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1. Introduction

This paper is concerned with the problem of minimizing a sum of squared
nonlinear functions
(1.1) F(x) = (1/72) = ;-4™(f;(x))?, m=n
where f; IR" — R are twice continuously differentiable for i =1,...,m

Most iterative methods for the above problem are variants of Newton’s
method. At the k-th iteration of Newton’s method, the search direction di
is computed by solving
(1.2) V2F(xc) d¢ = —VF(xy)
and the new point is generated by
(1.3) Xk+1 = Xk T dk .

Here x. is the current estimate of the minimum point x* and VF, V°2F are
given by

(1.4) VF(x) = JOOTF(x),

(1.5) VeF(x) = JOOTJ(x) + Z."F (0OVEF (x),

where

(1.6) f(x) = (F1 (), «o. , F,00)T

and J is the mXn Jacobian matrix of f, and the symbol ”T” denotes the
transpose of a vector or a matrix. v

For the problem (1.1), quasi-Newton approximations to only the second
part of the Hessian matrix have been developed [3],[4]. Recently, two robust
algorithms have been proposed by Bartholomew-Biggs[1] and Dennis, Gay and
Welsch[5].

In Section 3, we present factorized versions of structured quasi-Newton
methods, and derive a BFGS-1like and a DFP-1ike update, which were first
given by Yabe and Takahashi[9]. On the other hand, Songbai and Zhihong[7]
have been studying factorized versions of structured quasi-Newton methods
independently of us. In Section 4, the Songbai and Zhihong method is
presented. In Section 5, we establish sizing techniques. Further, a factor-
ized algorithm is given in Section 6. Finally, some computational experi-
ments are described in order to investigate the effectiveness of several
structured quasi-Newton methods. Throughout this paper, Il « Il denotes the
2-norm for vectors or matrices and Il - Il denotes the Frobenius norm.
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2. Structured Quasi-Newton Methods for Nonlinear Least Squares Problems
Since the nonlinear least squares algorithms usually calculate the

Jacobian matrix J(x) analytically or numerically, the portion J(x)TJ(x) of

V2F(x) is always readily available, so we only have to approximate the

second part of V2F(x). Therefore, for the nonlinear least squares problem,

it has been considered that the search direction can be computed by solving

2.1 T + A Dy = — ) T,

where f = f(x ), J« = J(xx), and the matrix A is the k-th approximation to

the second part of the Hessian matrix of F [4]. The matrix A, is updated

such that the new matrix Ak+; satisfies the secant condition

(2.2) Acs1 Sk = Yo —Jks1 Jr+1Sk

or

(2-3) Acst Sk = vy, Ve = (Jk‘+1'—Jk)Tfk+1,

where v - _

(2.4) Sk = Xke1 — Xks Yk = VFi1 =VFy.

Recently,by using sizing techniques, Bartholomew-Biggs and Dennis et al.
have proposed the robust algorithms for the both cases of large and small
residual problems. Their updates are as follows:

(i)the Biggs update

(2.5 Acsr = Buhe + (vie— B Aesi)(vie— B rAesi)T/ (v — B yAesk) sy, ,

(2.6) By = fuar T f 7 T 7Ty,

(ii)the DGW update ;

(2.7 Aker = BiAe ((kaBkAkSk)VkT+ yk(vk-Bk/AkSk)T)/skTyk
—{skT(vik = B Ausi /(s T2 Pyeyr '

(2.8) Be =minC s v /s Asel, 1),

where B, is a sizing factor.

3. Factorized Versions of Structured Quasi-Newton Methods

For general quasi-Newton methods, the hereditary positive definiteness
property is desirable because a descent search direction for objective
function is obtained. On the other hand, for structured quasi-Newton
updates, it is not clear how to construct updating formulae for Ay such that
the matrix Ji " Ju+Ac is positive definite. To overcome this difficulty,
several strategies have been proposed, for example, the modified Cholesky
decomposition of the matrix J«"J« + A, the Levenberg-Marquardt modifica-
tion (the model/trust region strategy)[5] and switching to the Gauss-Newton
method. '

In [9],we proposed a direct approach which maintains positive definite-
ness of the coefficient matrix in (2.1). We compute the search direction by
solving the linear system of equations
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(3.1) (L +JOOTk + W) de = =T,
where the matrix Ly is an mXn correction matrix to the Jacobian matrix
such that L TLe#LTJe+JiTLe is the k-th approximation to the second part of
the Hessian matrix of F. Since the coefficient matrix is expressed by the
factorized form, the search direction may be expected to be a descent direc-
tion for F. Successful updates for Ly would lead to simplified line search
algorithms in contrast to the more complex trust region algorithms.

