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ON UNIVALENT FUNCTIONS IN MULTIPLY
CONNECTED DOMAINS*

Weiqi Yang (dbxtmp 1 4 22)
Department of Applied Mathematics
Beijing Institute of Technology
P.O.Box 327 , Beijing ,China

The present article gives an account of some results on univalent functions in multiply
connected domains obtained by author , The contents are

1 . Two very simple proofs of Villat § formula

2 .Schwarz § formula ,Poisson 5 formula and Poisson-Jensen formula in multiply con-
nected domains

3 . Differentiability with respect to the parameter of analytic function family containing
one parametric variable

4 Variation theorem and parametric representation theorem -
5 . Extremal problem of differentiable {unctionals

1. TWO VERY SIMPLE PROOFS OF VILLAT SFORMULA

By Schwarz § formula of analytic functions in disks we obtain

“Lemmal .l Let B={z:|z—a|<r}, E={z:|z—a|>r ), then

((f(@)—ilm (f@)) for (i)
. | =@ +ilm ((0)) for (ii)
i . re’+ (z—a)
| Re(f@a+re?))— 2" g = _
2nJ; e (Ca+re")) TG ‘ —f@}-zfa)—ﬂm(ﬂan for (iif)

—_ 2
T @+ ) +ilm () for (iv)

here (i) : (is analyticin B and continuous in B ,zeB:
(ii) ; fis analyticin E and continuous in E ,zeE ;
(iii): fis analyticin B and continuousin B , zeE;
(iv): lis analyticin E and continuous in E , zeB.

By the Schwarz basic theorem of Dirichlet § problem we obtain
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Lemmal 2 LetU ((})bé integrable with period 2n and continuous at (=, . Then

P n [ ’ b
lim '-'—‘f U (0)Re (i’—e—“—> dg=+U (@©,),
n 2n . pe

i)
2 =pc'’0

the sign of the right hand is positive wheri z lends to pe™ inside |z |= p non-tangentially
and negative when outside ,

Villat § formula (see[6] ,[7] ) Let fgz)zu @)+iv ) beanalyticin q<|z|<1 and
continuous in q <|z|< !, Then

‘ ~ln
2 .
(@)=Y ._.217[ f u,) K, (z.£,)d0-C+iD, q<|z|<]I (r.n
0 :

where §,=¢¥ ,¢,=qe¥,and

sy 20 (o) 2\ 2wz
Kibod===4 C(ni tog 4) 7 87

§+Z oy qzk . Z Y k
AR RETE [(?) _(—%L” v
K, @.&)= =K, @.8); (r.3)

here { (u)is the Weierstrass function with real and imaginary periods 2¢ and 2¢ “satisfying

@ - 1 log q; C,D are real constants with
Iw I/
i 1 f(z)
= 5= dz, <p<l I.4
C+iD 27[]’ \[” p Z z q<p ( )

The original proof given by Villat is very long [14] . Aler Villat some different proofs -
have been given ,for instance ,by G ,M _Golusin [5] . By rewriting (1,2)and (1 .3)as the
following

, &=¢ely - (1.5)

_ =] }_q"ky +q——2k7
, (z, év)_ i Z Z, < él_qn, '*_‘g:__q—l’k,

N———

r o o . b)) FRP e ¥ )
Kg(zfz):“‘ﬁj‘i— ({ﬁq + &4q £,=qe” . (.6)
eyl

' &g &—q

~——

we give two proofs of (1 1) which may be simplest
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Proof 1 Let f=f+f, where f, is the sum of all nonnegative powers of the Laurent

expansionof [ in g<jz|<l and [, js that of all negative powers By the termwise
integration, (1 1)follws from (1.5),(1.6)land Lemma | 1

Proof Il Note that Re (K, (z,{,v) )=0 on |z|,=l when z#¢, ,and =1 on |z|=q ;
Re (KI, (z ,1541)),= lonjz|=1 ,and =0 on |z|=q when z% ¢, ,Using Lemma 1 2 we com-
pute the non- tangential limits of the real part of the right hand of (I . 1)as the following

lim Re { the right hand of (2.1)}
z~e'?
) a0

n
0
= lim ——]—f u(é“’)Re(e;Z
1~ 27 o e~z

2n
I 0y 1: e'+z
+—§_7;J; u (e'ﬂ)llmw Re (K!_(Z’Cl)— )dg
n

2ome eil—z

[} 7ee?

il

2.
u (e'r)+ e J u (ge”)dg-C
27[ 0 - N »

u (eir)

and similarly ,

lim Re {the right hand of (2.1) }=u (ge").

