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Toric ASL Domains
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Atsushi NOMA Waseda University

Abstract. Since ASL(algebra with straightening laws) was axiomatized,
several conjectures have been proposed. The purpose of this paper is
to show that three conjectures hold true for graded toric ASL domain,
namely the normality of ASL domain, the Cohen-Macaulay property of
ASL domain, and the Cohen-Macaulay property of poéet (partially

ordered set) underlying Cohen-Macaulay ASL.

Introduction. Since algebra with straightening laws (an ASL, for
short) was axiomatized by [Ei] and [DEP], several conjectures
proposed: D.Eisenbud [Ei] conjectured thatAevery ASL domain on a
wonderful poset is normal with rational singularities. T.Hibi and
K.-i.Watanabe conjectured that every ASL domain is Cohen-Macaulay,
which is implicitly written in [HW]. T.Hibi [Hi2] conjectured that
every poset underlying Cohen-Macaulay ASL is Cohen-Macaulay.

The purpose of this paper is to verify these three conjectures for
graded toric ASL's. A graded toric ASL is a semigroup ring which is a
graded ASL.on a poset consisting of the system of generators of the
semigroup. Some of these rings were previously considered in [WaZ2]
and [Hi1].

Our main results are the following:

Theorem 4.1. A graded toric ASL over a nmormal ring is normal.
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Theorem 5.2, A poset underlying a graded toric ASL is Cohen-Macaulay.

Theorem 4.1 can be viewed as a sbecial case of the conjecture
concerning the normdlities of ASL domains [Ei], although posets
.underlying graded toric ASL's are not necessarily wonderful. To prove
the theorem our assumption "toric" is essential. In_facx there exist
non-normal Gorenstein homogeneous‘ASL domains on wonderful posets‘
over a field [HW]. At this symposium the author announced theorem 4.1
as a conjecture, except in the special case(homogeneous and posets of
rank<3), and also gave an approach to this problem. Although the
conjecture was verified by M.Miyazaki with a different method after
this symposium, we here give a proof of the theorem along the
approach.

Theorem 5.2 can be viewed as a special case of a combination of two
conjectures on the Cohen-Macaulay properties of ASL domaips and the
Cohen—Mécaulay properties of posets underlying Cohen-Macaulay ASL's
[HW][HiZ]. Without our assumption "toric", the corresponding
conjectures are still dpen, as far as the author knows.

The Cohen-Macaulay properties of graded toric ASL's, corresponding
to the second conjebture, follows from either of two above theorems
as corollary. |

To obtain these results, first we give a criterion for a semigroup
ring with partially ordered generators of the semigroup to be a
graded ASL in terms of cOnfiguration of an embedded poset in a vector
space over R (8§2). in our toric case the posets are naturally
embedded in vector spaces over R. These posets are more relevant to
our study than posets represented as Hasse diagrams. Using the
criterion, we study the structure of the semigroups_generated by

posets underlying -graded toric ASL's and the combinatorics on

-2 -
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embedded posets in vector spaces over R(83). This allows us to use
Hochster's criterion for the normality of semigroup ring (8§4) and a
well-developed theory of Stanley-Reisner rings (8§5).

For lack of space we omit the further investigations of the
homogeneous toric ASL domains and their classification in lower

dimensional cases. These results will be given elsewhere.

Acknowledgment. The author would like to express his gratitude to
Professor Kei-ichi Watanabe for valuable suggestions and continuous
encouragement during the preparation of this paper. He would also
like to thank Professor Mitsuhiro Miyazaki for informing him of

another proof of theorem 4.1.

§ 1. Definition of Graded Algebra with Straightening Laws and Graded

Toric ASL

First we introduce a definition of graded algebra with
straightening laws.
Definition. Let S be an algebra over a commutative ring k and T c §
a finite subset with a partial order <, called poset for short.

A product of the form 51-'~£m, m € Z Eie T such that ils--~s £

>0’
is called a standard monomial. S is a graded algebra with

m

straightening laws, if the following

conditions hold:

(Hop) 8 = @ s, is a graded k-algebra such that Sy = k, T consists
i> 0

of homogeneous elements of positive degree and generates S as a
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k-algebra.

(H,) The standard monomials are iinearly independent over k.