The secant condition for Ly.; is as follows:
(3.2)  (Lis1Hes1 )T (Lks1tde+1) Sk = 2k,

where

(3.3) Zr = Yk

or

(3.4) Zk = Vi + Jier T 18k,

and the vectors vy, s, and y, are given in (2.3) and (2.4), respectively.
Then we have two types of updates as follows:
(i)the BFGS-1ike update
(3.5 Lir 13 LicbCQlicH e 1 8k 786 "B ¥ ) ((s B Psi /80 T2 )1 722, — B 's, )T,
(ii)the DFP-1ike update
(3.8) Ly+1= Lk+(Lk+Jk+1)((SkTZk/ZkT(Bkn)_1Zk)1/2(Bkn)-1Zk_Sk)(Zk/SkTZk )T,
where ‘
(3.7 Bi¥= (Lyx + Jes1)T(lk + Jks1)-

The local and q-superlinear convergence of these methods are shown by
the following theorem[8].

Theorem. Let D be the open convex subset of R" which contains the
minimum point x*. Suppose that there exist positive constants &£,, £, and
p such that
(3.8) NVeF)—~V2F(x* )N S &, lu—x"1l® for any u in D,

(3.9 HJQuid)—Jud N & £ Hup —up 11® for any uy and up in D,
and that V2F is symmetric positive definite at x*. Let the matrix L. be
updated by the BFGS-1like formula (3.5) or the DFP-1like formula (3.6),
where z, is given by (3.3) or (3.4). Then the seguence {x,} generated by
(3.10) Xes1 = X —C(Le + JO)TCLe + L) )Tk ' ‘
converges to the minimum point x* locally and g-superlinearly.

4. Songbai and Zhihong method

Independently of us, Songbai and Zhihong [7] have been studying
factorized versions of structured quasi-Newton methods. They proposed
the approximation of f(x) around x, as follows;
(4.1) mixe +d) = f + (Je + Ld.
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If Ly = 0, then the above is reduced to the Gauss-Newton model. In which
case, the model function to be minimized is (1/2)Um(x, + d)N?2 , and

the search direction dy is given by solving the normal equation

(4.2 e + LT + Ldd = = + L),

Since this does not correspond to the Newton equation (1.2),they imposed the
condition Ly"f, = 0 on a matrix L, in addition to the secant condition.

So the conditions which the matrix L.+, should satisfy are as follows:

(4.3) (et s 1 )T s 1 HJunt ) Sk = 2

and

(4.4) kvt fyay =0

where

(4.5) Zr = (U1 = Je) T Fior + Jest T JurrSke

It is easily shown that, for nonzero s, and z,, the matrix egquation (4.3) is
consistent if and only if

(4.6) (a) Lk+1Th = 2x— Jk+1Th and (b) Lg+1Sk = h— Jk+1Sk

for some m-dimensional vector h. Further, the matrix equations (4.8) have

a common solution L..; if and only if each equation separately has

a solution and h"h = s, 72, [2, Chapter 2]. So the purpose is to find

a rectangular matrix L.+, which satisfies the equations (4.4) and (4.6)
under the assumption of s.'z, > 0.

In the following, we construct a updating formula which corresponds to
the BFGS update, by a slight different way from Songbai and Zhihong[7]. Now
we drop the suffix k and replace the suffix (k+1) by ’+’ for simplicity of
notation. Assume that f. # 0. For a matrix M,let R(M) denote a space spann-
ed by column vectors of M. Then we can consider the following two cases:
(Casel)

When h is contained in R(f.), h is represented by
4.7 h= 2(sTz)72f, 71f. 0.