2-+qc'® :
It shows that the right hand of (I /1) which is analytic in q<|z |< is of samé real part
with f (z) on the boundary of the annulus ,and then (I  1)is true (see[1]) .

2, SCHWARZ 'S FORMUIA ,POISSON ‘S FORMUIA AND POISSON - JENSEN
FORMULA IN MULTIPLY CONNECTED DOMAINS

Villat § formula is a gencralizéd form of Schwarz § [otmula in annuli It is easy to give
Schwarz § formula of analytic functions in n-connected circular domains by considering
geometric behaviour of integral kernels of Schwarz § formula and Villat § formula  The
method in Proof 11 of (I _1)applies to the gencral case  (see[15},[17],[18] )

Let R, denote an n-connected domain in z- plane bounded by circles
C: lz—aj|=r1, j=1,2,....n,

For eC,, let K, (z; &) be the conformal mapping of R, onto the right half plane cut
by n—1 straight scgments parallal to the imaginary axis ,C, to the imaginary axis ,which is
analytic on R except at the simple pole & with the following expansion around the point

J
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K(z§)~+-§ii—2—‘1+zb(——§l——z——)x | @.1)

the sign of the right hand is positive when R, lies inside C, and negative when outside ,by, is
determined by R, and ¢; _lt/’s easy to prove the existence and the unicity of the mapping
functions K, (z;¢), j=1,2,.--n, (see[3] ,[15])

Theorem 2.1 Let f(z)=u (z)+iv (z) be analytic in R, and continuous in R, Then
in R, we have the Schwarz representation

n
[ @) =}: 2—17[ L u(§)K, @8)d0-CHiD 2.2)
where ¢ = a;+ r,.e“’ ,C and D are real constants ,and
C=211=/12=';';l‘n = 2.3)
here
N A 2.4)

mei

2n '
| i (2.5)
U= L u (&, )do ., .

ﬂ':{o if j=m 2 6)
" \Re (K, ;&) il j#m, S

Proof By using the method in Proof II of (I 1), it follows that on the circle |

z=a,+1e?,0<0<2n ,the real part of the analytic [unction

N 4 ,
=1
Z: TJ u (z) K, ;¢)do 2.7)
. ISu(é,)+/l,, J=1'2 SEEREES | B

 Let w; (z) be the harmonic measure of C; at the point z with respect to the domain R, ,

and ¢; (z) be an analytic function in R, with o, (z)as its real part ,Then in R, we have

n
f(z)zz —;;J u ()K, (Z;(fi)d()_lej(P,' (z)+ia . (2.8)

p=1

where o is a real constant |
Because [ (z)and (2 .7 )are single- valued in R, ,then

n

Y@=y gy 2) -

j- 1
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is also single-valued in R, and then is analytic in R, The real part of Y (z) on C; is the
constant g, ,that is ,the image of C; lies on a line d, ,j=1,2,... ;n  Arbitrarily give a point
{, which does not lie on any d,, to apply the argument principle to  (z) —{, . We obtain
Y @)#{, in R, And then ¢ (z) =const , thus. we have p, = ji,= ... =p,  Therefore , (2 .2)
follows {from (2 .8),

Theorem 2.2 Let u (z) be harmonic in R, and continuous in T’:Z . Then the con‘ju‘
gate harmonic function is single-valued in R, if and only if g is independent of the lower
index j where g, is determined by (2.4)—(2.6).