(H,) For all incomparable £,v € T, the product £y has a
representation
(=) Ey = 2 auu, aue k, nu standard monomial,
satisfying the following condition: every u contains a factor ¢ € T
such that g&<&,g&¢<v (it is of course allowed that £v = 0, the sum
z auu being empty).

When 10 c Sl we call that S 1is homogeneous. When the right hand

sides of relations (*) are 0's, we call S 1is discrete.

We define some terminology on an abstract poset T.

Definition. A chain of T is a totally ordered subset. The length of a
chain is the cardinality of the chain minus one. The rank of the
poset T is the maximal length of chains in n..The height of an
element geﬂlis the maximal length of chains descending from & in T.
When all maximal chains in T have the same length, we call that the
poset T is pure. We denote by K(m) the-abstract simplicial complex
consisting of chains of W and by iK(U)l the geometric realization of
K(m).

We summarize some fundamental facts on a graded ASL ( S,7W ). For
the proofs of facts below and further discussion of this notion the
reader is referred to [BrVe] and [DEP]. Note that'our'graded ASL is
called a graded ordinal Hodge algebra in [DEP].

(1.1). When every element of T is not a zero-divisor the poset T has
a unique minimal element.
(1.2). A unique minimal element in T is a non-zero-divisor.

(1.3). dim S = dim k + rk W + 1.
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(1.4). There always exists a discrete graded ASL on M. Hence it is
isomorphic to S as k-modules, but has discrete straightening
relations (i.e. the right hand sides of straightening relations ()
are zeros). We denote it by SO.

(1.5). S is reduced if and only if k 1is reduced.

Now we define graded toric ASL.

Definition. Let A be the Laurent polynomial ring with
r-indeterminantes xl,“~,xr over a commutative ring k. By a usual

Laurent monomial we shall always mean a term of the form

lhl‘-sxrhr, where hl,~-~,hr are integers. Also by a Laurent

polynomial we mean a linear combination of usual Laurent monomials.

X

We denote by #(r) the set of Laurent monomials in A and by ﬁ+(r) the
set of Laurent monomials of positive degree in A. Let T C ﬂ+(r) be a !
finite poset. Then we set S = k[T] ¢ A and call it a g%aded toric
ring with ordered generators. When a suitable change of degree of S
makes a graded toric ring homogeneous, we'call S is homogeneous. A
graded toric ring with ordered generators ( S,7T ) is called a graded
toric ASL if S is a graded ASL over k on T. And we sometimes call its
underlying poset a graded toric ASL poset. By definition the
commutative ring Kk might as well be taken to be a field or the ring‘

of integers.

§ 2. Characterization of Graded Toric ASL Posets

Let K,A,#(r), and ﬁ+(r) be as in § 1. Under the map log, #(r) is

mapped isomorphically onto the group Zr as Abelian groups:

- 5 -
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log: - H(r) _— 7t < rY
h h r
LIRS . ———
X, 1 X, r | zi=1 hilog(xi)
where 1og(xi) is the symbol representing ( O,...,O,%,O,...,O ). We

.denote by exp the inverse map of log.

In this section we shall give conditions for a graded (resp.
homogeneous) toric ring with orderd generators ( S,7T ) to be a graded
(resp. homogeneous) ASL in terms of configuration of log(Tm).

Throughout this paper we assume that log(TW) generates Z¥ as an
Abelian group and that dim S = r + dim k, which are guaranteed by the

following lemma:

Lemma 2.1. Let ( S,m ) be an (ntdim KkK)-dimensional graded toric ring
with ordered generators over k of dim k<+=. Then the vector subspace
Vv of RY spanned by log(W) has dimension n. Moreover S 18 homogeneous
if and bnly if there exists an (n—1)-dimensional affine subspace ptt

containing log(m) and not containing O.

Proof. Set S'= k[{B,B—l}]. Since dim S = dim S'= dimRV + dim k, we
Bem

have dim V = n, which proves the first part. By definition S is
homogeneous if and only if there exists an affine hyperplane H not
contairning O and containing log(T). We take PPl 46 H A V in casé S

is homogeneous.

Proposition 2.2. For a graded toric ring with ordered‘generators
(s, ) the following conditions are equivalent:
(a) ( S,m ) satisfies the condition (H,).
(b) The Finite poset log(m) c R' satisfies the following condition:

(Hy') For any two distinect chains 1og(11)< e < 1og(1t) and
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log(ul) < e < log(us) (tzl,szl) in log(W), we have
rel int( 3,1 R (10g(x;)) a rel int( 5,5,R jlog(u;)) - 4,

where rel int(-) denotes its relative interior.