If z— J."Th#0, then the matrix equations (4.4) and (4.6.a) are inconsistent.
Otherwise, since (4.6.a) is equivalent to (4.4), the conditions are reduced
to the expressions

(4.8) Les = £(sT2)'72f, /I f. ll —J)is and L.7f, = 0.

(Case2)

When h is not contained in R(f.), we can consider a least change secant
update following to Songbai and Zhihong[7]. For any unknown m-dimensional
vector h such that h"h = sTz, minimizing the Frobenius norm I L.T —L7 Wl¢
with respect to L., subject to L,Th =2 —J."h and L.7f.= 0, we have
a unigue solution
(4.9) L+ = PL + Ph(z —M"h)T/ 11 PhlI 2,
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where _

(4.10) M=PL+J, and P=T1-—-FfFfT/f.7f..

By substituting the above for the other condition (4.6.b), we have ,
(4.11) (1=(2=M"h)"s/ I Phlt 2)h = Ms—{(z—M"h)Ts « £.Th/CI Ph Il 2 Il f, I 2)}f,.
Then we can further consider two cases: |

(Case2-1)
When Ms is not contained in R(f.), 1—(z—~M"h)'s/IIPhil2#0. In fact,
for an m-dimensional vector h such that (z—M"h)'s = Il Phll 2, the left-hand

side of (4.11) becomes zero, on the other hand,the right-hand side of (4.11)
becomes Ms—(f."h/ Wl f. 112)f, # 0, which is a contradiction. Consequently,
h can be represented by the form
(4.12) h= TMs + 17.f,, T;#0.
Substituting the above for the expression (4.11), we have
{1=(sTz— v s M Ms— 78T J.TFf.)/Cr 12 IPMs 112D} 4 Ms + T .f,) = Ms—{(sTz

— T 18TMMs— 78T . Tf. ) e CoqsT)u Tt N N2)/C 2 PMsS 2O, 1L 2)2E,.
By arranging the coefficients of the vectors Ms and f.,and using the linear
independence of Ms and f., ’ -
(4.13.2) (sTz— 1 1s™MMs— 78" ).Tf.)/(r  NPMsII®) = 1,1,
(4.13.b) (sTz— 7 1s"MMs— 18T LTFIF, T)us/Cr  IPMSNZNFL 112) = — 1,
Then we have v )

1, = (= )f T s/ f N2
Substituting the above for the expression (4.13.a) and setting r=1,,
we have the quadratic equation of T
NPMsH 212 + (UMsZ—PMs 12— (f.TJ.s)3/ 1 f, %)
3 ¥ ((£.7Jes)2/ N F. N2=sT2) = 0,

which yields
(4.14) HPMsI 212 = sTz—(f.TJ.s)2/ I f, 112,

If sTz—(f.7J,s)2/11f. 12 2 0, then the above can be solved and we obtain
(4.15) h= tMs + (1= 2 )(F.TJus/ I FL 2T,
which corresponds to the Songbai and Zhihong updating formula.

(Case2-2)

When Ms is contained in R(f.), Ms is formed by Ms = (f."Ms/ Il f. Il 2)f,.
Thus, it follows from (4.11) that
(4.16) {ChTf.)Ms—h)T£.) h = {(F. M) I Phll 2= (z—MTh)Ts « (f.Th)}f..
Since h is independent of f., the coefficients of the both sides should be
zero. Therefore, we can choose a vector such that
(4.17) (Ms—h)'f, =0, i.e., f."h = f."Ms.
Then, noting the condition hTh = s7z, we have a general solution of (4.17)
(4.18) h=Ms + (sTz— lIMslI 2)t72Pu/llPull,



where P is an orthogonal projection matrix (4.10) onto the null space of f.
and u is an n-dimensional arbitrary vector which is not contained in R(f,).

Finally, summarizing (Casez 1) and (Casez 2), we obtaln the following
updating formula:
(4.19) Lk+1 = PkLk + thk(zk—MkThk)T/ll thk ”2,

(4.20) he = (fk+1TJk+1Sk/" feer ll 2)fk+§ + o Puwi/ H Pewi il
(4.21) Pe = I —Ffraqrfrar /N Feq 12,

(4.22) Mk = PkLk + Jk+19 ) : '

(4.23) P k2= stz —(Fuer Ts 1837/ 1 fray "2

where

(4.24) w = Myse if Myse is not contained in R(f.q), i.e., IPMcse Il #0,

otherwise, w, is chosen to be a linear independent vector to f ...
Note that the update with w, = Mys, coincides with the Songbai and Zhihong
update by choosing a positive p .