Proof If the conjugate harmonic function of u () is single-valued then , by Theorem
2 . | ,the condition (2 3)holds ,

Inversely ,assume that (2,3) holds  Using again the method in Proof Il of (1.1),for
any given ¢, €c;, » we consider the non-tangential limit of the harmonic function

n
Z_Z%I-J u (&)Re (K; (z;4))d0 T ’ 2.9)
y=1 0 .

as z tends to ¢, in R, . Note that by Lemma | 2,

n
. i ﬁj Jrz~—2aj
— . = + {
1“-?0 7 )., u () Re (_JT:;—JL dp=du () (2.10)

fo
the sign of the right hand is positive when R, lies inside C;o and negative when outside ,and

by 2.4)-(2.6)

2n
lim ZT’EJ u (E)Re (K, ;£))d0
0 |

=Y L J u (&)lim Re (K, (z;¢)do
-4 0 z ’(0
@.11)

Therelore , the non-tangential limit of (2 .9) is u (&) -+ C ., and so u (z) is the real part
ol an analytic function , that is ,
n ] 2n .
u(z).—:l{c{ Z—z—n—J‘“ u (éj)Ki (z;fj)d()—C} 3.12)

Theorem 2 .3 Let u (z) be harmonic in. R, and conlinuous in ﬁ, . Then in R, we

have the Poisson representation
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u@z)= Z J u (5 )Re (K; (Z C))d() Zu,w (Z) = (3.13)

where . is defined by (2.4)~ (2.6) Y, (z ) is the harmonic measure of C,.

Proof . Let

Ue)=u@)-Y g, @) @.14)
=1 .

which is harmonic in R, and its integral mean value on every C;is 0, By Theorem 2 2
and (2.12)we have '

§] (z)=i'—il7[—fnu'(fjme (K; @;¢))d0—- Z 71* JI"“%RC (K; @;8))d0 .
1= 0 ~ R ' 2.15)
Let g'=1, /= f ifj#k , theﬂ‘
7‘; J:"Re K, @ ;gj))(i()le/;j.jw,( @).
Therefore .
) Z_Zln_f Re (K, (z:¢))d0
= ;0‘1 g’ B’ wi (@)
- zw (z)z wfy
= Z(u @) et ) (2.16)

and then (2 13) follows from 2 .14)—- (2 .16},

Along the same way , we oblain the Schwarz basic theorem in n-connected domains
and an integral representation of the solution of the Dirichlet problem | (see[17])

Theorem 2,4 Let u ({) be a real valued function definedon the boundary of R, and

ml%rdhle as a lunction of () on every (, .Then

n

@)=y %J u (¢)Re (K, @z ;5;))‘1(’*’521%% ) (2.17)

-1
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is harmonic in R, where §= a;+ e’ If u ({) is continuous at boundary point {, then the

non- tangential limit of U (z)at {,is u ({,) .

- Theorem 2 /5 Let ) be an n-connected domain , the boundary of Q be locally con-
nected and every boundary component be not a single point , Let z={ (w) map Q onto an
n- connected circular domain R,  Then the solution of Dirichlet § problem in  with a con-
tinuous boundary value function u ({)is

n

Uw=Y {;J U GIRe K, € W) 35))40-Y oy, €w)) . @.18)
0 -1 .

=1

where i is defined by (8 .4)~ (8.6)but u’(§)is replaced by u (! (£))..
Finaly ,we give the Poisson- Jensen forrﬁular in n-connected domains (see[18]) .

Theorem 2.6 Let { (z) be meromorphic in R, to have zeros at a, ,a,, ... ,a, and poles
at b,,b,,.--,b, in R, ,and have no zeros and poles on the boundary . Then for z,e R, to
be distinct from the zeros and the poles we have

2n

n l m
log| ()=} E{—floglf(éj)[ Re K; (Zo;éj))dﬂJr}: log|S (Zu’ai)l_i log|S &, b, )|~ K
j=1 0 1=} k=1
2.19)
where :
K=Y"log S (.a)]~ 3 10g |S & b))+, 2.20)
=1 k=1

S (z,a ) is the conformal mapping to map R, onto the unit disk cut by n— 1 concentric circu-
lar arcs, o to 0, C_ to the unit circle ; g is defined by (2 .4 )— (2.6) but ut({,.)iis replaced
by log IF (¢))] . !

