SOME PROPERTIES OF CERTAIN ANALYTIC FUNCTIONS

HITOSHI SAITOH (群馬高専・斎藤 斉)

1. Introduction.

Let A(p,n) denote the class of functions of the form

(1.1)
$$f(z) = z^{p} + \sum_{k=n}^{\infty} a_{p+k} z^{p+k}$$
 (p,neN = {1,2,3,---})

which are analytic in the unit disk $U = \{z: |z| < 1\}$.

Further, we define a function $F_{\lambda}(z)$ by

(1.2)
$$F_{\lambda}(z) = (1-\lambda)f(z) + \lambda zf'(z)$$

for $\lambda \geq 0$ and $f(z) \in A(p,n)$. A function f(z) belonging to A(p,1)=A(p) is said to be in the class $P(p,\alpha)$ if and only if it satisfies

(1.3) Re {
$$f^{(p)}(z)$$
 } > α

for some α ($0 \le \alpha \le p!$) and for all $z \in U$.

The Hadamard product or convolution of two power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and n=0

$$g(z) = \sum_{n=0}^{\infty} b_n z^n$$
 is defined as the power series

(1.4)
$$(f * g) (z) = \sum_{n=0}^{\infty} a_n b_n z^n .$$

Let the function f(z) and g(z) be analytic in U. Then the function f(z) is said to be subordinate to g(z) if there exists a function w(z) analytic in U, with w(0) = 0 and |w(z)| < 1 (zeU), such that

$$f(z) = g(w(z))$$

for $z \in U$. We denote the subordination by

$$(1.5) f(z) \prec g(z) .$$

2. Inequalities for functions in the class A(p,n).

We begin with the statement of the following lemma due to Miller [1].

Lemma 1. Let $\phi(u,v)$ be a complex valued function such that

$$\phi$$
: $\mathbb{D} \to \mathbb{C}$, $\mathbb{D} \subseteq \mathbb{C} \times \mathbb{C}$ (\mathbb{C} is the complex plane),

and let $u = u_1 + iu_2$, $v = v_1 + iv_2$. Suppose that the function $\phi(u,v)$ satisfies

- (i) $\phi(u,v)$ is continuous in D,
- (ii) $(1,0) \in \mathbb{D}$ and $\text{Re}\{\phi(1,0)\} > 0$,
- (iii) for all $(iu_2, v_1) \in \mathbb{D}$ such that $v_1 \leq -n(1+u_2^2)/2$, $\text{Re}\{\phi(iu_2, v_1)\} \leq 0$.

Let $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + ---$ be regular in the unit disk U such

that $(p(z), zp'(z)) \in D$ for all $z \in U$. If

Re
$$\{\phi(p(z),zp'(z))\} > 0$$
 ($z \in U$),

then Re $\{p(z)\} > 0$ ($z \in U$).

Applying the above lemma, we prove

Theorem 1. Let a function f(z) defined by (1.1) be in the class A(p,n).

If

$$\operatorname{Re}\left\{\frac{f^{\left(j\right)}\left(z\right)}{z^{p-j}}\right\} > \alpha \qquad \left(0 \le \alpha < \frac{p!}{\left(p-j\right)!}; z \in U\right),$$

then we have

$$\operatorname{Re}\left\{\frac{f^{(j-1)}(z)}{z^{p-j+1}}\right\} > \frac{1}{(p-j+1)!} \frac{(p-j+1)!2\alpha + np!}{\{2(p-j+1) + n\}} \qquad (z \in U),$$

where $1 \leq j \leq p$.

Proof. We define the function p(z) by

(2.1)
$$\frac{(p-j+1)!}{p!} \frac{f^{(j-1)}(z)}{p-j+1} = \beta + (1-\beta)p(z)$$

with
$$\beta = \frac{(p-j+1)\,!\,2\alpha\,+\,np\,!}{p\,!\,\{2\,(p-j+1)\,+\,n\}}$$
 . Then $p\,(z)\,=\,1\,+\,p_nz^n\,+\,p_{n+1}z^{n+1}\,+\,---\,$ is

regular in U. Differentiating both sides in (2.1), we obtain

(2.2)
$$\frac{(p-j+1)!}{p!} f^{(j)}(z) = (p-j+1)\beta z^{p-j} + (p-j+1)(1-\beta)z^{p-j} p(z) + (1-\beta)z^{p-j+1} p'(z)$$