5. Sizing techniques of the updating matrix

We know that,for zero residual problems,the matrices A, and L "L +Le 7 Ji
+Ji "Ly should ideally converge to zero. If the matrices do not at least
become small in those cases, then structured quasi-Newton methods cannot be
hoped to compete with the Gauss-Newton method. Since the quasi-Newton
updates do not generate the zero matrix, some remedies must be employed.

For example, Songbai and Zhihong proposed the switching to the Gauss-Newton
method. Among remedies, the sizing of the updating matrices which has been
introduced by Bartholomew-Biggs[1] or Dennis et al.[5] seems most promising.

The structured quasi-Newton methods with the sizing factors (2.6) and
(2.8) may be reasonable in the sense that if the function f.., becomes zero,
then v = 0 and B8, = 0, so the new matrix A..1 also becomes zero. This
fact is derived by using the secant condition (2.3).

Now we can apply the above mentioned techniques to our factorized
versions and the Songbai-Zhihong update. Then we have the following updates:
(i)the sized BFGS-1ike update
(5.1)  Lus1=B Lk t((BrLit)ir1)sk/sk Bi®*si )((skTBi¥sk/sk T2k ) 722 — By ®si )7,
(ii)the sized DFP-1ike update
(5.2)  Lgar= BkLk+(BkLk+Jk+‘l)((Sk Zi /2 T (BB ) 12 )12 (B ) Tz,

" —=s)(a /s’ 27,
(iii)the sized Songbai-Zhihong update
(5.3)  Lgsr = BuPely + P2 =M ThDT/ 1 Peh 12,
(5.4) hk = (fk+1TJk+]Sk(” fk+1 ”2) )fk+1 + DkPkMkSk/" p MkSk ] N
(5.5) Pp= T —=Cllfray UBY fraqfiay’,

14¢
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(5.8) My = BuPelx + Ji+1,

(5.7 o= (T2e— (Fus1 T k182 Frug N2)*HV72,

where z, is given by (3.4), q* denotes the Moore-Penrose generalized inverse
of q, By is a suitable sizing factor and the matrix B.* is rewritten as
(5.8) B = (Bl + Ju+1)T(Bili + Jys1). :

Note that we can apply the Biggs’ sizing parameter (2.6) to the
factorized quasi-Newton updates. On the other hand, since the DGW’s sizing
factor (2.8) contains the matrix Ay ,we can not employ it directly. However,
for the factorized version, a strategy similar to the DGW’s one can be
considered. The factor B should be chosen such that the matrix

(BeLOTB L) + (BrLldTiwt + Jeet TCB kL)

has the same spectrum as that of the second part of the Hessian matrix in
the direction of s,. So we have the following relation

P scTvie/se TECB «Li)TCB kL) + (B iLidTdeer + JustTCBLKIIsk I =1,
which yields
(5.9 B’ = {—=(Lesi) I8k + sgn({Lysi)TJi+1SKk) D723/ les 2,
where ¢, = ((Lisk) Jur1Sk)? £ I Lese 12¢sTvy) and the symbol sgn( &)
denotes the sign of & .

Now we can obtain the following two strategies (a) and (b) by investi-
gating the signs of s,"vy, and ¢,

(a) Set @y = ((Lesk) Ji+18k)? + HLese N2 1 s vl . For B¢’ in (5.9);

we choose :

(a-l) Bk =min{l Bk" ’ 1};

or

(a-2) -1 if By < —1,

B« By if —1< B <1,
1 if 1< 8.
Note that, in (a-1), we use the absolute value of B’ and that, in (a-2),

we consider the sign of 8.’.

