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1. INTRODUCTION

* The prime end theory gives a complete but abstract description of the rc]ation‘ between
topological properties of a domain and the contiuity behaviour of the mapping func
tion (see[1] ,[2] ). It is still necessary to stu’dy the boundary correspondence of conformal
mappings in general sence . Some results about it have been obtained , for instance ,by M |
Essen [3] and Chr Pommerenke [4] . .

. The aim of this paper is to study how the local geometric structure of a domain at its
Jboundary points deterinines -analytic properties of the mapping function , For this reason we

give a classification-of the boundary points of a domain |

Through this paper ,except for few cases ,G is always a simply connected domain with

at least two boundary points ,co¢ dG, and [ is a conformal mapping of D onto G . For
{edD the expressxon f(() w means [ has the angular limit w at (| Lel

rw)={feoD: (()=w) .
A (w,f)={CeaD: weC (f,{)} (1.2)

where C (,{)is the cluster set offat (.
For we 9G let N_(w)denote the ¢- nelghbourhood of w_ We dmde the connecled com-

ponents of N_(w ){']G into two parts :the set Py (w,¢)of all components with w as a bound-
ary point and the set P, (w ,g)of the other components , Let '
d (g w)=inl{ dist W,V €)): Vy )P, (w,e) };

d ¢g,w)=¢, il P,w,e)=¢.

(1.3)

If lherc exists >0 with d (g ,w)=0 lhen W is called a complicated boundary point of G,

otherwise w is a simple one |

Note that w is a simple boundary point of G if and only if G is locally connected at w .

The classification applies to open sets |
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In this paper it has been provcd that
(i)wis a simple bounddry poml of G lf.md only il .
AW, N)=1"(w):

(1) if G is bounded then any analytic univalent function in G has no Koebe arcs if
and only if every boundary point of G is simple ;

(iii ) a compact set A in complex plane is locally conﬁr,cled ifand only if every boundaty
point of its complement is simple and the number of all connected components of A is finite;

(iv)let | E | denots the number (integer or oo )of all points of the point set E  Writing
Po (¢ )=|P, (w,g)|,we have

If w is a simple boundary point of G then p, (¢)is increasing when ¢ is decreasing and

| (W)l=1i[n0po (e)=|AW,0)l;

If w is a complicted boundary point of G then
! (w N=lim p, (¢ )<|A (w,[)]

with strict inequality il [["' (W )| < o0 . o

Our discussion begins with a research into accessible boundary points _WeaG 1S accessi-
ble in G if and only if there exists a sequence V, (r,)eP, (W ,¢, ) ,n=1,2 ... ,with V, ()
D'V‘v (¢, )> --- and g, — oo . Such a sequence is called a regular component sequence at w _
Two regular sequences { V., (¢, ) }and { v,/ (¢, ) }are called to be not equivalent each other if
there exists N >0 such that V, (g, )ﬂV.,’(a,,’)-— @ for n> N _ There exists a one~to— one
correspondence between . [~'(w) and- M (W) where M (v) is a complete set of incquivalent

regular sequencas atw |

W hether there exists a domam which has no sxmple boundary pomts isan open problem A
domain that all of its simple boundary points is a set of zero linear measure has been

comstructed |

2. ON ACCESSIBLE BOUNDARY POINTS

The results to be developed in this section are , with modilications , due to X  Yang[5] .

