the simplest

class of them i.e. the class of branched surfaces with branch sets a
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circle.
First of all let us give two examples of expanding immersions.
First take a rectangle [0,1]X[0,2] in the coordinate plane, and take

two disks D1 and ‘D2 whose radii are 1/10 and centers are

(4/5,4/5) and (4/5,4/5+1) respectively. We define the -equivalence
relation among the points in the rectangle; (s,t)~(s',t') & 1)

(s,t) and (s',t') don't belong to D, and D2 , and (s-t)=0,

1

(s'-t')=0 mod 1. 2) (s,t)=(s'",t')ED, or D, . We denote the
1 .

2
. ) £ 3 . * * .

quotient space by this equivalence relation by T . Then T  is a

branched surface whose branch set is homeomorphic .to a circle. Notice

that there exists a canonical projection p:T‘P-*T2 . The dilation by 2

yields a map f:T2—>T2 . Clearly f 1lifts to a map f:T*+T* in a way
that f is surjective. Thus T* admits. an expanding immersion.

The second example is as follows. We regard T2 asha rectangle
[0,1]%x[0,1], and take two disks D1 and D2 in it whose radii are
1/10 and centers are (1/2,1/4) ahd (1/2,3/4) respectively. We define
the following equivalence relation in T2 ; (s,t)~(s",t")Y &= 1)
(s,t)GD1 and (s',t':)GD2 , Or (s,t)GD2 and (s',t')GD1 , and 2t=2t',
sZs' mod 1. 2) (s,t)=(s',t'). We consider the quotient space by this
equivalence relation and denote it by T, . T* .is a branched surface
whose branch set is homeomorphic to a circle, too. The dilation by. 2,

f:T2->T2 , projects down to a map f£:T,»T, via the natural projection -

T2+T* . This shows that T, admits an expanding immersions.
Suppose a branched surface K has a branch set S homeomorphic

to a circle. Then a neighborhood of S is homeomorphic to one of the

following ‘NO' and N.1 . Take two copies of a rectangle IXI , where



I=[-1,1] , and identify the subsets IX[-1,0] of them. (See Figure
1.)

..............

Figure 1.
N denotes the quotient space. We take subsets Ia and Ié ‘in N
which are the images of {-1}xI and {1}xI , contaiﬁed iﬁ‘oné of two
copies, respectively, and let I, and Ig be the images of {—i}XI
and {1}xI , contained in the other of them, respectively. Then N
is obtained by éonnecting Ia with I; and Ib with ‘Ig , Or
connecting I~ with Ié and I, with I; . We denote the former by
NO and the latter by N1 . We define subsets of NO‘ and N1 as
follows. Let JI and‘ J; be the images in NO ‘of two copies of
Ix{1} in two copies of IXI respectively, and let J be the image
in Ny of IX{;l} . in N
Ix{1} and Ix{-1} .

1 » let JV and J7 be the images of

Using NO and N1 , we define the types of S . S is called
untwisted (or twisted) if S has a neighborhood homeomorphic to NO
(or N1 ). | |

The main result of this paper is as follows. We consider the
class of branched surfaces K such that 1) the branch set S of K
is an embedded circle, 2) all connected components of K\S are

) i
orientable and their number is two or three. In this class, only T

and" T, admit expanding immersioms.
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In 81, after giving definitions of branched surfaces and
expanding immersions, a precise statement of our result is described;
§2 and 33 are devoted to its proof. -

The author thanks the refe;ee for suggesting the use of the
Euler class of the tangent bundle éf K. it makes the proof of the

theorem clear and simple.

1. Definitions and the statement of the result
_»In order to define branched surfaces, thfee types of local
neighbprhoods are needed. Let us define:
1) U(1)= IXI , where I is an open intervai (-1,1).
1 2 | '
2) U, ,\=U,; UTU ~ i i i
) (2) (1). (;)/ K whlch means a quotient space of two copies of

1 . p
U(l) s U(l) and U(i) » by the equivalence relation geéerated by

1
1

3 ,
3) U,,\=U,, L ~ i i
) (3) :(2) ‘U(l)/ , which means a quotlent_space of the copy

(t,s)~(t',s") & (t,s)eU y (t',s')EU(%) and -1<t=t'=0, s=s'.
U 3 of U and U, by:the equiﬁalence relation generated by
(1) N eY (2)
(! ' 2 1 1 3 _ ' _at
(t,s)~(t',s") & (t,s)EU(l)C U(2) , (t',s )€U(1) and t—ﬁ , ~l<s=s'=s
0. (See Figure 2.)