(b) Set
Gt = ((Lesk)TJv18)2 + I Lise H2(scTvi),
$? = ((Lesk)TJes18k)® — W Lesk H3(seTvi)
and : ' _
B! = {—(Lesi)TJus1sk + s8n((Lisi)T Jks18K)(D D72}/ 1 Lsi 11 2,
B2 = {—(Lesi)TJus18k + sgn(lLlesi) T Je+ 1) (D) 21/ 1 Liese I 2.
Then we have ' =
(b-1) min{max( 1 Bt 1,1 821), 1} if @,'20 and ¢,220,

By =X min{!I B, 1, 1} if @20 and ¢,2<0,
min{1 B21, 1} otherwise;
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or
(b-2) Set ,
y%k‘ if (¢'20and ¢ 2=20and | B,' 1S 1 B8,%1)
B = or if (¢, 20 and ¢,2<0),
B? otherwise.
For this B.’, we choose B, by the same way as Strategy (a).

6. New Algorithm

Now we present a new factorized quasi-Newton algorithm.
(FACTNLS Algorithm) |

Starting with a point x; € R" and an m x n matrix L;, the algorithm
proceeds, for k =1, 2, ..., as follows: _ ‘

Step 1. Having x« and L., find the search direction dx by solving
the linear system of equations (3.1).

Step 2. Choose a steplength a, by a suitable line search algorithm.

Step 3. Set xy.1 = Xk + adg.

Step 4. .If the new point satisfies the convergence criterion, then
stop, otherwise, go to Step 5.

Step 5. Construct Ly.1 by using a suitable updating formula for L.

7. Computational Experiments
Computational experiments were performed to compare the factorized
versions proposed in this paper with the Gauss-Newton method and the
structured quasi-Newton methods from the viewpoint of the number of
iterations and the number of vector valued function (i.e. f(x)) evaluations.
The numerical calculations were carried out in double precision
arithmetic on a NEC PC-9801VX personal computer, and the program was coded
in FORTRAN 77. The iterative process is terminated
) if Nfxdl o, = max(TOL1, &),

or
(2) if le; TJ(xues1 )Tf(xke1) 1 = max(TOL2, €) N fxe+1) I 1 J{xes1de; I
for i=l,...,n and Il Xeer =X Il o = max(TOL3, € dmax( Il xc+1 Il oy, 1.0),
where e; denotes the i-th column of the unit matrix,
or

(3) if the number of iterations exceeds the prescribed limit (1TMAX),
or ,
(4) if the number of function evaluations exceeds the prescribed limit
(NFEMAX), '
where Il « Il , denotes the maximum norm and &£ is machine epsilon. Further,
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the Jacobian matrix is evaluated by the forward difference approxlmatlon,’
and the bisection line search method with Armijo’s rule

(7 1) F(Xk + akdk) = F(Xk) + 0. lakVF(xk)Tdk

is employed.

In the experiments, we set TOL1 = TOL2 = TOL3 = 104, ITMAX = 500 and
NFEMAX = 2000. In addition to (2.6), we used the following sizing parameter
(7.2) B = 1 feaTf L/0 £ N2,

Essentially, the DGW update is designed for use in a trust region framework,
but we dare to use it in a line search framework from the point of view of
discussing relative merits among several updates given in this paper.

In addition, for the DGW and the Biggs updates, the modified Cholesky
decomposition is employed to determine the search directions in case

Ju«TJe + A in (2.1) is not positive definite. For all the ‘methods, the
initial matrices Ay and L, were set to the zero matrices, respectively.

The names, the sizes and the starting points of the test problems [5],
[6], together with the abbreviated problem names used in Tables 2-5, are
listed in Table 1.

The computational results are summarized in Tables 2-5. Note that the
numbers in Tables 3 and 5 include the number of vector valued function
(i.e. f(x)) evaluations to evaluate J(x) by the forward difference approxi-
mation. In each table, we use the following symbols; '

GN ¢ the Gauss-Newton method,
Biggs : the Biggs update (2.5) and (2.6),
DGY : the DGW update (2.7) and (2.8),

