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On certain class of analytic functions with

negative coefficients
ZPS & B AR EAT (Tadayuki Sekine)

1. Introduction and Definition.’
In [3]1 we introduced the class A(x) and the subclass A(a,8)
of A(x) as follows.
Let A(x) denote the class of analytic functions f£(z) of the

form
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in the unit disk U = {z: |z| < 1}. Also let A(x,B8) denote the
subclass of A(Q) consisting of functions which satisfy the in-

equality
(1.2) Re(e'®£'(2)} > B (0 < 8 < cosa).

Class of this type for o = 0 was investiga{ed by Sarangi and
Uralegaddi [11].

For the subclass A(x,B8) of A(x), we obtained the following
result.

Lemma([3: Theorem 1]). A function f(z) is in A(x,8) if and

only if
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(1.3) ' > nelaan < cosa - B.
n=2

The result is sharp.

Using the lémma, we [3] determined distortion inequalities
and the radius of convexity and starlikeness of functions in the
class A(ot,8). Further we showed a result for the quasi-Hadamard
products.

In this report we introduce a subclass R(a,8) of the class

A(ct) and a subclass A_(o,8) whiqh means a intérpolate of two

Y
subclass A(x,B8) and R(x,8). Some results [3] on the subclass
A(x,B) are generalized to the case of subclass Ay(a,B).

Let R(a,B8) denote the subclass of A(x) consisting of func-

tion which satisfy the inequality
(1.5) Re(e'® £X21) ¢ (0 £ B < cosa).

Class of this type for o = 0 was studied by Sarangi and
Uralegaddi [11].
By using the same manner as the proof of Lemma, we easily

obtain the following theorem.

Theorem 1. A function f(z) is in R(x,B) if and only if

(1.5) i

[T\ B}
o

a < coso - B.
n

The result is sharp for the funCtion
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(1.7 £(z) = z - (cosa - Bre %"  (n =2 2).

Now we introduce a subclass Ay(a,B) of the class A(x). We
say that a function f(z) belongs to the class AY(a,B) if and

only if

(1.8) > (yn + 1 - ?)elaan < cosat - B (0 <7y < 1).
n=2

Evidently, Ao(a,B) = R(xt,B) and Al(a.B) = Ala,B).

9. Distortion inequalities and the radius of convexity
and starlikeness.

Theorem 2. If function f(2) is in AY(a,B) (0 £y £ 1),
theq .

2.0 ) 2l - 28R <t < 2l cosa=_By,12,

Ny _ 2(cosa - 8) ) 2(cosot_ - B8)
(2.2) (i1 L+ v lzl < [f'(2] <1 + L+ 7 Lzl (v = 0).

The results are sharp for the function

(2.3) f(z) = z - oS =b iagl,

Proof. (i) We have
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(2.4) L2y < 1zl + 1z1® 3 la I
o n=2

By coefficients inequalities (1.8), it follows that

< N aQ . . . .
(1 + v) 2 elaan £ 2 (yn + 1 - v)elaan < cosot - B

n=2 n=2

that is, that

(2.5) : S |la | g Sosa -8

Suhstitutingq(z.S) into (2.4) we obtain the right-hand side in-

equality of (i). On the other hand, we have

(2.6) l£¢z)] = lzl - 1212 3 lanl
n=2
> IZ| z lzlz CO:’C(+‘1Q . !
(ii) 1 -zl 2 nla ]l < ') 1 + |z2] 3 nla_l
n n
n=2 n=2

By (1.8) we see that

s+

(2.7) 2 nla_| <
n
n=2

2(cosaot_ - B)
1 + ¥

(y # 0).

Thus assertion follows.
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If we put ¥ = 1 in Theorem 1, we shall qbtain the same
result given by Sekine [3;Theorem 27.

Theorem 3. If f(z) is in A_(o,B8), then f(z) is convex

Y
of order 8(0 £ & ¢ 1) in the disk
o 1

- (1 - 8)(yn + 1 - 7) .n-1

(2.8) lz] < ry = AnEl S cosa - B) ) (n 2 2).
nx2 '

The result is sharp for the function
(2.9) f(z) = z - cosx - 8 e 1%M  (h > 2.

(rn + 1 - p)

Proof. It is sufficient to show that

z2£"(z) _
| f'(z)l > 1 5 for |z| < ry.
We have
- 2 n(n - 1)anzn-1
IZf"£22| = n=2 )
£'(2) i Pt n-1
' 1 - 3 na z
n=2
S ntn - Dla |z}
< n=2 -
1 - 3 la|]z|™!
n
n=2
2£f"(2z) _ .
Hence | f’(z)‘ <1 -8 if
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© n(n - 6)|an|lz|n“1
(2.10) 2 < 1.
1 -3 -
n=2 .
By (1.8) we see that
§ (n + 1 - 7y )Ianl
2.11) < 1.
n=2 cosa 8
Hence (2.8) is satisfied if
n(n - 8)Ja_||z|*! (rn + 1 - via_l
1 < n (n 2 2)
1 -8 cosot ~ B )
Solving this for |z|, we get
1
d -8)¢n + 1 - v) n-1
(2.12) lz] < « n(n - 5 (cosa = &) ! (n 2 2).
Writing
, 1
s - =-3)n + 1 - y) ,n-1
Ty © ;2; {'n(n = 8)(cosx - B) ! (n\Z 2),

in (2.12), the result follows.