Moreover if S is homogeneous the condition (H,') is equivalent to
the following:
“(H{") For any two distinet chains log(xl)< e < log(lt)-and
log(uy) < +-- < log(uy) (t21,s21) in log(m), we have

rel int(llog(xl),"~,log(1t)l) N rel int(llog(ul),~--,log(us)I) = ¢
where |log(xy),---,log(x)| denotes the conver hull of log(x;)
(i=1,---,t).
Proof. We have only to prove equivalence between (a) and (b) in case

S is graded. First note theffollOWing lemmas.

Lemma 2.3. Let ( S,T ) be a graded toric ring with ordered generators
satisfying the condition (H;) and 1 <---< xt be a chain in T. Then
log(ki)'(i=1,'--,t) are linearly independent over R.

Proof. If 1og(Ai) (i=1,--+,t) are linearly dependent, we have a

non-trivial relation Ziflailog(li) = 0, a;€ Z because log(xi)v

(i=1,---,t) are contained in 7Y . The relation is mapped by exp to thef
relation m A?i = T Ag—aj), which contradicts (H;). Hence
i:ai>0 j:aj<0 J

log(ki) (i=i,"',t) are linearly independent.

Lemma 2.4. Let ( S,T ) be a graded toric ring with ordered gemerators

" satisfying the condition (H;') and A << Ay be a chain in T.
Then log(a;) (i=1,---,t) are linearly independent over R.
Proof. By induction on t the caée of t=1 is obvious. If log(ki)

(i=1,--+,t) are linearly dependent for t>1, we have a non-trivial




195

relation 21 2184

T c 4 (r) both {log(x;)},

1:ai>0 and {log(l )},

a.<0
Jia;

log(l )= 0, a;€ Z. By induction and the assumption

are linearly

independent and non-empty. Therefore the relation implies that

rel int( 3 R olog(x;)) nrel int( 2 R

1;ai>0 7 J: aJ<O

20log(xj)) Z @,

which contradicts (H;'). Hence log(xi) (i=1,---,t) are linearly

independent over R.

We now'go back to the proof of (2.2). Since T consists of usual

Laurent monomials in A, which are linearly independent over Kk,

equivalent to the following:

(a) is

(c) The forgetful map from the standard monomials to thé usual

Laurent monomials is injective.

Equivalence between (c) and (b) results from (2.3), (2.4), and the

following lemma, which concludes the proof of (2.2).

Lemma 2.5. For any two chains in Mo Ag<eee< Ay and'ul<--~< i}

(t>1,s21) whose log's are linearly independent respectively,

]

following conditions are equivatent:

(1) There exist positive integers hi (i=1,++-,t) and m, (j=1, -

J
h h,_  _ m, . m .
1 1 At»t = 1 LS in S.

such that x s

(2) U:= rel int( 2 log(x )) n rel int( 2 S

i=1 20 =1 20

empty.
Proof. (1)=>(2): Trivial. (2)=>(1): By the rationality of the

and log(uj), U contains a rational point. So (1) follows.

Proposition 2.6. For a graded toric ring with ordered generat

the

log(nj)) i8 not

log(li)

ors

« S,m ) satisfying (H;), the following conditions are equivalent:

(a) ( S,m ) satisfies (Hy).
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(b) The finite poset log(WN) satisfies the following:
(Hy,') For any incomparable log(u), log(v) in log(W) there exist
1og(€1),...,log(&m)‘in log(m) such that.log(ﬁl) £-+-Z 1og(§m),
log(n)>log(&,), log(v)>log(f,), and log(u) + log(v) = Zifllog(ﬁi).
Moreover if S is homogeneous, (H,') is equivalent to the following:
(H,") For any incomparable log(v), log(u) in log(m), there exist
1og(£l), log(iz) in log(n) such that log(&l) < log(&ZL

1og(&1) < log(v), log(El) < log(n), and‘»
' r-1

1 1 o1 1 _ )

—5—log(v)+ —5—log(u) = —5—log(E )+ —5—log(g,) in P
Proof. (b)=>(a) is trivial. (a)=>(b) is almost trivial. But note that
in the right hand side of each straightening relation in (H,) exactiy

one standard monomial appears, under the condition (H,).