We need the following lemma which is easy to provs |

Lemma 2 1 Lety,(n=1,2, ...)be a sequence of Jordan arcs which do not intersect
cach other except for a common end of y, and 3 ,,, n=1,2 ... [ If y,—>w (n->00)and

w¢y, lorany n, then o
) el
)= W} Va 2.1
RERLAVEY) e
is a Jordan arc with w as an end |
Theorem 2 || For w¢ 9G the following conditions are equivalent :
(i) Therc exists a regular component sequence at w ‘

(i1 ) w is an accessible boundary point of G ;
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(m) lhem exists (e gD with f((;)—

. Proof (i )=>_(n‘) : Let ,.{Ay“. (e, )} b,e a regular component sequence al . w | éWé may
assume V_ (e, NV, (6,0))#P.n=1,2,... Taking

weV, )I\V, @6,.,) . 2.2)

for n=1,2 ,let I, <V, (g) be a Jordan are with ends w, and w, We may suppose that
g, <dist (w ,I')) . Then we take w, as (2 . 2)withn=3 and a Jordan arc [',c V_ (g,)join-
- ing w,and w, . Let y, denote the subarc of ", between w, and the first intersection .w,’ with T,
Repeating the preceding process ,we may suppose g <dist (w ,I",)and take w, as (2 .2)
with-n=4 and then a Jordan arc I';c V  (g,) joining w, and w, _ Let y, denote the subarc of
I', betweem w,’ and the first intersection w,” with I, »
Continuing this program infinite times we obtain a sequence {y, }and then a Jordan
arc y defined by -(2,1)which lies in G except for the end w by Lemma 2 | |

The implication (ii )= (iii ) is obvious (see [2] ) .

(i) = (i):The condition (iii) implies lim [ (r{ )= w _  Therefore , for any strictly
. el
decreasing sequence {¢, } tending to zero there exists a corresponding positive sequence {r,}

tending to 1 such that
{ [ :r,<r< }CNc,, (w)ﬂG

Let V, (¢, ) be the component of N, (w )ﬂG which conldms {f () : rn<r< 1} . Then V, )
eP, (w,g)and {V, ()} isa rc;,uldr component sequence at w . '

Lemma 2.2 forwegG lhc following conditions are equivalent -
(i) There exist two'inequivalent regular component sequences at w ;
(ii ) There exist two distinct points {, and {, on gD such that  ({)={((,)=w .

Proof (i)=> (ii):Let{V, (g)} and {V ' (¢g,)} be two inequivalent component se-
(iuen_c;s—a_t w . We may assume that V_ (g, )|V ’(p )=¢@.,.n=1, . From the proof of
Theorem 2,1 there exist two Jordan arcs 7, and y, that end at w and lie otherwise in V_ (g, )
and V,/(g, ) respectively . Therefore , ' (p\{w}) and ' (y,\ {w}) are two asymptotic
paths of [,say ,end at {, and {, on gD respectively ,and then f({ ) f((;’z) w (see [2] ).

We have to prove {5, . o 7
Suppose {,={,={ .Let w, be the other end of y;,j=1,2 We join w, and w, by a

Jordan arc " in G such that y, | JI" | )y, is a Jordan curve whose inner domain is denoted by

G, .Let D, =" (G,).then f|= fl”' is a conformal mapping of D, onto G, and can be ex-

-

tended to a homcomorphism of ﬁ, onto G,  There exist
e MV N{wh . e (N \Aw))  with 7z, z/~{ (n >0 )

such that [z,.z,}<D,, n=1.,2... Lel w,=0@), w'=0@)), then w eV, (),
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w/ eV, (g ). Itisclear that [,=(([z,.7,7] ) isa Jordan are joining w_and w "in G
with [ —~w (n->00), and so w eV, (g) for large n ,contrary to V, (e, N V. (e)=¢.

(ii)= (1) :Let {,.{,edD ,{,#{, with T({;) = ({,)=w . By using the method in the
proof of Theorem 2 1 ,from the Jordan arcs ((¢,) and (L) O<r<l),we obtain two
regular component sequences at w,say, {V_ (g,)} and {V,'(g,)} respectively . We have
to prove that they are not equivalent | ‘

If they are equivalent then V, (g, )=V (s, ) ,n=1,2,..- Let {r,}be a positive scquence
decided by {g, }as that of the proof of Theorem 2 1,and then let w=f(r,(,), w;/,"= £(r,L,).

