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SOME PROPERTIES OF CERTAIN ANALYTIC FUNCTIONS

HITOSHI ‘SA1T0H<n$,tgm~am )

1. Introduction.

Iet A(p,n) denote the class of functions of the form

1.1) - f(z) =2+ Z a2k ( p,neN = {1,2,3,-—1 )
k=n ptk

which are analytlc in:the unit disk U ={z:|z]. <
F(Ji:‘ther, we define a function F}\ (z) by |
(1.2) Fy (z) = (l—-A)f(z) + Azf' (z)
for A>0 and f(z)eA(p,n). A functlon f(z) belong:mg to A(p,l)—A(p) 1s said to be

in the class P(p,a) if and only if it satisfies

(1.3) re {£P) (2)} > a

for some a ( Ofo<p! ) and for all zeU.

(o]

The Hadamard product or convolution of two power series £f(z) = a zn and

n=0 "
g(z) = X b Z" is defined as the power series
n=0 "
(1.4) (EXkg)(z) = X anbnz .
n=0

Let the function f£(z) and g(z) be analytic in U. Then the function f(z) is said
i:o be subordinate to g(z) if there exists a function w(z) analytic in U, with
w(0) = 0 and |w(z)]|. <1 (zeU), such that

f£(z) = gw(z)) ,
for zeU. We denote the subordination by

(1.5) f(z) < g(z) .
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2. Inequalltles for functions in the class A(p,n)

We begln w1th the statement of the followmg lenma due to Miller [1]

Lemma 1. ILet ¢(u,v) be a complex valued function such that
$ : D—->C, DCCXC ( C is the complex plane ),

and let u = Uy + iuz, v=v + iv2. Suppose that the function ¢(u,v) satisfies

(1) ¢(u,v) is continuocus ih D,
(ii) (1,0)eD and Re{¢(1,0)} > O, _
(iii) for all (iuz,vl)eD such tha; v, & —n(l+u22)/2, Re{¢ (iuz,vl) 1< 0.

et p(z) = 1 + pnz“.+ anrlsz“l + ——— be regular in the unit disk U such

that (p(z),zp'(z))eD for all zeU. “If
Re {p(p(z),zp'(z))} >0 ( zeU ),

then Re {p(z)} >0 ( zeU).
Applying the abové lemma, we prove

Theorem 1. ILet a function f£(z) defined by (1.1) be in the class A(p,n).

If '
Re{—-f*z%i—:g—z—)-}>a (0 <a %.(pgjlj)! . zeU ),

then we have .
Re{ f;jil(z).} > ST BT A (zev ),

where 1 < Jj < p.

Proof. We define the function p(z) by

. (3-1)
(p-j+h)! £ (2)
(2.1) - = g + (1-B)p(2)
p! L ItL . |
_ (p=j+1)!20 + np! n n+1 + —— is

with 8 = STy a7 - Thenp(2) =1+p2z +p 2

- regular in U. Differentiating both sides in (2.1), we obtain
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(2.2) —‘EPLTI—’l £9Y(2) = -541)8F T + (p-§+1) (1-8)2F T p(2)
| - ra-pF M
and, by using (2.1) and (2»-.2), we have |

‘ (3)
(2.3) (p-j+1) ! {—f——f-zl - a}= p! (p-j+1)8 — (p-j+1) la
ZP'J

+ p! (p-j+1) (1-B)p(z) + pl(1-B)zp'(z).

Hence, in view of Re {f(J) (z) /283 > o, we have

(2.4) Re' {$(p(2),2p' (z))} > 0,
where ¢ (u,v) is defined by
(2.5) . ¢(u,v) = pl(p-j+1)B - (p-j+1)!la + p!(p-j+1) (1-B)u + p! (1-B)v

.withu = ul + 1u2, v = Vl + le. Then we see that

(1) ¢ (u,v) is continuous in D = CXC,
(ii) (1,0)eD and Re{¢(1,0)} = (p-3+1)t{p!/(p-j)! - o} > O,
(iii) for all (iuz,vl)elD such that vy < —n(l+u22)/2 ,
Re{¢ (iu,,vy)} = p! (p~3+1)8 = (p-3+1)la + p! (1-B)v;
2

np! (1-B) (].+u2 )
< pl(p-j+1)B - (p-j+1)!la - —— <0

_ (p=3+1) 120 + np! N | L
for B = P12 (o—3+1) + nJ < 1. Consequently, ¢(u,v) satisfies the conditions

in lemma 1. Therefore, we have Re {p(z)} >0 ( zeU ), that is,

el 25 P@ ] p g1 (p=3+1) 120 + mp!
zp—j+l- (p-3+1)! (p-3+1) 1 {2(p-3+1) + n}
which completes the proof of Theorem 1.
Taking n = 1 in Theorem 1, we have

Corollary 1. ILet f(z)eA(p)=A(p,l) and suppose

(3)
£ (z) p! .
Re{—~——-—-j-—-—} > o (0;g<———( 371 ,zeU){.

Then we have
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£-1) :
(z) 1 (p-j+1) 120 + p!
Re{ Pt } T DT 2 ¥ 3 (ze0 ).

where 1 <] ;‘p.
Corollary 1 is the result by Saitoh [5].
Next, we prove
Theorem 2. ILet a function F, (2) defined by (1.2) for A>0 and £ (z)eA(p,n) .

if

(3)
Fy 27 (2)
Re | —2 o (0<a<BPLOMPO
z- ) = (=304
then |
(3) ' .
£ (2) (p=3) 120 + np!A
e { P73 } > Tp3) 12 + (2pm-2)A) ( zeU ),

where 0 < j < p.