The following examples illustrate (2.2) and (2.8).
Example 2.7. The poset in Fig.l is a homogeneous toric ASL poset. A
homogeneous toric domain with the partially ordered generators in
Fig.2 satisfies (H,) but does not (Hl). AAhomogeneous toric domain
with the partially ordered generatoré in Fig.3 satisfies (H,) but
does not (H,).

Posets of rank 2 in'M+(3)

, .
Xz XYz \xr?
zf// 7% Y- Ly

Fig.2 ’ Fig.3
hte=0 ht Q=1 ht X=2

3
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§ 3. Combinatorial Aspects of Graded Toric ASL Posets

Let ( S,m) be a graded toric ASL of dimension r + dim k. In this
section we study the combinatorics on log(m) & RY.

We adopt the following notation,'to be held throughout this paper.
Let « be a unique element of ht O in T (1.1). Let {0,,-++,0_} be the
simplices consisting of maximal chains in log(T) and K(log(n)) be the
set of simplices whose vertices consist of elements of éhains in

log(m) (2.2). Set Q = olU'-‘U O We denote by T the cone joining 0

to all points of v € K(log(m)). The cones T are simplicial strdngly
convex cones by (2.3) and (2.4), where a strongly conver cone is a

convex cone without linear subspace of positive dimension. Set

~

Q = Elu"~u gm' We denote by ¥(K(log(TmW))) the system of cones <,
r-1

t € K(log(m)). Setting ¢ = 1.c.m.({ degs }Ben)’ we denote by H the

affine (r-1)-plane spanned affinely by { (c/dégB)log(B) }BEH' Let ¢

r-1

be the projection from- 0 to H which maps Q homéomorphically onto

its image. Of course we have il pr-l

and ¢(Q)=Q in case S is
homogeneous. For further definitions on convex cones the reader is

referred to [0d2].

Lemma 3.0. The composition of the forgetful map in (e¢) of the proof
of (2.2) and the map log |

{ the standard monomials } _— q n Z*-
- ¢hy .. D t
g = §l 1 §t t [———— Ej=lhj10g(§j)
R T

induces two bijectirms:

_10_
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{ the standard mqnomials'}/~ 4———4———+ : Qn gl
h.
g P oo le —— 3,5 —L10s(s))
(Eihi)
{ the standard monomials }/~ —— ¢(Q) n @r
, h. c
§lh1 §tht |— 5.t ] log (%)

J=1

| (Z;h;) (deg §j)
where, for standard monomials ¢ and &, & ~ £ denotes that - &h for
some positive integers n and h.

Prodf. Trivial.

Lemma 3.1. ¢(Q) is a conver polytope. Moreover Q is a strongly
conver cone in RF.

Proof. For the density of m(Q)n@r in ¢(Q), we have only to show that
ap+(1-2)q belongs to w(Q)ﬁQr forvp, q € w(Q)h@r and 2€[0,1InQ. It is
clear from (3.0) and (H,'). Since

Q= R o0(Q:= { ap : x€R

>0’ pee(Q) }, Q is strongly convex.

Lemma 3.2. For any simplices < € K(log(m)) such that

1 T2
tlﬁ T, # @, rln T, is a face of T and T,

simplicial complexr with |K(log(m))|=Q and ( RY, Z(K(log(m))) ) is a

Therefore K(log(m)) is a

finite rational partial polyhedral decomposition.

Proof. Set Ver T, = {1og(§l),---,1og(§t)},

Ver T, {1og(ul),-‘-,log(ué)}, and
Ver t, N Ver t,= {1log(%.), ++,log(%.)} = {log(u.), -+,log(p,)},

where Ver(-) denotes the set of its vertices. Then we claim that

llog(&.,),-+-,1l0og(g.)| coincides with t.n t,. If we have
1l . 1h : 1 2

TN T, 2 |log(g.), +-,log(t,)| there exists a rational point
1 2 . 11 lh

....11_
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p € (t,n ©,\ [log(%.), --,1log(%.)]|) n @, because of the rationality
1 2 ll lh . ;

of Ver t, and Ver rzﬂ Then p has two representations

P = Ziﬂpxilog(gi), I, € {l,---,t}, x;€@  for all i€l

p = EjEJpx.log(uj), J {1,:--,s}, Xj€®>0 for all jer,

J

mn

p

which imply rel int( 2 Rzolog(gi)) N rel int( 2 R_.log(wm.)) is
. : >0 J
1EIp Jer

non-empty. By (H;'), we have {log(§,)}, ={log(nj)} which
. p

jeJ’
J&p

contradicts the choice of p.