3, DIFFERENTIABILITY WITH RESPECT TO THEPAPAMETER OF ANALY- |
TIC FUNCTION FAMILY CONTAINING ONE PARAMETRIC VARIABLE

Suppose that G (1), agt<b, is a domain family in z- plane, and function f ,t) is
defined in G (t) Let tye[a,b] be a fixed value [ (z,t)is called uniformly continuous for t
at t=1t, with respect to Ec G (1,) il there exists an 5> 0 such that

EcG (1) for Jt—t)<y.tela,b]

and il for any g>0 ,there existsa 6= (g) >0, 0 <1, such that

L@z, 0)-T@z,)l<e for ze E,|t—t,]<¢d ,te[a,b] .
If for any ze G (t,) there is a ncighbourhood E of z satislying the condition ,then f (z,t)is
called locally uniformly continuous for t at t=1t, The uniform diflcrentiability and the locally

uniform diflerentiability or f (z ,t) can be delined similarly |

Now let the n- connected domain family G (t) be given ,a<t<b,and satis(y the fol-

lowing presuppositions:
' 7
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1) 0 oo¢G t); v

2) the boundary [ (t) ol G (l)consnsts ofn dls;omt c[osed Jordan curves z= Q @a.t),
0e10,2q] ,m=1,2",...,n;

3) the function Qm (0 ,t)is uniformly differentiable for t at t=1, with- rcs‘pect to the inter-
val [0,2n] ,where t,e[a,b] is a fixed value’ ‘ ‘

4) the n curves of I (t,) are analytic
We investigate the univalent analytic function family w=F (z,t) definedin G (t) , whose
image domain family B (t), a{tgb ,satisfying the following presuppositions ;

1)0,00¢B (1) ; . V

2) the boundary of B (L) consists of n analytic Jordan curves w=g¢,_ (0,t), 05[0 2n] ,
-m=1.2,...,n; : :

3) the funcllon a,, (0 t)is umformly dlﬂ"erentldb]e for t at t=1t, with respect to the inter-
val [0,2n] ;° ' ' ”

4) B (t,)is an n- connected circular domain R, .
Then We have

- Theorem 3.1 Let F (z,t), G (t) and B (t) satisfy the presuppositions . Then F (z,t)
is locally uniformly diflerentiable for t at t=t, with.respect to G (t,) and so is the inverse

function z=@ (w,t) to B (t,), furthermore

2b W), ab (w |
P —————L{Z L (0)1( v ; £, )d0 - +1D}

3.1

where &, K (w, ¢ ) are determined as that in Section 2 but the domain hereis R ; C,
D are real constants ,The value C is glven by (2.3)—(2.6) but to substitute L, (0) for
u (&), and

Lm (0)'—Re { at [lOglO’ (0 l)l é aq) (ém ;to) ]} =10 . ( . )
Prool We may assume F (z .t )=2 Set

¢ .0=

log |E ( (1) )L O, ts#t, L (el (1)
' | (3.3)

(¢ () .in)={~3— log [F (¢ (1), l)/g (V) } ( )ef‘(l )

By the assumbtidn ol the theorem ,there exists the solution u (z ,1) of Dirichlet s problem in
G (t) with the boundary value I ({ (1) .t)  Obviously ,for t#t, we have '

8
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u(z ()— logu« @.)/z] 2eG (. (3.4)

As Theorem 8 of [8] , it follows that u (z,t) is locally uniformly continuous for t at t=t,
with respect to G (t,) . And so is the real part of the function

p@,t)=logF (z,t)/z=P (z,1)+iQ (z,t) . 3.5)
Q (z,t) has the same property by the same reason , Therefore ¢ (z,t)is locally uniformly
differentiable for t at t=t, respect with to G (t,) and then ,by the Weierstrass theorem ,'t‘he
derivative function is analytic in G (t,),It is easy to see that the functlon (3.5)is continuous
inG (t,) (t,) except at most several boundary points |
Differentiating the equality

F (z,t)=2ze*"" 3.6)

with respect to t al t=1, ,applying (2.2)to (3.5)and then removing the assumption of
F (z ,ty)=2z we obtain that '

oF 2,1 L 0, 0,1)
o T ‘){ J [ 8l T, 0,04 '];,,,o

KF ) £,)d0 - c+.o} | -

As Theorem 5 of [8] ,it follows that @ (w ,t)is locally uniformly differentiable for t at

t=1, with respect to B (1) and

1 Wt F )t
t=1tg _ 1=ty

Then we obtain (3 1) from (3 .7)and (3 .8).