(1) Y2 (3)

Figure 2.

U U

Here we have natural maps ‘HZ:U(2)+U(1) and ﬁB:U(32+U(1) such that

. lu j . . e . j .
1| (i) isa natural identification of the:copy U(i) w1;h U(l)
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itself, where i=2 and j=1 or 2, or i=3 and j=1,2 or 3.

Definition 1.[3] A compact Hausdorff space K is called a c’
branched surface if it has a finite familj ‘{(Uj,¢j)} satisfying -

1) K=U Uj ,
J v
2) For each j there exists a homeomorphism gj:Uj+U(i)(i=l,2 or 3)

h that ST, \08.
such Hha d)J (i) 83 . ,
3) For j and j' such that anUj,z ¢ , there exists a ct map
.20, (U.AT, ,(U.,nU.) such that T.,.e¢.=0., .
TvaJ ¢J( 3 Jv)'*d)Jv( J' J) u | J’J ¢J ¢Jv.
We call (Uj,¢j) a coordinate neighborhood and {(Uj,¢j)} a
coordinate neighborhood system of K .

S={x€K; x dose not have a neighbofhood homeomorphic to an open

disk bz .} is called the branch set of K .

As in the case of ordinary manifolds, we define the tangent

bundile TK of X as the quotient space of lJ¢gTU(15 by the natural
J

identification induced by the coordinate change, where ¢§TU(1)
denotes-the pull back of the tangent bundle TU(l) by ¢j . (For
detail, see [3].) For =x€K , p_l(x) is called the tangent space at
x and is denoted by TgK , where p:TK>K denotes the projection
A Riemannian metric on K 1is defined as a positive definite

map, which is induced by p.:¢.TU(1)+Uj naturally.

symmetric bilinear form on TK .
Next, we define a Crmap from a branched surface to a'branched'

r. . s . .
surface, a C immersion and an expanding immersion.
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Definition 2. Let K and L be C'branched surfaces, and
{(Uj,¢j)} and {(Vk,wk)} be their coordinate neighborhood systems
respectively.

1) A map f:K»L is called a Crmap if for any i, j.and k with
f—l(Vk)ﬂU:;z ¢ , the composite

<¢IU) | £

———————————+ -+ -
U £ (Vk)nUJ v U

(1)
is C', where ut —g (U(m))

For a C'map f:K»L , we can define the differential of f , df:
TK+TL , by using the above local representation of £ (See [3]). We
denote deTXK by df . o | |
2) A map f£f:K-L is'called a Crimme{sion if f is a>Crmap and
de:TXK+Tf(X)L is injective for any x K .

3) A map f:K*K is called a Crexpanding immersion if it satisfies
i) f is a Crimmersion,

ii) there exist'numbers a>0 and vw>1 such that for any posotive
integer n aﬁd vETXK , dez(v)uzavnnvu , where MWe il means a
Riemannian metric,

iii) there exists a positiVe integer n such that for any x€K and
some neighborhood U of x , fn(U) is homeomorphic to an open
disk,

iv) the nonwandering set Q (f) of f is equal to K .

Our branched surfaces are more restrictive than Williams'. His
original definition admits more varied types of neighborhoods. But

Williams himself showed that ours are sufficiently general to study
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expanding immersions.

Theorem. Suppose K is a Clbranched surface:such that

1) K admits an expanding immersion,

2) The branch set S of K 1is homeomorphic to a circle,

3) All connected components of K\S are orientable and their number
is 2 or 3.

Then K is homeomorphic to " or T, .

2. Proof of Theorem (1)

In tﬁis section we deal with the case when the number of
connected components of K\S 'is equal to 3. We show that in this
case only T‘q'< admits expanding immersions.b

Assume that .K admits an expanding immersipn f . Let io R il

and KZ be connected components of K\S such that KODJ_ , K13JI

and KZDJ; . For i=0, 1 or 2, we attach BKi to ki , and denote the
obtained space by Ki . (Below, geﬁerally'for an open subspace XCY ,
we denote the one obtained by attachihg the copies of boundary 3X

to X as X" . For example, Ki=ﬁ; .)