Proposition 3.3. For a simplezx o,

i whose vertices consist of a marimal

chain in log(W), we have dim oy = r-1. Hence a graded*toric ASL
poset is pure.

Proof.‘If dim o, is smaller than r-1 then there exists an element
1og(§) in log(m) not belonging to the vectdr space spanned by o4
because at least one’(r—l)—dimensional simplex exists by (1.3). Fix a
rational point p of rel int(@(ai)). Since rational'points densély
exist on the segment pe(log(Z)), we have a sequence of rational
points converging to p on the segment. Let Q(oj) be a simplex
containing infinitely many points of the sequenée. It contains p by
the closedness. By (H;'), Q(oi) must be a proﬁer face of w(aj), which

contradicts the maximality of the chain ver oi.

Lémma 3.4. Let‘oi be a simplém of nazinal dimension
|log(a)=log(§1),-a:,log(gr)| in log(m) and tet L be the vector
subspace of R' spanned by t=l10g(§2),“',10g(§r)|. Then L N Q i8 an
(r-1)-dimensional face of 5! |

Proof. We claim that L is a supporting hyperplane of the convex cone

- 12 -
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Q. In fact if there exists an element of log(T) on the opposite side
of log(wa) with respect te L, using the same argument as in (3.3), we
have a simplex oj (of maximal dimension) adjacent to Oi with T as a
commoh face. This contradicts uniqueness of the element of height

zero in (1.1). Hence L is a supporting hyperplane'carried by Lnﬁ.

Lemma 3.5. Let Fj be a j-dimensional face of Q. Then the subset

an log(m) of log(m) with the induced order’from log(m) satisfies the
conditions (H,') and (Hy'). Hence o log(ni i8 a graded toric ASL'.
poset of rank j-—1.

Proof. By induction on the dimension of Fj, we heVe only to prove it

in the case of dimension r-1. Clearly pr-1

N log(m) satisfies (H,;").
elements of log(TN) exist only on the same side of L or on L, for any
incomparable pair log(v) and log(u) on L, log(v)+log(n) is
"straightened" by some elements of log(T) contained in L. Hence

r-1

|

Let L be the supporting hyperplane carried by Fr_l. Since all
|

7 |

F N log(m) satisfies (H,'). |

§ 4. Normality of Graded Toric ASL Domains :

In this section we shall prove the normality of a graded toric ASL |
domain ( S,7T ) over a field k (or a normal ring k). As we have
already assumed in §2, log(mW) generates the. free Abelian group

7Z¥= log(#(r)) as a group.

Definition. Let M c Z° be a finitely generated semigroup generating
Z" as a group. We say that M is saturated (or mormal) if the

condition jm € M, where j is an integer > 1 and m an element of Zr,

- 13 -



implies m € M.

Theorem 4.1. Let (. S,m ) be a graded toric ASL domain over a field
k (or a normal ring k). Then the Semigroup M’generated by log(m) in
Z¥= log(#(r)) is saturated and S is normal.

Proof. First we prove fhe_saturation of M, Let m € y A and jm € M for
some positive integer j. Since jm € M c Q, m belongs to an
(r-1)-dimensional cone 5t=llog(ul),'-~,log(,ur),l~ € ¥(K(log(m)). .On .
the other hand, m also belongs to Zr= M + (-M). So we have

m= 2 aglog(B) - 2 bylog(h)
Bem Bem
where a, € Zéo and bB € ZZO. Since 2§=1 1og(ui) € rel int(gt),
an aBlOg(B) + n'§§=110g(ui) and Bgn bslog(B) + n~§§=110g(ui) are

contained in o, for a sufficiently large positive integer n. By

t
(3.0) and (3.1) we Have

m (2 aglos(s) + n-3%_ log(n;)} - {Bg‘n bglog(B) + n~§:§=lk108’(.ui)b}
= 3j_,hjlog(n;) - Z;_jm log(n,)

for some positive integers h; and m;. Since jm € M n Et and Et
is simplicial, j(hi— mi)‘(i=1,~j~,r) must be non-negative integers,
hence hi— mi 20 for i=1,---,r. Therefore we have

_ } | ’ ~
m = Zi=1(hi mi)log(ui) €EMNo, cM.

t
By the well-known fact on semigroup rings (c.f.[Ho], or [0d 1,2]),
the semigroup M is saturated if and only if the semigroup ring k[m]

is normal. Therefore S is normal.