Proof. By the differentiation of Fl(z) ; we obtain

(2.6) F}\(j) @) = 1D @) + azeT ().

We define the function p(z) by

. (3)
(p-3)! £-7(z) _ _ :
(2.7 Y . 3 B + (1-B)p(2)

120 + np! ‘ +
with B = (I,'?%_)l_ég’!_n_gl))})\ (0 < B<1). Then p(z) =1+ pnzn + pn+lzn 1 + —=

is regular in U. Making the differentiation in (2.7), we have

(2.8) ——=—(1-B)zp' (2).

(§+1) '
zf (z) _ __ p! LB+ (1-B)p(z)} =

e (p-j+1 (p- J) !

By using (2.6), (2.7) and (2.8), we obtain

r G ()
(2.9) B @) _plasuph) o, pLASMPY ASB)
2 -3t (B-3) !
+ p M;“)?) zp' (2).

Hence, in view of Re {F)\(j) (z)/zp_J} > o, we have

"(2.10) " Re {¢(p(z), 2zp'(2))} > 0,
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where ¢(u,v) is defined by

_ p! (l—-)\+p>\) p! (l—A+p)\) (1—8) p! (l B)
with u = uy + iu2 and v = v 4—iv2 . Then we see that
u)MuWistMmmlnm=¢Xc
p! (1-A+pA)
(ii) (l O)em and Re{¢ (1, 0)} By e >0,
(iii) for all (iu

o Yy )eD such that

vy <-n (l+u22)/2
Re{¢(1u2, vy )} =

p! (1- x+pA) o + PAA=B) o
(p-3)! -3 1 ,
(PLOMPN) o mptrA (m8) (M )
= (3! C 29! =
" for B = (E'Tg) ; 2052; ;15;;\)‘} Consequently, ¢ (u,v) satisfies the conditions
in lemma 1. Therefore, we have

Re {p(z)} >0 ( 2zeU ), that is,
(J) ] 1 1
Re £ (z) N p! 8 = (p-3)!2a + np!x
3 ®HT " T @3 H2 F pm-2A)
which completes the assertion of Theorem 2

Making n = 1 in Theorem 2, we have
Corollai:y 2.

Let a function FA(z) defined by (1.2) for A>0 and
f(z)eA(p)=A(p,1). 1If -

(J)(Z)
Re-——————--——>o¢ (0<a<p(1—)\+p?\)
ZP‘J
then |

Re { f(j)-(z) N (p—‘j)!20L + p!x
P

(p-3) ! (2-A+2p))
where 0 < j<p

( zeU ),

Corollary 2 is the result by Saitoh [5]
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3. Some properties of the class P(p,qa).

For giving some results in this part, we need the following lemma of

Ruscheweyh and Sheil-Small [4].

Lemma 2. Iet F(z) and G(z) be convex in U and
f(z) < F(z) . - Then
£fXG(z) < FXG(z) .
With the aid of above Lemma 2, we prove
Theorem 3. ILet a function f(z) defined by (1.3) be in the class P(p,0).

Then we have

£(P-1) (z)

> < 20 - p! - 2_(gi_~gl log(l-z) .

Proof. Define the function G P 1) (z) by

(p) _p! + (pl-20)z
GT (z) = 1 -2z

and G(p_l) (0) = 0 . Then it follows that

(p-1) : : -
G _ (2) _ 5y - p! - Z_LEIZ__Qlog(l—-z) .

Noting f£f(z) P(p,0), we see that

£P) @) < c® (g

Defining the function k(z) by

(3.1) k (z) =_’_1Lo_9§<112;>_ -1 ﬁ% 2
\ ' n=0
we have
£ (2) kx£® (z) ana S @) -y xc® (2

z - z
Further, k(z) is convex and univalent in U, and G(p) (z) is also convex and

univalent in U. Therefore, using Lemma 2, we have

kx£® (2) < xxc® (2 , that is,

P V@, oM

= 2y - p1 - 2(pi-0) -
Z : p = 20 - p! - log (1-2)
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Thus we completes the proof of Theorem 3.
Next, we prove

Corollary 3. Let £(z)eP(p,0), Then we have

(p-1)
Re{f _ (z)

]‘> 20 - p! + 2(pl-a)log2 .
Proof. Since the function k(z) defined by (3.1) is convex and univalent
in U, the function Gl(z) given by

G (z) = 20 - p! - 2104 (1-2)

is also convex and univalent in U. Therefore, by the principle of the subordi-

nation, we have

(p-1)
Re{_if_.-_;l_zl} > inf Re {G,(2)} .
jz|<1-

We note that Gl(U) is symmetric with respect to the real axis because all coef-

ficients of Gl(z) are real. Noting that Gl(U) is convex, we obtain

inf Re {Gl(z)} = inf G,(x) = 20 - p! + 2(p!-a)log2,

|z]|<1 “l<x<l T
which proves the assertion of Corollary 3.
Putting p = 1 in Theorem 3 and Corollary 3, we have the following corol-
laries which were proved by Owa, Ma and Liu [2].
Corollary 4. Iet £(z)eA=A(1l). If the function f(z) is in the class

‘P(l,u)=P(a),'then

£z2) & 20 -1 - 2859 1001
Corollary 5. If f(z)eP(a), then

Re {iziz—)—} > 20 - 1 + 2(1~0)1og2 .
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