We construct manifolds M1 and M2 from K, and K1 , and X

0

and K2 by identifying their boundaries respectively. M

0

1 and M2

are embedded in K by natural inclusions 11:M1+K and 12:M2+K . By

easy calculation, we knbw that HZ(K;Z)QZQZ and is generated by m,=
(11)*[M1] and m2=(12)*[M2] , where [Ml] and [MZ] are the
fundamental homology"classes of Ml and M2 such that they induce

the same orientation on K .
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Lemma 1. Let
(f2“) =am, + B m (f2”) =Ym, + &m
S e B B A= Ypf1p 7 O
Then a s Bn , Y, and Gﬁ 2 0 , and both un+8n and Yn+6n

become large as n becomes large.

Proof. Since g2n is orientation preserving, aﬁ s B Y
and §_ z 0.
n
Let w be the volume form on K whose local representation is

Vdet(gij) dxll\dx2 when the local representation of the Riemannian

metric is I g..dewdxj . Let us denote the areas of M

i » M
Osi, js2 -J

1 2
and K by a(Ml) ,_é(Mz) and a(X) .respectively.
We caiculate the Kronecker product of (on)*mi and w :
<y (£7)ym >= 0 <w,m >+B_w,my> |
=‘aﬁ JMI(Il)*w +8, JMz(lz)*w = a_ *a(M;)+8_-a(M,)
On the other hand, we have | ‘
<y (E5M)gm >= <(£7") w,m >= JMl(det DE)e (1)) 0
> min det(DEZY)_ea(M.) ,
p€M1 P 1
where det (szn)p denotes the determinant of (Don)p for the

orthonormal bases of T K and T n K . Hence we 6btain the
£7(p)
following inequality:

. 2n
qn.a(M1)+Bn-a(M2) 2 min det(Df )p a(Ml) .
pEM;
By Definition 2, 3), ii), the right-hand side of the above inequality

becomes large as n ‘becomes large. Hence we have the desired result

for OLn+Bn .
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For Yn+6n , we can show the lemma in the same way as for

an+B n

Let e(K) be the Euler ‘class of the tangent bundle of X . We

calculate the Kronecker product of e(K) and ml :

<e(K),my>=<e(K), (1) [M; >=<(1]) e(®), [M; [>=<e (M)), [M; I>= x(M)) .
On the other hand, since (fzn)¢e(K)= e(X) ,

2n\* o - 2n B

<e(K),m1>=<(f ) e(K),m1>—<e(K),(f )*m1>—(unx(M1)+8nx(M2) .
Hence we obtain for any n :
Calculating <e(K){m2> , we also have:
By Lemma 1, for sufficiently large n , an+8n and Yn+6n are large.
Then from the equalities (1) and (2), we have only the following two
cases: 1° X(M1)=0; or ‘X(M2)=O , 2° X(M1)>0 and x(M2)<O';

We show that the case 2° cannot occur. In the case 2'; M, idis a
1

sphere S2 and Mé is the Riemann surface Zg”‘of"génus gz2. Assume

the case 2 occurs. First we show that f(Ml) is not equal ‘to M2 .

If f(M1)=M then fIM1 is a covering map from 'SZ to X . But it

2 4
is impossible. So f(Mi)Dle, and it is easy to show (f[Ml)_l(M1)=M1 .

Hence f(M1)=Ml . But, since M1=S2 , the degree of the covering map

f|M, is equal to 1. This contradicts Definition 2, 3), ii).

1

In the case 1°, first, we consider the case (a): x(M1)=O and
X(M2)=0 . Next we deal with the case (b): X(Ml)zo and X(M2)=O .

In the case (a), we can consider two cases: i) KOQD2 and Klezz
T2--D2 o ii) KO“-»TZ—D2 and Kf%szDZ" We show that the case i) cannot
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occur. Assume the case i) occurs. As (flMi)fl(KO) , for i=l or 2, dis
mutually disjoint disks embedded in Mi , Mi\(flMi)_l(KO) is
connected. So we have that fz(M1)=M1 and f2(M2)=M2 , because f is
sur jective. Hence fZ(KO)DK0 . This contradicts Definition 2, 3), ii).
In the case ii) K becomes T* .