There exists a Jordan arc y, joining w, and w,” in V, (g,) . Let I,="'(,), wehave

lim diam 2= (,b>0 and  [([,)>w (n—>c0)

n-*co

It is impossible because [ has no Koebe arcs’ (sce[2] ).

It follows that

Theorem 2.2 There exists a one—to —one correspondence between M (w) and ' ).
3;7 THE Cl-lARAC'l‘ERlSTlC OF TWO KINDS OF BOUNDARY POINTS

The following theorem is basic in this paper .
Thedrcm 3.1wedD is» simple if and only if A (w )= '(w).

Prool @)Let w bea simple boundary point of G ,Suppose that A (w, ONT ' (W)@
then { has no asymplolié paths at any point of the set A (w ,[)\ FYw). ‘

Let {eA (w,D)\["(w). Since [ has angular limits almost everywhere on gD and
[~ (w)is a set of zero capacity (see[2] ) ,hence there exist two point sequences { ‘and {of

0D which tend to ¢ from two sides of { asymptotically such that fhas angular lnmts different
from wat ¢, "and {,” Let S, denote the arched domain bounded by (¢, ] and g“/’\“n”
w!nch contains { . We have S_,,=§, and d =dist (w, [(q¢,0"1))>0,We ldke a positive
decreasing sequence {g, } with g,-~0 (n—>c0) such that :

() &.,,<d.w), n=1,2,-3

(i) g<d,, n=1,2,.--;

From (i) we obtain

(N, )NG = UV @) 3.1)

where the union is for all V., (6,)e Py W .g,).

From (ii ) we have » |
{N’n!l(w)mr(sntl)}cUV“.(K“) ' (32)

where the un'ion is for all V_ (g,)eP, (w.g,) wilh V., (&, )e:f(Sn )

4
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Note that w is also a simple boundary point of each component of the last union Then
there ‘exists a regular component sequence { V, (¢,)} such that V_«(g,) <f(S,), that is

w n

(v, ())<= S,,n=1,2,... And so we obtain a Jordan arc y as we do in the proof of

Theorem 2 I such that [~'(y) is an asymptotic path of [ at { This is a contradiction Bl
means A (w,f)=1"(w). ‘

(b) Suppose A (w,f )={"'(w) If w is a complicated boundary point of G ,we have
d (g,,w)=0 for some g>0_  And thén there exists a sequence {w,}in G with w_eV,'(g,)
eP, (w,g) . w,—»W (n—00), Let P,” (W ,g,) denote the set of all components in P, (w ,g,)

with w as an accessible boundary point /' We have
2,=0" w,)e D,=D\|JI' (V, ¢,))

~where th'ebunion is for all v, (g)eP,/(w ,go)_’Obviou‘sly 0 (w) ﬂalj': @ and then every
limit point of {z,} belongs to A (w,f)\ f-! (W), contrary to A (w.[)=0"(w). So w
is simple | ’

Corollary  we 3G is complicated if and only if A (w ,[)\["' (w)# ¢ .

It is clear that the numbers |JA (w ,f)| and |f~'(w )] are independent of the choice of the
mapping function | They are called the multiplicity and the pseudo- multiplicity of the
boundary point. w ,and denoted by m and p ,respectively, Set p, )=|P, (w,¢g)|. We have

Theorem 3.2 Let wedG with multiplicity m and psehdo’-muliiplisity p.
(i) If wis simple , then ‘ |

p=limp (¢)=m . : 6.3
£ -0 .
(i) If w is complicated , ‘(hen '
“p=limp, &) <m o 3.4)
£~0, R . )

with strict inequality il p< oo .