Remark 4.2. To prove the Saturation of M in (4.1) we needs (3.0),
(3.1), and (H{'") only, which correspond in our toric case to the

| condition (ASL—l)'in another definition of ASL appeared in [Ei]. For

- 14 -
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another proof of (4.1) in this direction, see [Mi] for details.

Remark 4.3. In the proof of (4.1) we have also shown that any maximal

chain log(ul)<?-*<log(ur) in log(m) is a basis of ZF= M + (-M).

Corollary 4.4. A graded toric ASL over a field k (or a Cohen-Macaulay
ringl is Cohen—ﬁacaubay.

Proof. This follows from theorem 1 in [Ho].

§ 5. Cohen-Macaulay and Gorenstein Properties on Graded Toric ASL .

Posets‘

In this section we shall show that a graded toric ASL poset is
Cohen-Macaulay. And we shall give a suffiéient condition for a graded
toric ASL poset to be Gorenstein. To do them we use the theory of

Stanley-Reisner rings.

Definition. Let k be a field. Let A be a finite simplicial compleX

and Ver(A)={xl,-‘-;xn} be the set of vertices of A. Set
kl[Al:= k[xl,---,xn] / IA’ where X4 (i=1,---,n) are considered as
indeterminantes over k and

IA= ( Xil... Xis . 1l<...<ls, Ixil"..’xisl not belonging tg A ).

We call this ring a Sftanley—Reisner ring of complex A.
If ( S,m ) be a graded toric ASL domain over a field k, by (1.4)
‘and (3.2), S0 is a Stanley—Reisner ring of complex

K(log(ﬂ));K(w(log(n))) which realizes geometrically an

_15__
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(r-1)-dimensional combinatorial manifold sz(Q).,Concerping Q and a
unique element log(o) of height zero, we have two cases by (3.2) and
(3.4):

Case 1I: log(ua) € int(Q) and log(T-{a}) c 3Q.

Case II: log(a) € 9Q, i.e. log(m) c 2Q,

where int and 9 denote the interior and the boundary of a topological
space. Since the star of |log(a)| in K(log(m)) is just K(log(m)), the
link of |log(a)| in K(log(m)) coincides with the simplicial
subcomplex A of K(log(mW)) consisting of the simplices without log(a)
as their vertices. By the definition of combinatorial manifold we

have:

Lemma 5.1, (a) In the case I the geometric realization |lA] RY is
homeomorphic to an (r—-2)-dimensional sphere Sr_z.
(b) In the case II the geometric realization |a] c R is homeomorphic

to a closed (r-2)-dimensional ball BY 2

Theorem 5.2. Let ( S,T ) be a graded toric ASL domain over a field k.
(a) In the case I the poset W is Gorenstein (i.e. S, is Gorenstein) .
Moreover S is Gorenstein.

(b) In the case Il the poset W is Cohen-Macaulay (i.e. S is
Cohen—Macaulay). Moreover S is Cohen-Macaulay.

Hence a graded toric ASL poset is Cohen—Macaulay.

Proof.(a) Since a unique minimal element ¢ is a non-zero-divisor, Sov
is Gorenstein if and only if .SofaSO is Gorenstein. Since the
discrete ASL SO/aSOz(S/aS)O is isomorphic ‘to the Stahley—Reisner'ring
k[A], we have reduced to showing that k[A]vis Gorenstein. It follows

from (a) of (5.1) and corollary 5.2 in [Stl] that k[A] is Gorenstein.

- 16 -
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This implies, using corollary 7.2 in [DEP], that S itself is
Gorenstein.

(b) By the same argument as in (a}, So is Cohen-Macaulay if and only
if k[A] is Cohen-Macaulay. It follows from (b) of (5.1) and corollary
3.2 and theorem 3.1 in [Mul] that k[A] is Cohen-Macaulay. Therefore
SO is Cohen-Macaulay. This implies that S itself is Cohen-Macaulay by

corollary 7.2 in [DEP].
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