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The Maass Zeta Function Attached to
Positive Definite Quadratié Forms

SER A (2HKR-32)

(Fumihiro Sato)

§0. Introduction

Let m, m Dbe positive integers with m = n. Put T =
Sl.in,Z) and take a lattice L in the space Mm,n;R) of m
by 7n real matrices stable under the action of I from the
right. Denote by L' the set of matrices of rank 7 in L.
In a series of papers (I[M1],[M2],[M5]) Maass made precise

investigations of the following zeta functions:

, t
Q)9 ("xx:)
$(Q,9,L;8) = 2
z€l' /T det(tx$)3+d/2n

where QL) is a homogeneous polynomial function of even
degree d on V invariant under the action of SL(m) from
the right ‘and oY) is an automorphic form of homogeneous
degree 0 on the space of positive definite symmetric
matrices of size n with respect to the arithmetic subgroup
r. According to his results, the =zeta functions can be
extended to meromorphic functions in the whole complex plane
and satisfy a certain functional equation; however Maass'
functional equation involves certain derivatives of
@(txz)det(tmz)_s, which have not been calculated explicitly
unless Q(x) 1is harmonic.

The aim of this paper is to present an approach to the

Maass zeta functions based on the theory of prehomogeneous



193

vector ‘spates’ and: to: calculate an explicit. formula ‘of ‘the
functional equation. In the present paper we restrict .our
attention to the case where the -automorphic form @ is a
constant function. The general case will be treated in the
subsequent paper [S41].

Put G = SOm) x GL(m). The group G acts linearly on
the space V = Mm,n) df m by 7 matrices via

z — ka:g_1

(k € SO(n), g € GL(m), z € V).
Then G,V) is a prehohogeneous véctor space with the
singular set
S = {z €V; det(tzm) = 0}
and the Maass zeta functions can be viewed as 2zeta functions
assoéiated with this prehomogeneous vector space.
For simplicity we now assume .that mrz 2n>. Let R =

G[M(m,n)]SL(n)

be the ring of SL(n)-invariant polynomial
functions on V = Mmam,n). To get an explicit functional
equation of the Maass zeta function, it is necessary to

decompose the ring R into direct sum of simple G-modules.

The simple components of R are parametrized by elements in

the set
‘ X E X, = ... = x_ (mod 2)
0 1 n i
A = {(l ) € 2 x 7K : o _ _ }
0 g2 cn 2220 0= ... =, =0
if m > 2m, and
| AL Z A, = ... =2 (mod 2)
0 1 n i
A=q{o,0 €7 x 15 ; }
0 , g 2 oo 22,402 o]
if m = 2n. We denote by R, . the 'simple component
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corresponding to (10,1) € A. Then our main theorem is the

following:

Theorem. Let QT) be a polynomial in Ql N
0’
((10,1) € A) and wO(Y) be a constant function. Then
(i) E(Q,wo,L;S) has an analytiec continuation to a

meromorphic function of s in € and the function

n A -i-1 A tm-itl

is an entire function.

(ii) Put
1/2 _-ng ©* Agmivl
&(Q,wo,L;s) = v(l) T mr(s + —5) §(Q,¢O,L;s),
1=1
where v(l) = f dz. Then the following functional
Vo /L
R

equation holds:

; — 7
E(Q,mO,L*;m/z—s).= exp(n/PT >

5 Ai) i(Q,@O,L;S).

i=1

As mentioned above, the Maass =zeta function can be
viewed as a zeta function associated with the prehomogeneous
vector space (SO(m)xGL(n),M(m,n)). However to controle
SL(n)-invariant functions appearing as coefficients of the
zeta function, we need precise information on the
prehomogeneous vector space (Bm)yxGL(n),M(m,n)), where Bm)
is the Borel subgroup of the special orthogonal group SOm).

In Section 1 the structure of (Bm)xGLx®n) ,Mm,n)) is
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examined. The decomposition theorem of the ring R is due
to Hoppe [HI. We give in this section a simple proof of
Hoppe's decomposition theorem and make a  correction to
Hoppe's result in the case m = 2n.