When n=2, the theorem is just a result of P P  Kufarev and N B, Semuchina

[9] (with a little improvement ) Similarly we can prove that

Theorem 3,2 In Theorem 3.1, if we assume that the boundary of G (t)and B (t) are
some continuous curves (a<t<g<b ,t+#t,)and remove the condition 4) required by B (t),
then the functions @ (w,t)and F (a, t)are still locally uniformly differentiable for the

parameter t at t=t,, (See[l0] )
4 . VARIATION THEOREM AND PARAMETRIC REPRESENTATION THEOREM

Let R denote a subregion of an n- connected region R_ with circle boundary , The
complement set R\ R’ are n semi-closed annuli Q, . The distance betweem the two

9
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circles of each annulus is ¢, .
Let Yy W,t) ,k=1,2,... ,n,denote n nuivalent functions containing parameter t de-
- fined in n annuli Q, respectively . The boundary curves of 'the image domain of Q, are
denoted by I, (t) and "™ (t), Suppose that the imege regions of these annuli do not inter-
sect each other and that G (t)c G (t) where G (t) is the n-connected region bounded by
n curves [, (t) corresponding to the boundary circles of R, and G® (t) denote the
n-connected region bounded by the n curves "% (t) corresponding to the n boundary cir-
clesof RY .
gNow we establish the variation theorem and the parametric representation theorem for

univalent functions in n-connected regions which generalize the results of [4] , [5] and
(9] —[12] .

Throrem 4.1 Suppose that the function [ fv) is anslytic and univalent in R, and
that when T >0 is sufficiently small , the function i, (w,t ) has the following expansion in

Q, for t¥[0,T]

Pk D=Cw)+tg w)+o0@),k=1,2,.,n @.1)

where g, (w)is well-defined in Q_K v_ Next sukppose that w=F (w,t) maps G ¢)onto R {)
one—to —one and conformally »R_(0)=R, ,and that the cenlers a; (t) and radii r (ty,
j=1,2,....n ,of the n boundary circles C,(t)of R (t)are differentiable for t at t=10 Let
® (w,t) be the inverse function of F (z,t) , Then the following expansion holds in R (t)

O (w,t)=fW)+twl’'W)P (w)+o (1) 4.2)

. where o (t)is uniform with respest to every closed set of R, ,and

2n

P(w):jiI lim _21; 0 B, (¢,)K; W ;&,)dg—~C+iD, @.3)
_ ge) \_[.a o |
BJ.(Q)—Re(W) [6t logla, (1) +1, (t)e |:|l=o @ 4)

K; (w;¢;)is defined as that in section 2 but here the region is RS’,{i is a variable point on
the j-th boundary circie of R®with arg ((,—a;)=0. C,D are real constants ;the value of
C isgiven by (2.3)—(2.6)but to substitute B (£, )foru (¢ ).

Prool It follows fromTheorem 3 2 that F (z .t) is unifromly differentiable for t at

t=0 on every closed subset of G (0) .

Denote the image region of G ¢ (t) under the mapping F ,t) by B () Applying
Theorem 3 1 to G“ (1), B¥(t)and F (z,t) ,we obtain that & (w,t )is locally uni-
formly diflerentiable for t at t=0 with respect to R® and that lhe‘follovwing equality holds

0. F@ @)

2n
(”(b (\V,l) - r/(w . _l_ —l . : i .
R Ta P 230 ), ot TG, ey || Ketrita)do-Cib

4.5)
1o
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where Q0 (0,1 ;¢)is the parametric represenlatlon of F"“’ (t),Let ¢ 0in (@4 .5),we obtain
that |

ﬂ"—g’{—‘i}ﬂ —wl’(w)p (W) @,6)
1=0
Hence in R (t) ;

' (1)(W.l)=(1’(W,0)+t—0LD—%i:—’—t—)—| +o (t)

=f(w)+twf’'(w)p (w)+p t)
and we bave also proved that o (t)is locally uniform in R, .

When n=2 ,Theorem 4 1 is just the result of [9] .