Proof Let w is a simple boundary point of G » then pg (¢)>1 for any £>0. Note that
w is also simple for each component in P, (w,g) . This implies that p, (¢)increases when ¢
decreases | Let p,=lim p, (¢). We choose a positive decreasing sequelncé {g,} with ¢, 0
(n =00 ) satislying ¢,,,<d (¢,,w)n=1,2... Then we have 3 1), '

If py<oo then there exists n, such that p, (s )=p, for n>n , So we obtain P,
inequivalent regulér component sequences at w and then (3 3)is true by Theorems 2 2 and
L - o ‘

If p,):ob then for any givén positive integer N we have p (s, ) >N when n>n, lor some n,
Hence we can construct N inequivalent hregular compaonent sequences al w and so p=N it follows
that p= oo and (3 [ 3)is also true _(i)is proved ’

The proofl of (i )is similar as that of (),
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4. SIMPLE BOUNDARY POINTS AND LOCAL CONNECTIVETY
The well- known contiunous extension theorem Gee[2] )can be stated as the following

Theorem 4 |1 [ has a continuous extension to D if and only il every boundary point
of G is simple .

Furthermore ,we have

Theorem 4 .2 A compact set E in complex plane is locally connected if and only il every
boundary point of its complement is simple and the number of all connected components of
E is fintle .

Proof If E is locally connected then ,of course ,the number of all connected components

of E is finite  Let E, be any component of E ,which is also locally connected By the contin-

~uous extension theorem every boundary point of C\\E, is simple and then is also a simple

boundary point.of C \E . Therefore , all the boundary points of the complement of E are
simple ) |

By Theorem 4 | I the converse. is also true because any union of finitely many locally

connected sets is also locally connected

5. SIMPLE BOUNDARY POINTS AND KOEBE ARCS

Let G bea simbly connected domain ,and g be a meromorphic function inG If a
sequence of Jordan arcs C, < G saltislies
' (i) diam C,>o>0 and

(i) g@)—-c for zeC, ,n >0 |
for some ce C,then it is called a sequence of Koebe arcs with respect to the meromorphic

function g . We say that g has no Koebe arcs if no such sequence exists .

Theorem 5.1 If G is bounded then any analytic univalent function in G has no Koebe

arcs if and only if every boundary point of G is simple .

Proof (a) Il G has a complicated boundary point w then C (f,{) is a continuum for
any given {eA(w,[)\ "' (w) Letw "w€C (F.0)with |w —=w "|=diam C ([,{)>0.
There exist two sequences {z} and {z,} in D tending to { with { (z,)—>w % [ (z))>w "
(1—=c0) We may assume that z %z 7 n=1,2,... Denote g=1["'y,=[z/,2)],C,=[(y)),
then {C, }is a sequence of Koebe arcs with respect to g which is analytic and univalentin G

It shows that the condition is necessary |

(b) If there exists a sequence {C_ }ol Koebe arcs with respect to some g which is analytic
and univalent in G ,then g (C_)—~{ € 0 where Q=g (G) ,Let h be a conformal mapping of
Q onto D ,then =g 'h~'is a conformal mapping of D onto G  Note that A (w ,l)does not

contain any arc by the Riesz uniqueness theorem , there exists a subsequence {C,,k bof 1C,)

6
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such that h (g (C)) -~ {,€0D (k —~c0) . Then [ is not continuous at {, because
diam C_ > fl,>0 , kv=wl 12, Let we C (I,{,) and w;é[((o).if [({,) exists , Therefore,
CoeA (W, )\ [ (w) It shows that w is a complicated boundary point of G and then the

condition is suflicient |

6. NOTES

Because of Moore s plane triode theorem (see[6] ) the set of all boundary points of G
with pseudo- multiplicity p>3 is at most countable , ‘

A Jordan domain has no complicated-boundary point i, But whether there exists a do-
main which has no simple boundary point is still an open problem . Now we construct a
simply connected domain such that all its simple boundary points is a set of zero linear
measure . Let K be the Cantor set in [0,1] , 5= %-I—i sand E= ) [x,y] . Then

xeK .

G =C\ E is such a domain  The set of all its simple boundary points is K U{ Nt
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