Recall that the following are the facts lying behind the
validity of functional equations of zeta functions associated
with prehomogeneous vecfor spaces (cf. [S8S1, [S11):

(1) local functional equations satisfied by complex powers

of relative invariants,

(2) integral fepresentation of zeta functions as a kind of

Mellin transform of Theta series.

Since the general theory in [SS] and [S1] can be applied to
the Maass zeta function only when both Q and P are
constant functions, it 1is necessary for our Apurpose to
generalize these +two facts to the Maass zeta function
§(Q,¢0,L;sf. In Section 2 we give an integral representation
of the Maass zeta function. We prove in Section 3 a
generalization of 1local functional equations (Theorem 3.3)
and give a proof of the main theorem (Theorem 3.1), assuming
a formula for generalized b-functions (Proposition 3.4).
Section 4 is devoted to a calculation of the local functional
equation and the b-functions of @Bm)xGLn) ,Mm,n)), which
plays a key role in determining the explicit form of the

functional equation of the Maass zeta function.

Notation. We denote by Z, R and C the ring of

rational integers, the field of real numbers and the field of
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complex numbers, respectively. - .For. an. affine algebraic
variety X defined over a field Kk, Xk stands for the set
of k-rational points of X. The space of rapidly decreasing
functions on a real vector space V is denoted by &(V)..
The space of compactly supported Cm—functions on a

C”-manifold M is denoted by CE(H). We denote by 1 and

n
O(m,n) the identity matrix of size =n and the = by n

zero matrix, respectively. The superscript (m,n) of a

matrix A = A(m,n) indicates that the matrix A is of m rows

AR AR,

and- n columns. We write simply

for For a

real number a, we put sgn(a) = a/lal.
§1. Structure of certain prehomogeneous vector space.

Let m, m .be positive integers with m > n. For

simplicity we assume .that m/2 > n?) We put «x = [m/2]1 and
d =0 or 1 according as m is even or odd. For a
nondegenerate symmetric matrix vY(M), let G = SOY) x GL@m)

and V = M(m,n). We consider the representation p of G on

V defined by

1

p(h,g)x = hxg (h € SO(Y), g € GL(n), z € Mm,n)).

Proposition 1.1 ([SK;Section 5, Proposition 231). . The
triple G,p,V) . is a regular prehomogeneous vector space
with singular set

S = (z € V; det(txYx) = 0}.

) I the finad versioy of the prese papor, thu vestr/clion wnill ba TQMMJ.

- 5 -
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'The . prehomogeneous vector. space - (G,p,V)  is defined
over .the field @(yij;ISisjsm)‘ generated by;thegeniries‘of,
Y. In this section we consider (G,p,V) as a prehomogeneous
vector space defined over { and it is convenient to take

the matrix

1
J= | 1 K

1

K
as Y.

Put
A %
Bam) = { 0 1, * | €S0; A€ Trigx)},
0 0 gl

where =~ Trig(x) is the group of nondegenerate upper

triangular matrices of size k. Then the group Bm) is a
Borel subgroup of SO0(J). Every element b of B(m) can be

written as

b = bl(A)bz(v)bS(B)’ '

/ A ,
b (A = | 15‘ (A € Trigw)),
s -
1 v -2ty
b)) = “ 1 -ty w € %
20 7 5 ’
\ 1](
1 0 :
. K :
by(B) = 1, 0 (B € M(x), “B = -B).
1K
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Also put P = Bm) x GL(n). We denote the representation of

P on V obtained from p by restricting it to P by ‘the

same symbol p.

Proposition 1.2. The triple P,p,V) i8 a regular

prehomogeneous vector space.