BFGSF-0 : the FACTNLS algorithm with (3.3) and (8.5),
F-1 : the FACTNLS algorithm with (3.4) and (3.5),
F-2a : the FACTNLS algorithm with (3.4), (5.1) and (7.2),
F-2b : the FACTNLS algorithm with (3.4), (5.1) and (2.8),
F-3a : the FACTNLS algorithm with (3.4), (5.1) and (a-1),
F-3b : the FACTNLS algorithm with (3.4), (5.1) and (a-2),
F-4a : the FACTNLS algorithm with (3.4), (5.1) and (b-1),
F-4b : the FACTNLS algorithm with (3.4), (5.1) and (b-2),
DFP F-0 : the FACTNLS algorithm with (3.3) and (3.6),
F-1 : the FACTNLS algorithm with (3.4) and (3.6),
F-2a : the FACTNLS algorithm with (3.4), (5.2) and (7.2),
F-2b : the FACTNLS algorithm with (3.4), (5.2) and (2.86),
F-3a © the FACTNLS algorithm with (3.4), (5.2) and (a-1),
F-3b : the FACTNLS algorithm with (3.4), (5.2) and (a-2),
F-4a : the FACTNLS algorithm with (3.4), (5.2) and (b-1),
F-4b : the FACTNLS algorithm with (3.4). (5.2) and (b-2),



SZ F-0 : the FACTNLS algorithm with (3.3) and (4.19),
F-1 : the FACTNLS algorithm with (3.4) and (4.19),
F-2a © the FACTNLS algorithm with (3.4), (5.3) and (7.2),
F-2b : the FACTNLS algorithm with (3.4), (5.3) and (2.6),
F-3a : the FACTNLS algorithm with (3.4), (5.3) and (a-1),
F-3b : the FACTNLS algorithm with (3.4), (5.3) and (a-2),
F-4a : the FACTNLS algorithm with (3.4), (5.3) and (b-1),
F-4b : the FACTNLS algorithm with (3.4), (5.3) and (b-2),
G-N1 : if Uf I =10"', then GN is used, otherwise SZF-1,
G-N2  if Wf 510‘3, then GN is used, otherwise SZF-1,
G-N3 T if Nfll =105, then GN is used, otherwise SZF-1,
¥ . the method failed to converge in the specified number of
function evaluations.

From these tables, we can see that the Gauss-Newton method performed
very well for the zero or small residual problems, but did not necessarily
perform well for the large residual problems. For all the problems, the
structured quasi-Newton methods with the Biggs and the DGW updates performed
well and were numerically stable. Roughly speaking,our numerical experiments
show there is little difference between the Biggs and the DGW updates.

BFGSF-0 and DFPF-0 did not perform well for all the problems, and the
latter was much worse than the former. Our numerical results show BFGSF-1
performed about as well as sized BFGS-1ike methods, even though BFGSF-1 does
not employ a sizing technique. However, this tendency can nol be observed
between DFPF-1 and the sized DFP-like methods. The sized BFGS-1like and the
sized DFP-1like methods performed well for all the problems. Sizing tech-
niques take effect for the DFP-1ike methods better than for the BFGS-1like
methods. In addition, it is interesting that the BFGS-1ike methods with
(3.4) perform well whether sizing techniques are employed or not.

The Songbai and Zhihong method performed better than our methods did.
It is also interesting that the behavior of their method changes little
whether sizing techniques are employed or not.

On the whole, sizing techniques similar to DGW’s one which consider the
sign of B’, such as F-3b and F-4b, seem sensitive.
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Table 1. Test Problems

Abbrebiated Name of Test Problem m n Starting Point
wz:ggNG Watson Problem with 6 variables 3l 6 (0,0, ..., 0
WATSONS Watson Problem with 9 variables = 31 9 (0,0, ..., 0
WATSON12 Watson Problem with 12 variables 31 12 (0, 0, ..., 0)
WATSON20 Watson Problem with 20 variables 31 20 (0,0, ..., 0)

ROSENBROCK ~ Rosenbrock Problem 2 2 (-1.2, 1.0)
HEL1X Helical Valley Problem 3 3 (-1,0,0)
POWELL Powell’s Singular Problem 4 4 (3,-1,0,1)
BEALE Beale Problem 3 2 (0.1, 0.1)
FRDSTEIN1 Freudenstein and Roth Problem 2 2 ( 6 6
FRDSTEIN2 Freudenstein and Roth Problem 2 2 (15, -2
BARD Bard Problem 55 3 C 1, 1, 1D
BOX ~ Box Problem 100 3 ( 0, 10, 20)
KOWAL K Kowalik Problem ~ 11 4 (0.25,0.39,0.415,0.39)
OSBORNE1 Oshorne Problem 3 5 (0.5, 1.5, -1.0, 0.01, 0.02)
OSBORNE2 Osborne Problem | 65 11 (1.3, 0.65, 0.65, 0.7, 0.6,
. 3.0, 5.0, 7.0, 2.0, 4.5, 5.5)
JENNRCH Jennrich Problem 10 2 (0.3, 048
PEAK Peak Probiem 51 5 (g, 2, 6, 3.5, 0.1)