In the case (b), by the equalities (1) and (2) we have an=1
and Yn=0 . Then, since*f%2= Gnmz., we know that f(Mz) is equal to
M, . If, for =x€K

2
Because fn(f(x))eM2 for any integer n2l1 . Hence E?Kl)CKl .

1 f(x)€M2 , then x 1is not a nonwandering point.

Moreover, since an=1 s qul is injective. This contradicts
Definition 2, 3), ii). So, in the case (b), we have no branched

surface which admits expanding immersions. This completes the proof.

3. Proof of Theorem (2)

In this section, we consider the case when the number of
connected components of = K\S is two. In this case, there aré three
types:.of branched surfaces, two of which have untwisted branch sets
and one of which has a twisted branch set.

. First we consider branched surfaces K which have untwisted
branch sets. Let -Kl and R2 be connected components of K\S . Two

types of them are as follows: 1) RIDJ+ and Jt , and ﬁzlj_ , 2)

1 2
+
9Hg -

In the case 1), we show that only T, admits expanding

ﬁIDJT and J , and K

immersions. Set K1=ii and’ K2=ﬁ§ . We connect K1 with two copies
of K2 by identifying their boundaries naturally, and denote the

obtained space by M . Then M has a differentiable structure such

10



that the natural projection m:M K becomes an immersion. We

construct a 1lift T:M M of £:XK +K as follows. For

1

X€M-T 9f~l(K2) , set f(x):ﬂ_lef-m(x) . For each connected component

K of ﬂ_l-f_l(Kz) , we take a sufficiently small neighborhood L of

R . Then fem(f) - is uniquely lifted to .M so as to be continuously

connected with the image of M—Wﬁk f—l(Kz) . It is clear that T  is

an immersion, and then ¥:M »M is a covering map whose degree is

greater than 2., Hence we conclude that ‘M is a torus, and szDz

1kT2f(ﬁ%U52) . By Definition 2, 3), iii), two copies of K2 in

M have the same image for T . Then K is obtained from M by

and K

identifying two copies of K2 by an orientation preserving
Cldiffeomorphism. It follows that K=aT, ..

Next we show that in the case 2) theré exists no branched
surface which-admits expanding immersions. Assume K admits an
expanding immersion f , and we will deduce a contradiction. Set

M=K\K, . Then M is a manifold. Remark that K1 is orientable, but

2

M is not necessarily orientable.
Lemma 2. f(M) is equal to M .
Proof. First in the case when M is orientable, we show the:

lemma. We know easily that H2(K;Z)_'-:l.and it is generated by

m=1,[M] , where 1, ‘is the induced homomorphism of the inclusion

35

1:M »K , and [M] is the fundamental homology class.of M . Here we

assume that f(M)#M. . Then £(M)=K ..Take XEK2 , and consider the

following .commutative diagram:

11
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Hy (1) ——— > Hy(K; D)
p} = la

HZ(M,M\f_l(x);Z) ., Hy(K,K~(x};2)

First we have qef,(m)=0 . Remark that we can define an orientation
on K2 ‘compatible with the orientation of M, and that f is
orientation preserving or reversing. Then f;;p(m)=f(#f—1(x)nM)°Ox ,
where OX is a generator of HZ(K,K—{X};ZD . By the assumption,
#f—l(x)an 0 . This is a contradiction. Hence £(M)=M .

" Next we assume M is nonorientable. We take the orienfation
covering of K , m:R #K . We can construct it in the same way as for
ordinary manifolds. We take a 1ift T:K >k of f . Notice that K
is a branched surfaée whose tangent bundle is orientable and ¥ can
be taken as an orientation preserving immersion satisfying oefeo=f ,
where O is the nontrivial covering transformation of - m:K K . Let
M:ﬂ_l(M) . Then M 4is an orientable manifold.

We know HZ(K;Z)':‘ 287, and we take a pair of generators as

follows. We take submanifolds K(i) and K(f) -in ¥ ~such that

2)
1

submanifolds K(;) and K(g) such that ﬂ(K(é))=ﬂ(K(§))=K» . Set

@Dy @@yan, Dok @aft and xPnx@arl(s) | and take

L1=K(1)UK(§)UK(§) and L2=K(%)UK(é)UK(§) . We choose a pair of

generators 11 and l2 of H2(L1;Z) and HZ(LZ:ZD such that
11+12=m , where 11=(11)*11', 12=(12)*12 and m=1,[M] , and 1 :Ly
K,

12:L2 +K and 1:M +R are inclusions. Then Il and 12 are
generators of HZ(K;Z) . Let f*ll= OL'11+B'12 and 5*12= Y'11+6'12 .
Since 0+fe0=f , we have 0=8 and B=y . Then I m= f*il+f*12=

(a+B)'(Tl+12)=(a+B)'ﬁ . Hence in the same way as the above case, we

12
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obtain that F(M)=M , and £(M)=M .