and, by using (2.1) and (2.2), we have

(2.3)
$$(p-j+1)! \left\{ \frac{f^{(j)}(z)}{z^{p-j}} - \alpha \right\} = p! (p-j+1)\beta - (p-j+1)!\alpha$$

$$+ p! (p-j+1) (1-\beta)p(z) + p! (1-\beta)zp'(z).$$

Hence, in view of Re $\{f^{(j)}(z)/z^{p-j}\} > \alpha$, we have

(2.4) Re
$$\{\phi(p(z), zp'(z))\} > 0$$
,

where $\phi(u,v)$ is defined by

(2.5)
$$\phi(u,v) = p! (p-j+1)\beta - (p-j+1)!\alpha + p! (p-j+1) (1-\beta)u + p! (1-\beta)v$$
 with $u = u_1 + iu_2$, $v = v_1 + iv_2$. Then we see that

- (i) $\phi(u,v)$ is continuous in $D = \mathbb{C} \times \mathbb{C}$,
- (ii) $(1,0) \in \mathbb{D}$ and $\text{Re}\{\phi(1,0)\} = (p-j+1)!\{p!/(p-j)! \alpha\} > 0$,

(iii) for all
$$(iu_2, v_1) \in \mathbb{D}$$
 such that $v_1 \leq -n(1+u_2^2)/2$,
$$\text{Re}\{\phi(iu_2, v_1)\} = p! (p-j+1)\beta - (p-j+1)!\alpha + p! (1-\beta)v_1$$

$$\leq p! (p-j+1)\beta - (p-j+1)!\alpha - \frac{np! (1-\beta) (1+u_2^2)}{2} \leq 0$$

for $\beta = \frac{(p-j+1)!2\alpha + np!}{p!\{2(p-j+1) + n\}} < 1$. Consequently, $\phi(u,v)$ satisfies the conditions in lemma 1. Therefore, we have Re $\{p(z)\} > 0$ ($z \in U$), that is,

$$\text{Re}\left\{\frac{f^{(j-1)}(z)}{z^{p-j+1}}\right\} > \frac{p!}{(p-j+1)!} \; \beta \; = \; \frac{1}{(p-j+1)!} \; \frac{(p-j+1)!2\alpha \; + \; np!}{\{2(p-j+1) \; + \; n\}}$$

which completes the proof of Theorem 1.

Taking n = 1 in Theorem 1, we have

Corollary 1. Let $f(z) \in A(p) = A(p,1)$ and suppose

$$\operatorname{Re}\left\{\frac{f^{(j)}(z)}{z^{p-j}}\right\} > \alpha \qquad (0 \le \alpha < \frac{p!}{(p-j)!} ; z \in U).$$

Then we have

$$\operatorname{Re}\left\{\frac{f^{(j-1)}(z)}{z^{p-j+1}}\right\} > \frac{1}{(p-j+1)!} \frac{(p-j+1)! 2\alpha + p!}{2(p-j) + 3} \quad (z \in U),$$

where $1 \le j \le p$.

Corollary 1 is the result by Saitoh [5].

Next, we prove

Theorem 2. Let a function $F_{\lambda}(z)$ defined by (1.2) for $\lambda \geq 0$ and $f(z) \in A(p,n)$.

Ιf

$$\operatorname{Re}\left\{\frac{F_{\lambda}^{(j)}(z)}{z^{p-j}}\right\} > \alpha \qquad (0 \le \alpha < \frac{p!(1-\lambda+p\lambda)}{(p-j)!} ; z \in U),$$

then

$$\operatorname{Re} \left\{ \frac{f^{(j)}(z)}{z^{p-j}} \right\} > \frac{(p-j)!2\alpha + np!\lambda}{(p-j)!\{2 + (2p+n-2)\lambda\}} \quad (z \in U),$$

where $0 \le j \le p$.