q=-2, -1, ..., 8
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Table 2. Number of |terations

BFGS BFGS BFGS BFGS BFGS BFGS BFGS BFGS

GN_ Big DGW F-0 F-1 F-2a F-2b F-3a F-3b F-4a F-4b
WATSONG 6 9 9 19 15 14 15 17 19 12 - 20
WATSONS 80 82 82 28 28 26 21 31 30 23 31
WATSONI2 61 60 60 19 13 14 7 19 27 11 30
WATSON20 4 9 9 18 16 15 11 21 25 11 22
ROSENBROCK 11 20 17 .29 22 13 16 -16 13 15 12
HEL1X 8 11 13 26 20 16 15 20 31 14 19
POWELL 9 14 14 20 14 14 14 14 14 14 14
BEALE 6 9 13 9 8 8 8 11 8 9
FRDSTEINI 5 9 6 8 6 6 6 6 6
FRDSTEIN2 105% 9 7 7 7 11 27 10 3l
BARD 5 12 10 20 9 8 8 8 8 7
BOX 4 6 5 10 5 5 5 5 5 5
KOWALIK 19 10 12 1M 10 9 9 8 12 9 10
0SBORNE1 6 27 21 43 27 18 18 16 17 15 26
OSBORNE2 3 13 12 22 24 15 15 16 16 17 14
JENNRICH 138% 9 9 10 1 g 12 11 102 10 18
DFP DFP DFP DFP DFP DFP DFP  DFP
F-0 F-1 F-2a F-2b F-3a_ F-3b_F-4a F-4b
WATSONG 7% 27 8 8 9 9 9 8
WATSONS 126 47 23 23 21 21 21 21
WATSON12 153 25 ' 8 8
WATSON20 79 25 6 8
ROSENBROCK ~ 500% 54 19 19 18 17 19 21
HEL 1 X 283 34 12 12 12 14 11 15
POWELL 20 14 14 14 14 14 14 14
BEALE 19 11 8 8 7 12 711
FRDSTEIN1 8 6 6 8 6 6 6 6
FRDSTE I N2 10 8 6 6 8 10 8 13
BARD 17 9 8 8 8 8 8
BOX 15 5 5 5 5 5 5
KOWALIK 62 10 9 9 8 10 8
0SBORNE! 332% 57 139 138 21 19 20 26
0SBORNE2 0 41 13 13 13 15 13 15
JENNRICH 500% 89 9 8 8 8 8
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Table 2. (Continued)