Proof. Consider the point

In

: O(K-n+6,n)
T = € V.

n
o (KB,

Then, by an elementary calculation, it is easy to see that

every element of the isotropy subgroup Pm of P at T, is
» 0

of the form

(n)

| (m,1) (n)
U 0 0" 0 0
(1.1) (b, ( _ )b, ( _ b, ( _ ),U)
1 [ 0 A(K n)] 2 L)(K n,l)] 3( 0 B(K n)]

. +1
where U = | - |. Hence P_ = (x1}" x B(2(k-n)+3) and
| +1 Lo

dim P - dim Pz = dim V. This shows that the triple (P,p,V)
0

is a prehomogeneous vector space (cf. [SK; Sectibn 2,
Proposition 21). The regularity of (P,p,V) follows directly

from the regularily of (G,p,V). O

Now we shall determine ‘the singular ‘set and relative

invariants of (P,p,V).
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‘For a symmetric matrix I we denote by d (I) the i-th
principal minor, namely the determinant of upper‘lefi i by

i block of T. Usingkthe block decomposition

n
~A
( z, Y] =
T, |} k-n
T=1|y }] &8 €V,
g |y ™
L %4 } K-n

we define rational functions ' Po(m),-", Pn($) by

det(txJz),

Po(m) =
P (x) = P.(x)-d.(x. Czdz) 1tz ) (1 € i < n-2)
i 0 i‘ts 3 ’
- t -1t .

P.(x)-d (z,("xJx) T.,) ifm > 2n,

p _ 0 n-1'*3 3 A

(z) =

n-1

Pn(x)'dn-1($3( zJT) Tq) ifm= 2n,

Pn(x) = det T,.
Then it is easy to check the first part of the following

proposition:

Proposition 1.3. (i) The functions Po(m),°°',’ Pn(m)
are relative invariants of P,p,V) and the rational
characters. xo,-'-; xn’ corresbonding to Po(z),?--, Pn(x),
respectively, are given by

det(g) %,

xo(b,g)

-2 -2

xi(b,g) det(g) "+ (a; " ra) (1< i< n-2)
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" det(g) %-(a, v ra. )72 Cif m > 2m,
- 1 n-1
Xp-y (B9 = -1 -1 .
‘ det(g) “+(ay-c-ay ) "ra, if m = 2m,
x (b,g) = det(g) teta, --a )7}
n? 1 n
4 R
for b = b (Mb,(by(B) € Bw) (A = . )  and
. 0 a

g € GL(n).

(i1)Y They are irreducible polynomials and the singular set

SP of P,p,¥V) is given by

n
SP = -! {z € V; Pi(x) = 0}.
i=0

To prove the second part of the lemma, we need some

preliminaries.

Lemma 1.4. Po(m),..., Pn(m) are polynomial functions.

The proof is based on the simple fact that, for a square

matrix A = (aij)’ every entry of det(A)A—l is a polynomial
of aij'
For A = (11,...,1K) € ZK, we define a rational
character X, of Bm) by
_il A
X, (b (Mb,(by(B)) = a; ---a "

Then any rational character x of P = Bm) x GL(n) 1is of

the form
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X(h,9) = x. .(h,g) = x.(h)-det(g) °
AO,A A
for some A € 2% and X, € 7. Let Xp(P) be the
multiplicative group of rational characters of P
corresponding to some relative invariants of P,p, V). By

(1.1) and [SK; Section 4, Proposition{4l , we have

A, = X, = A (mod 2)

0 1 ot n
X @ = {x. .: ] ot }.
P lo,l kn+1 = ... = AK = 0
We denote by PA 2 the felative invariant corresponding to
O’
xl X € Xp(P), namely the rational function satisfying
O’
Py 2P, T = X, (b,gP, (D) ((b,g) € P).

0 0 0

Recall that PA Iy is determined by (10,1) unigquely up to
O’

nonzero constant multiple ([SK;Section '4, Proposition 31).

Put

+ . .
Xp(P) = {x € Xp(P), Elo’l is a po;ynomlal}.
Let R be the ring of polynomial functions on \'

invariant under the action of SL(n) from the right:
R = {(Qzx) € CiMm,n)1; Q(zg) = Qxz) (g € SL(m))}.

We consider the ring R as a left G-module via

(Ch,g)-P)Y(@> = Pplh,g) tz) (h € SOW), g € GL(n)).