Theorem 4 2 For any given n-connected region B in z- plane whose each boundary
component consists of Jordan arcs of finite unmber and a pair of complex numbers z, and
W,, o€ B, 0,00¢B ,there exists an D-connected region family R, (t) with circle boundary
whose centers, a (t) and radii 1 (t) ,i1=1,2,.-.,n,are 2n dillerentiable functions of
parameter t ,not all constant ,w e R, (1),0 <t ,such that the limit function

f(w)=lim @ (w,t) S @4.7)

t--tg
is a univalent and conformal mapping of a region with circle boundary onto B ,f (w,)=7, ,
where @ (w ,t)is univalent and conformal in R, (t), w, to z,, and satisfying the following

relation in R, (1)

%—\ g$ Z J [K; W3 8) =Ky (v 58)1d o (051) O<ti<ty)  (4.8)

here K, (w ;¢&;)is defined as in section 2 but the region here is R, (t),&=a, (1) +1; (t)e’,

0 - . .
W, @0 = lim f [—;—xogu E@ 0.0.1) IJ do @.9)
£>0 0 T=1 ’

i

n; is a variable point on the j-th boundary circle of RY(t) with arg (;— 2, (1))=0 ;
F.(z ,t) is the inverse function of @ (w .t) .

Proot (a)lt is easy to prove that for the region B there exists an n- connected region
family G (1),0<t<t, ,satislying the lollowing conditions :

1) 7eG(1).0.00¢G (1) —
2)for any two values (,, L,e[ 0.1,).1,<t, ”"P“C* Go(t, )C(’ (t;) (or assume that

the contra- relation G (t,)c G () is always (rua),
“3)G (t)tends to B as t-»1
4) the connecled. compomnts of the boundary [" () of (r (1) consist of Jordan arcs of

11
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finite number ,whose parametric equations are z=Q, '0,t),0¢ [O 2n) ,m=1 2,1 D
5) the function Q_ (0 ,1)is uniformly differentiable for t at every te (0,1,) wnh respect
to [0,2n] .

(b) For the given region family G (1) ,0 <t <Y, ,satisfying the conditions 1) —5) listed
above ,it is not diflicult to prove that there exists a corresponding function family F (z ),
0<t<t,, which map G (t) onto n-connected regions R, (t) with circle boundary one
—to — one and conformally , 'z, to w,;, R, (1) tends to a region with circle boundary as
t—~t, and a; (t), r; (t) are dillerentiable ,j=1,2,.-.n,

Suppose that ¢> 0 is sufficiently small _Let G © (t) be the image region of R¥ (1) under
the inverse mapping z=® (w,t). It is easy to see from Theorem 3. 1 that the partial
derivativer of the function @ (w,t) with respect to.the parameter t exist everywhere in

RL”’ (t) and the following formula holds

; , . |
Iy 0‘1’ (M 2, 0,0.60) R |
ot { z 21 J [ 08 | F@Q0.t;¢), ‘l") l]T”-Kj (w ,vr]j)d‘() C£+1D[}

(4.10)

where C, and D, are real constants , K; (w ;7,) is dctenmncd by R “(l) and is dcﬁncd as

belore , Q0 .te)=Dd @ ,1) . |
Using the condition z,=® (w, ,t) and introducing the function

0 -
ll/j(():‘;ﬁ)“j[;t log | F((D(ﬂ’-;,l),r) "J a0 @
j T=t

we can rewrite (4 _10)as

I
. _, 0P I o) — : "
—5{_ N OW {Z 27 J; [K! (“ a']j) Ki (Wo,’lj)dll’j (0"')8)} ' (4-12)
Setting ¢ =0 in (4 _12), we obtain (4  8)by means of a proposition established
by L. Ahlfors in [ 2] and exchanging the order of taking limit and integrating .
Obviously .the limit function .(4 7 ) possesses character required |

5. EXTREMAL PROBLEM OF DIFFERENTIABLE FUNCTIONALS

As an application ,we discuss the extremal problem of a class of dillerentiable func-

tionals
Let G be an n-connected region M, denote the set of all meromorphic functions in

G . N, denots the holomorphic function family in G ,and K be an univalent subfamily of

12
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MG L BT .
A functional @ [f] defined in M, is called weékly differentiable with respect to Kifd’[ﬂ
does not take the value oo in K and for any fe K ,h e M the limit (functional d;rivalivé)

{gr;—x—{(b[H,{h] o[r]} (A is real ) G.1)
exists (finite or infinite ) ,

A real functional @[] defined in M js called A,-type if for every fe K the functional
dervative is the real part of some complex functional D “”[h] in M5 which does not take the
value oo in Ng .