sz sz SsZ SI SIL SL SI SIL SL SL SIL
_ F-0_ _F-1 F-2a F-2b F-3a_ F-3b F-4a F-4b G-N1 G-N2 G-N3
WATSONG 9 10 7 7 7 7 7 7 8 10 10
WATSON9 20 20 19 19 19 20 20 19 19 20 20
WATSON12 6 6 5 5 5 5 5 5 5 6 6
WATSON20 6 6 5 5 5 5 5 5 6
ROSENBROCK 24 14 . 14 14 14 14 14 14 13 14 14
HEL 1 X 7 11 11 11 11 11 11 1110 11 1
POVELL 14 10 10 10 10 10 10 10 9 10 10
BEALE 12 9 7 7 8 8 9 9 7 9 9
FRDSTEIN1 7 8 6 8 6 6 6 6 6 6 6
FRDSTEIN2 go* 27 35% 35% g% g3% g% 9% 27 27 27
BARD 23 7 5 5 5 8 5 5 7
BOX 7 5 5 5 5 5 5
KOWALIK 13 10 8 10 19 10 10
0SBORNE! 42 33 28 28 18 19 18 17 6 33 33 -
0SBORNE2 28 21 14 14 12 14 12 13 21 21 21
JENNRICH 13 9 7 7 7 36 715 9 9 9
Table 3. Number of Vector Valued Function Evaluations
BFGS BFGS BFGS BFGS ' BFGS BFGS BFGS BFGS
GN  Big DGW _F-0 F-1 F-2a F-2b F-3a F-3b F-4a F-4b
WATSONS 49 70 Tl 147 117 114 124 134 173 103 174
WATSONS 810 830 831 297 295 280 229 339 365 251 380
WATSON12 806 793 794 267 187 204 113 283 448 167 493
WATSON20 105 210 211 406 362 345 261 495 629 263 543
ROSENBROCK 62 73 87 96 178 48 88 19 59 17 57
HELIX 37 50 62 122 127 95 95 121 238 88 128
POWELL 50 75 75 105 15 75 75 75 715 15 15
BEALE 26 33 38 50 39 36 36 35 . 46 35 38
FRDSTEIN1 18 21 21 30 21 21 21 21 21 21 21
FRDSTEIN2 2004% 21 21 33 31 31 .31 102 442 93 520
BARD 20 53 45 102 41 37 37 37 31 37 33
BOX 20 28 24 45 24 20 24 28 24 24 24
KOWAL 1K 103 59 70 94 61 56 56 51 74 56 61
OSBORNEl 44 172 148 274 181 128 128 118 127 107 219
OSBORNE2 125 171 159 = 286 310 200 200 216 222 232 194
JENNRICH ,2001* 32 32 70 57 64 76 59 2013% 55 197




Table 3. (Continued)

DFP_ DFP  DFP

DFP  DFP  DFP  DFP DFP
F-0 F-1 F-2a F-2b F-3a F-3b F-4a F-4b
WATSONG 541 196 63 63 70 70 70 63
WATSONS 1279 480 240 240 220 220 220 220
WATSON12 2005% 342 91 91 117 130 117 104
WATSON20 1682 547 147 147 189 210 183 168
ROSENBROCK 1521% 180 68 68 73 69 80 82
HEL X 1142 143 60 60 59 66 56. 74
POWELL 105 75 75 75 75 75 75 75
BEALE 65 42 33 33 30 45 30 a1
FRDSTEIN1 27 21 21 21 21 21 21 21
FRDSTEIN2 33 21 21 21 39 49 38 63
BARD 77 41 37 37 37 37 3t 37
BOX 64 28 24 24 24 24 24 24
KOWALIK 324 60 55 55 50 61 50 50
OSBORNE1 2003% 349 843 843 141 130 141 176
0SBORNE2 494 507 170 170 171 204 171 204
JENNRICH 1514% 272 32 32 29 29 29 29
SZ SZ NYA SZ SZ Sz SZ SZ SZ Sz S
F-0 F-1 F-2a F-2b F-3a F-3b F-4a F-4b G-N1 G-N2 G-N3
WATSONG 70 17 56 56 56 56 56 56 63 1 77
WATSON9 210 210 200 200 200 210 210 200 200 210 210
WATSON12 - 91 91 78 78 78 - 78 78 78 78 g1 91
WATSON20 147 147 126 126 126 126 126 126 126 147 147
ROSENBROCK 126 ~ 61 61 61 61 61 61 61 57 61 61
HELIX 34 51 51 51 51 51 51 51 47 51 51
POWELL 77 55 55 55 55 55 55 55 50 55 55
BEALE 44 35 30 30 32 32 35 36 29 35 35
FRDSTEIN1 34 22 22 22 22 22 22 22 22 22 22
FRDSTEIN2 - 2020% 468 5838 5838 7488 18008 3848 2518 468 468 468
BARD 107 32 24 24 24 28 24 24 28 32 32
BOX 35 24 24 24 24 24 24 24 20 24 24
KOWALIK 75 59 49 49 55 60 55 55 103 59 59
0SBORNE1 262 - 210 199 199 148 139 137 128 44 210 210
O0SBORNE2 312 272 187 187 163 186 163 173 272 272 272
JENNRICH =~ 44 32 30 30 26 616 26 109 32 32 32

g: the global minimum is obtained.
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