Proof. By the differentiation of $F_{\lambda}(z)$, we obtain

(2.6)
$$F_{\lambda}^{(j)}(z) = (1-\lambda+\lambda j) f^{(j)}(z) + \lambda z f^{(j+1)}(z).$$

We define the function p(z) by

(2.7)
$$\frac{(p-j)!}{p!} \frac{f^{(j)}(z)}{z^{p-j}} = \beta + (1-\beta)p(z)$$

with
$$\beta = \frac{(p-j)!2\alpha + np!\lambda}{p!\{2+(2p+n-2)\}}$$
 $(0 \le \beta < 1)$. Then $p(z) = 1 + p_n z^n + p_{n+1} z^{n+1} + ---$

is regular in U. Making the differentiation in (2.7), we have

(2.8)
$$\frac{zf^{(j+1)}(z)}{z^{p-j}} - \frac{p!}{(p-j+1)!} \{ \beta + (1-\beta)p(z) \} = \frac{p!}{(p-j)!} (1-\beta)zp'(z).$$

By using (2.6), (2.7) and (2.8), we obtain

(2.9)
$$\frac{F_{\lambda}^{(j)}(z)}{z^{p-j}} - \alpha = \frac{p! (1-\lambda+p\lambda)}{(p-j)!} \beta - \alpha + \frac{p! (1-\lambda+p\lambda) (1-\beta)}{(p-j)!} p(z) + \frac{p! \lambda (1-\beta)}{(p-j)!} zp^{1}(z).$$

Hence, in view of Re $\{F_{\lambda}^{(j)}(z)/z^{p-j}\} > \alpha$, we have

(2.10) Re
$$\{\phi(p(z), zp'(z))\} > 0$$
,

where $\phi(u,v)$ is defined by

$$\phi(u,v) = \frac{p! (1-\lambda+p\lambda)}{(p-j)!} \beta - \alpha + \frac{p! (1-\lambda+p\lambda) (1-\beta)}{(p-j)!} u + \frac{p! \lambda (1-\beta)}{(p-j)!} v$$

with $u = u_1 + iu_2$ and $v = v_1 + iv_2$. Then we see that

(i) $\phi(u,v)$ is continuous in $\mathbb{D} = \mathbb{C} \times \mathbb{C}$,

(ii)
$$(1,0) \in \mathbb{D}$$
 and $\text{Re}\{\phi(1,0)\} = \frac{p!(1-\lambda+p\lambda)}{(p-j)!} - \alpha > 0$,

(iii) for all $(iu_2, v_1) \in \mathbb{D}$ such that $v_1 \leq -n(1+u_2^2)/2$

$$\operatorname{Re}\{\phi(iu_{2}, v_{1})\} = \frac{p! (1-\lambda+p\lambda)}{(p-j)!} \beta - \alpha + \frac{p!\lambda(1-\beta)}{(p-j)!} v_{1} \\
\leq \frac{p! (1-\lambda+p\lambda)}{(p-j)!} \beta - \alpha - \frac{\operatorname{np!}\lambda(1-\beta)(1+u_{2}^{2})}{2(p-j)!} \leq 0$$

for $\beta = \frac{(p-j)\,!\,2\alpha \,+\, np\,!\,\lambda}{p\,!\,\{2\,+\,(2p+n-2)\,\lambda\}}$. Consequently, $\varphi\left(u,v\right)$ satisfies the conditions

in lemma 1. Therefore, we have

Re
$$\{p(z)\} > 0$$
 ($z \in U$), that is,

$$\operatorname{Re} \left\{ \frac{f^{(j)}(z)}{z^{p-j}} \right\} > \frac{p!}{(p-j)!} \beta = \frac{(p-j)!2\alpha + np!\lambda}{(p-j)!\{2 + (2p+n-2)\lambda\}}$$

which completes the assertion of Theorem 2.

Making n = 1 in Theorem 2, we have

Corollary 2. Let a function $F_{\lambda}(z)$ defined by (1.2) for $\lambda \geq 0$ and $f(z) \in A(p) = A(p,1)$. If

$$\operatorname{Re}\left\{\frac{F_{\lambda}^{(j)}(z)}{z^{p-j}}\right\} > \alpha \qquad (0 \le \alpha < \frac{p!(1-\lambda+p\lambda)}{(p-j)!}; z \in U),$$

then

$$\operatorname{Re}\left\{\frac{f^{(j)}(z)}{z^{p-j}}\right\} > \frac{(p-j)!2\alpha + p!\lambda}{(p-j)!(2-\lambda+2p\lambda)} \qquad (z \in U),$$

where $0 \le j \le p$.

Corollary 2 is the result by Saitoh [5].

3. Some properties of the class $P(p,\alpha)$.

For giving some results in this part, we need the following lemma of Ruscheweyh and Sheil-Small [4].

Lemma 2. Let F(z) and G(z) be convex in U and

$$f(z) \prec F(z)$$
.