Let {L} denote some n-connected region family in w- plane and every region of the
family contain the point w=w, but do not contain the point w= oo . Let E denote the union
of all regions in {L} ., w,,w,,...,w,_ are m points arbitrarily taken in E but distinct from
w

(130

Let

“/*:_—_F(W;W‘,Wz,---.\Vm;(iyg) (52)

denote the function satisfying the following conditions :

I) F is analylic with respect to w, ¢, ¢ when Jgj< 1, for some positive number 1,
weE ™ {w,,w,,--,w_};

2)F (Wy;W, W, ,--- ,W,_;£,¢) =2, where z is a fixed point

3 ) when |g| is sufliciently small ,for any region D in {L }there existe a region D* in {L}
such that the function F maps D into D* unlvalenlly except arbitrarily small neighbourhood
of those w, which lie in D;

4)for quﬂxcncnlly small lrl and w e E \{wI PWy s ,w,_ }we have the following expansion

wr=w+gp, (W;w,,--,W_)+Ep, (W;w, ,---,w_)+o () 5.3)

where P, is a rational fraction of w only to have simple poles w ,w,,-..,w_inE;P,is
analytic'in E ;P, and P, take the value 0 at w=w, ;the residue of P, at w=w, is denoted by
rg (w,,---,w,_).k=1,2,...,m,

Let K, denote the set of all univalent and conformal mappings which map

n- connected regions with circle boundary onto regions in {L}, 7z, to w,

Theorem 5 1 Suppose that for any given m points w,,w,, ..., w_in E to be distinct

from w, there exists a function (5 .2) Then the following variation formulas hold in K,

(i) If fe K, and the corresponding region L has m outer pointsw,/, w,’ ... ,w_’ in
E ,then the function

(P@E)=f@)+ep, (@);w, Wy ow ) +ep, (@) w,,w,,-w )+o0 (Je]) (5.4)
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belongs to K, where w, is an arbitrary point satisfying |w, —w,’|<p for some sufficiently
small number p>0 .
(1) I Te K, then the function

[2a (z):f (Z)+8P| ([(Z) ;f(Z|)‘,-~- ’r(zm))""gpz (f(z) ;'f(z,) 3. ,f(Zm) )

-——l“szr'(z)i d ("(Z‘)"“'”Z.n).l_{ ztzy itz
k=1

2 712]‘ ,(Z[) Z"‘ZK Z'O_Zx
n Z n l Z — d
+J~ZZNZ—1T’”L‘; B ,z.:, 2ni J:; f:Z‘ [ H; @.{)-H, (21)96)]'?_%;}

+ i—Ezf ’(z)i

n((@),--.lz)) { +z] 247z
| 2 = m

152 s >
=z " =7,z

| - Z it @G-F) @-a) G -3) o)
3=1 riz"(zk"i;)(z"ﬂj) : sz—(fk'-'ij)(zn—aj)

" - d
+ j; 2 J:‘j é—ikzl [”] (Z’é)’—Hj (Zn’é)] -ét%v}"'o(‘ﬁl) (55)

belongs to K, ,where z, ,z,,--- ,z, are m arbitrary points in the region Rz corresponding to
f;C .3 and 1, are the j- th boundary circle of R, and its center and radius respectively ,
the direction of the integral path C, is chosen such that the region lies on the left side of (O

the function
+z—2a,
H; z,¢)=K, (Z,f)’(i‘é‘gjz—L) (5.6)
~ the sign inside the bracket is positive when j=1 and negative otherwise , here we suppose
that R, lies inside C,

Proof (5.4) can be proved directly from the assumption of the theorem. (5,5)can be
obtain from the variation formula in Theorem 4 || by computing and using the condition

that every function in K, maps z, to w, .