By Definition 2, 3), iii), for some positive integer n  and

x€K, sufficiently near S , there exists  y€M such that

2

fn(x)=fn(y) . Since f(M)CM by Lemma 2, for any positive integer m ,

fn+m(x)=fn+m(y)€M . This contradicts Definition 2, 3), iv).

Finally we consider the last type, each of which has a twisted

branch set. We also assume that K admits an expanding immersion £ .

Let Rl and K2 be connected components of  K\S such that K13J+
and K.,3J , and let ,KT ‘and ‘Kg be connected. components of K\ﬁ

NCR and KNCﬁ \, where N 1is a neighborhood of S

2

such that K1 1 2Ky ‘
homeomorphic to N1 . Easily we have HZ(K;ZMEZ, and denote a

generator by [K] .

Lemma 3. Set fzn[K]= an'[K]’. Then as n becomes large, a

becomes large.

Proof. Consider the following commutative diagram:

P 0
Ar ‘ CAr ' :
2 171
H2(K,N;ZD o : ; Hl(N;Z)
1 Tl
. o 3.8d 1

N RN o N NPT % N N,
H2(K1,BKl,Z).&HZ(KZ,BKZ,Z)-—>H1(8K1,l)@Hl(aKzr,Z)

N
1.

and Kg such that they induce the same orientation on K induced by

Take fundamental homology classes _[K?,&KT] and [Kg,aKg]_ of K

[K] . Moreover let [S] be a generator of H1(55Z), such that [S]=

13
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N N . N N N ~ Niy :
rlelleaz[KZ,BKz] . Since 1o11~8 QBZ([Kl,8K1]+2[K2,3K2])=~2[S]+2[S]

=0 , we have Jer -12([K1,3K ]+2[K 3K2])=0 . Hence, p[K]=

N 4N
r2o12([K1,3K1]+2[K2,3K2]) .

For x€K, such that f (x)nS— o , set {yl}k(l) f 2n( )nK1
and {y }k(2) ( )nK . We consider the commutative diagram:
(£, ‘
Hy (K3 Z)— . — LD
Pl (EEH) lpz
k(1) k(2) > Jx
[ ®H (Kl’K {x }s Z)] ( @ H2(K2,K2—{xj};ZD]*-————+ HZ(K,K—{X};Z)

j=1
— —— k(l) L k2

Then (f )* pl[K]— (f )*[ . 0. it 2 21 O?]:(k(1)+2'k(2))'0x , since
i= j=

N apNi N AN 1 2
p[K]:rzol [K1,8K1]+2[K2,3K2]) » where O and Oj denote

o
generators of H2(K1,K1-{xi};l) and H2(K2,K2—{x§};ZD respegtiyely,
and OX denotes a generator of H2(K,K—{x};2) . On the other hand,

P, (£2")4[K]= o_+0_ . Hence we have o = k(1)+2k(2)z #£7°"(x) . By
Definition 2, 3), ii), the right-hand side of the above inequality

becomes large as n becomes large. So we complete the proof.

We calculate the Kronecker product of [K] and e(K) . First,
since (£ e(K)= e(R) , <e(K),[KI>=<(£2™) e(K), [K]>
=<e(K), (£°M),[K]>= o_<e(K),[K]> . By Lemma 3, we have <e(X),[K]>= O .
On the other hand, in the same way as the proof of the index theorem
<e(M),[M]>= x(M) for an ordinary manifold M , wevcalculate
<e(K),[K]> by using a vector field X with finite singularities such
that the indices of X|K1 and XIK2 are equal to .x(Kl) and x(Kz) .

As p[K]= ryel [K1,8K1}+2[K2,8K2]) , we have <e(X),[K]>=

o

14



X(K1)+2X(K2) . Hence X(K1)+2X(K2) must be zero, but X(Kl) is odd
since K1 has one boundary circle. It follows that in this case we

have no branched surface which admits expanding immersions.
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