If we put ¥ = 1 in Theorem 3, we shall obtain the same result

[3; Theorem 31].

Theorem 4. If £(z) is in AY(a,B), then f(z) is starlike of

order 6(0 < 5 ¢ 1) in the disk
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. n(l - &)(yn + 1 - y) ,n-1
(2.13) Izl < Ty = ;2; U = &) (cosx - B) b

The result is sharp for the function (2.9).

Proof. It sufficies to show that

zf'(z) _ | _
| () 1l <1 5 for |z| < ry.
We -have
-3 (n - 1)a 2™!
(2.14) |Z§7é%l - 1] = n=2
1 - 2 anzn—1
n=2
5 - Dlallz ™7
< n=2 -
1 - 3 lallz|™}
n=2
Hence Igfzéfl -1 <1 -8 if
© (n - 5)|an||zln-1
(2.15) 2 <1
1 - &
n=2

The remaining part of the proof is similar to that of Theorem 3.

If we put ¥ = 1 in Theorem 4, we shall obtain the same re-

sult [3; Theorem 4].
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3. Quagsi-Hadamard product

Let the functions in the class A (a,8) be of the form

(3.1) f(z) =2z - S az" (e'®a_ =0, |a| < %),
n=2 n n

(3.2) g(z) =z - 3 b z" (% =0, |a] < %)

n=2 n n ‘

and define the quasi-Hadamard product (f*g)(z) of the functions

f(z) and g(z) by

(3.3) (f%g)(2) =z - 3 ab 2",

Theorem 6. If f(z) and g(z) are in A?(al’Bl) and Au(az,Bz)

respectively, then (fxg)(2) is in the class Av(a1+ az,k) ex-
cepting in the caSe of ¥y = 4 = 0 and v = 1, where

(v + 1)(cosxx, - B.)(cosa, - B,)
(3.4) X = cos(u, + o,) - L 1 2 2

1 2 r + DWW+ D

Proof. By coefficient inequality (1.8), we have

S Y 1 - v ix

(3.5) > XA LY 1, <
=g COSX,y Bl n

and
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(3.6) oan 1 =M%y <.
nzg COSX, 82 n :

We need to find the largest X such that

- (vn + 1 - v)el(al o

(3.7) S - ‘ nn¢,.

n=2 /cos(al + az) - AA

Applying Cauchy-Schwarz inequality to (3.4) and (3.5), we have

///(Yn £ 1 - pret?®y ahJ//(un + 1 - we'% b
- cosol, - Bl coso, - 82 < 1.

1 2

(3.8) >

n=2

Then we want show -that

2) ab
nn

(vn + 1 - prel{* &

(3.9)
) cos(oz1 + az) b

Jyn + 1 - pe'® a (un+ 1 - we'®% b
< D L n>2)
coso, - 61 cosol, - 82

1 2

that is , that

(3.10) ’ //eial a //‘eiaz b
n : n
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2
(vn + 1 - v)/cosa1 - B, /fcosaz - B

l{yn + 1 -7 J/““ + 1 - p (cos(oy + o,) = 1)
< (n 2 2).

2

Since we have

; : cosat, - B coso,, - B
//éldl an //eldz bn < J/' 1 1 /[7 2 2

Jyn+ 1 -y /un+1-u

by (3.8), if

Z{cosal - Bl J/cosaz - B2
Jyn+1 -9/ un+1 -4

Jyn+ 1 -9y /Jun +1 -np {cos (&, +'a2) - )

(vn + 1 - v/ cosa; - B, / cosa, - B

2 2

(3.7) is true. Solving the above inequality for X, we obtain

(cosoz1 - Bl)(cosoz2 - 82)(vn + 1 - v

(yrn + 1 - P)(un + 1 - ) *

(3.11) x £ cos(ot1 + az) -

We note that the right-hand side of (3.11) is an increasing
function of n(n 2 2), then writing n = 2 in (3.11) we conclude

v + 1)(cosa, - 81)(cosa2 - 8.

(v + 1)(p + 1)

(3.12) A £ cos(oz1 + az) -

Letting y = np =v =1, o, = «

1 and 32 = 62 in Theorem 6, we

2

_10_
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have the same result [3; Theorem 5].

By Theorem 6, we easily obtain the following corollary.

Corollary 1. [If functions fi(z)(i‘= 1,2,3,...,p) are in

AY(a,B), then (fl*fz*f3*...*fp)(z) is in thg class Ay(pa,k),

where
: _ P
(3.13) X = cospo - (cosa fi (p =2 2).
(y + 1P
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