Starting from Theorem 5 1 , we can obtain variation formulas of form (5 4) and
(5.5) for many unlvalent function families, Here we will solve a general extremal problem

of functionals by means of the theorem |

It is easy to pmvé from (5.4) that the extremal region of A, - type functional in K,

14



has no outer points in £, Furtherinore ,we have

Thcérenf 52 Let (b[[] be Ax.,' type fgnctional Afw=1{(z)is the extremal function of

the functional @[] with respect of K, ,then for any m points z, ,z, ,--- ,z,, in the region R,
corresponding to f,the following equality holds :

D®p, €Q);r @ @) +D,p, € C);f @), ,[@,))]

_ 13 @), .fz)) @) ’ (tz, _ gtz
2 Z ' :;ff’(zk) ~ {DJ” [Cf (C)( (-7 7,— 1,

= LT 2

~+5_"l——ﬂ—————>jf ~L—(u (&)~ H, @, c))é"f‘)]

@) 4z, rf +z " 2+ @Z,-3) ((~a)
+D, [cr ¢ )( 5 * Z [ @7 =2

'+ (Z,-a,) (zp—a,) g Z _ d
- (Zt—‘;f,.) (zy—2,) :]+ 2mi ZJ‘(_f——ki_k ; (C.¢)-H, (Zo’é))?:%j‘ )J}

jt

(5.7)

Prool The funcctional differential equation (5 7) satisfied by the extremal functions can
be derived by using the formula (5 .5)and the definition of Ay, - tpye functional |

The theorem is a generalization of a main result of G G _Shlionski[13] .

REFERENCES

.Ahlfors ,L .V ,,Complex Analysis ,3rd edition ,McGraw —Hill Book Company ,New York, 1979 .
Bounded analytic functions ,Duke Math .J .,vol .14 (1947),1—-11 .
.Golusin ,G .M .,Geometric Theory of Functions of a Complex Variable ,Moscow ,1952 .

A variational method in conformal mapping 1 ,Mat Sb .,vol .19, (1946),203—-236 .

On the parametric represcntation of functions to be univalent in annuli , Mat . Sb.,
vol .29 (71}, (1951),No .2 469476 .
6 .Komatu .Y .. Theory of Conformal Mappings ,Kyoritsu ,Tokyo ,1943 1947 |
7 .Kunugi .K , Theory of Functions of 2 Complex Variable .Iwanami,Tokyo ,1958

A B W R e

8 . Kufarev , P P . On analytic function familes containing onc parametric variable , Mat . Sb, vol (13,

(1943).87—-118 |
9 Kufarev ,P .P .and Semuchina ,N .B . On Golusin ’s variation method in 2—connected domains ,Dokl .

15



46

Akad _Nauk SSSR,vol 107 ,(1956),No .4,505—507 .

.Lebedev ,N A .,On the parameltric representation of functions to bc analytic and univalent in annuli ,

Dokl .Akad .Nauk SSSR ,vol 103 ,(1955),No .5,767— 768 .

.Lowner ,K .,Untersuchungen uber Schlichte Konforme Abbildungen des Einheitskreises 1,Math _Ann _,

vol 89,(1923),103— 121 ..

.Schiffer ,M _,A method of variation within the family of simple functions , Proc . London Math  Soc .,

vol .44 , (1938),432—449

.Shlionskii .G .R .,Extremal problems of differentiable functiionals in theory of univalent functions ,Vest .

Lenin .Uni ,vol .13,(1958),64—83 |

.Villat ,\H ,,Le probleme de Dirichlet dens une aire anulare , Rend _deleire .Math _di Palermo ,vol .33,

(1912),134—-175 .

.Yang Weiqi ,Two simple proofs of Villat s formula and its generalization in n- connected circular do-

mains ,J Beij ing Institute of Tech . ,vol .1, (1981) ,No .1 , -5 .

,The variatiional theorem and the parametric rcprcscnlauon theorem of conformal mappings
in muliply connecled domains ,Acta Math ,Sinica .vol .24, (1981), No ,26—135 .

,Poisson ’s formula and solution of Dirichlet problem in mulliply connected domains ,J
Beijing In<l|lutc of Tech _,vol .2,(1982),No .2 . 1~17

JPoisson= Jensen formula in mu!nply conncc(cd dom.nm Pure and Applied Math _ 4 (1988),

37-40 .

g