Thei

$$f * G(z) < F * G(z)$$
.

With the aid of above Lemma 2, we prove

Theorem 3. Let a function f(z) defined by (1.3) be in the class $P(p,\alpha)$. Then we have

$$\frac{f^{(p-1)}(z)}{z} < 2\alpha - p! - \frac{2(p!-\alpha)}{z} \log(1-z) .$$

Proof. Define the function $G^{(p-1)}(z)$ by

$$G^{(p)}(z) = \frac{p! + (p!-2\alpha)z}{1-z}$$

and $G^{(p-1)}(0) = 0$. Then it follows that

$$\frac{G^{(p-1)}(z)}{z} = 2\alpha - p! - \frac{2(p!-\alpha)}{z} \log(1-z) .$$

Noting $f(z) P(p,\alpha)$, we see that

$$f^{(p)}(z) \prec G^{(p)}(z)$$
.

Defining the function k(z) by

(3.1)
$$k(z) = -\frac{\log(1-z)}{z} = \sum_{n=0}^{\infty} \frac{1}{n+1} z^{n} ,$$

we have

$$\frac{f^{(p-1)}(z)}{z} = k * f^{(p)}(z) \text{ and } \frac{G^{(p-1)}(z)}{z} = k * G^{(p)}(z).$$

Further, k(z) is convex and univalent in U, and $G^{(p)}(z)$ is also convex and univalent in U. Therefore, using Lemma 2, we have

$$k * f^{(p)}(z) < k * G^{(p)}(z)$$
, that is,

$$\frac{f^{(p-1)}(z)}{z} < \frac{G^{(p-1)}(z)}{z} = 2\alpha - p! - \frac{2(p!-\alpha)}{z} \log(1-z).$$

Thus we completes the proof of Theorem 3.

Next, we prove

Corollary 3. Let $f(z) \in P(p, \alpha)$, Then we have

$$\operatorname{Re}\left\{\frac{f^{(p-1)}(z)}{z}\right\} > 2\alpha - p! + 2(p!-\alpha)\log 2.$$

Proof. Since the function k(z) defined by (3.1) is convex and univalent in U, the function $G_1(z)$ given by

$$G_1(z) = 2\alpha - p! - \frac{2(p!-\alpha)}{z} \log(1-z)$$

is also convex and univalent in U. Therefore, by the principle of the subordination, we have

$$\operatorname{Re}\left\{\frac{f^{(p-1)}(z)}{z}\right\} > \inf_{|z|<1} \operatorname{Re}\left\{G_{1}(z)\right\}.$$

We note that G_1 (U) is symmetric with respect to the real axis because all coefficients of G_1 (z) are real. Noting that G_1 (U) is convex, we obtain

$$\inf_{|z|<1} \operatorname{Re} \{G_1(z)\} = \inf_{-1 < x < 1} G_1(x) = 2\alpha - p! + 2(p!-\alpha)\log 2,$$

which proves the assertion of Corollary 3.

Putting p = 1 in Theorem 3 and Corollary 3, we have the following corollaries which were proved by Owa, Ma and Liu [2].

Corollary 4. Let $f(z) \in A=A(1)$. If the function f(z) is in the class $P(1,\alpha)=P(\alpha)$, then

$$\frac{f(z)}{z} < 2\alpha - 1 - \frac{2(1-\alpha)}{z} \log(1-z) .$$

Corollary 5. If $f(z) \in P(\alpha)$, then

Re
$$\left\{ \frac{f(z)}{z} \right\} > 2\alpha - 1 + 2(1-\alpha)\log 2$$
.

References

- [1] S.S. Miller: Differential inequalities and Carathéodory functions. Bull. Amer. Math. Soc., 81, 79-81(1975).
- [2] S. Owa, W. Ma and L. Liu: On a class of analytic functions satisfying $Re\{f'(z)\}>\alpha$. Bull. Korean Math. Soc., 25, 211-214(1988).
- [3] S. Owa and M. Nunokawa: Properties of certain analytic functions. Math. Japon., 33, 577-582(1988).
- [4] S. Rucheweyh and T. Sheil-Small: Hadamard products of schlicht functions and the Pólya-Schoenberg Conjecture. Comment. Math. Helv., 48, 119-135 (1973).
- [5] H. Saitoh: Properties of certain analytic functions. Proc. Japan Acad., 65, Ser. A, 131-134(1989).