Then a relatively P-invariant polynomial function is nothing
but the highest Weight vector of a rational representaion of

G contained in R. The highest weight corresponding to
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. -1 . -1
Plo,k is xlo’l . It is known that the character xlo,l of

P is a highest weight of some rationalvrepresentation of G

if and only if

11 2 ... 2 AK 2 0 when m 1is even,
(1.2)

R T IAKI when m is odd.

Therefore we obtain the inclusion relation

+ e
Xp(P) c {x, , € Xp(P), A satisfies (1.2)}.

0’

Lemma 1.5. (i) Put

AN A, = ... = x_ (mod 2)
0 1 n ’
A={aa,0 €17 x 75 | _ _ o)
0 AO =2 ... 2 ln b3 ln+1 = ... = AK = 0
or
A, XA, 2 ... 2 x_ (mod 2)
0 1 n i
= {(1 JA) € 7 x ZK; }
0 X9 2 22, ;2 (2]

according as m > 2n or m = 2n (= 2x). Then

+
Xp(P) = {xlo,l, (lo,l) € A).
Proof. Let PA l(x) be a polynomial relative
0’
invariant. Then X satisfies the condition (1.2) and we
obtain
| X *n m > 2n)
n-1 (x.-x..,)/2 n ’
_ i i+l
Xy, 5 = n X; X
0’ =0 (An_1+1n)/2
' xn (m = 2n).

This implies that there exists a nonzero constant ¢ such

that



X, ‘ :
n-1 (Ai-x 1)/2 Pn (m > 2n),
Pl , = ¢ I Pi X
0’ i=0 (A, *¥2,)/2
P m = 2n).
n

Note that the exponents of Pl""’Pn are non-negative
integers. Assume that X <A, Then, since P is

0 1 0

irreducible, PO divides some Pi (1 £ i < n). This is
impossible. Hence 10 p-3 Al. This shows the inclusion
relation

+
Xp(P) c {xko,l, (AO,A) € A).

The opposite inclusion relation follows immediately from the

above expression of P as a product of P

p . O
AysX

0
Now we can complete the proof of Proposition 1.3.

Proof of Proposition 1.3 (ii). Let Q(z) be a prime
divisor of Pi(m). Then it is also a relative invariant (cf.
[SK; Section 4, Proposition 5]). As is shown ih the proof of
Lemma 1.5, Q) is a product of Po(x),°°', Pn(x). This can
ocecur only when Pi(z) is irreducible. An elementary
calculation shows that

n
Ve =V - igo {z € V; P.(x) = 0}

is a single P-orbit. This proves Proposition 1.3 (ii). 0O

Let Rk N be the ‘'subspace of R spanned by
0 b} . B :

203



204

{Ch, g)PAO,l’ (h,g) € ,G}f Every polynoylal in Rlo,k is
homogeneous of degree Aon. Put
: : =2, = ... = X (mod 2)
* { K 1 2 n i
= 1A € Z7; _ _ } m > 2n),
AIZ...ZanAn+1—...—lK-O
Xy EA, E oe. = A, (mod 2)
K 1 2 n ? ‘
{l € 71-; (m = 2n).
. U R NP
- * —
For 2 = (ll"‘f’lx) €.A", put Rx = Rkl,k' Then
 xgmad/2 : \
Rlo,l = Po(z) Rx ((50,;) € A).
By the relation between relatively P-invariant

polynomials

contained in R, Lemma 1.5

following Proposition:

Proposition 1.6.

The decomposition of R

and highest weighf vectors of simple G?modules

can be translated into the

into direct

sum of simple G-modules is given by

R = ® R,
(AO,A)GA l’10

3
3z )

coefficients satisfying

Let P (=

P (g )exp(tr(tny))

Proposition 1.7.

by the &ifferential‘eqUatibn

Lo ]
= &

be fhe differential

The space ® R

]
® P . (x)" R..
g=0 reA* O A

operator with’constant

t

= Po(y)exp(tr( yJzT)).

« By is characterized
A€EA

2] o4 :
PO(§;)Q($) = 0, namely,

- 13 -
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© « Ry = Q@ €R; Py = 0).

Proof. The proposition is an immediate consequence of
the formula for the b-function of (P,p,V), which will be

proved in Section 4 (Theorem 4.2).

Remark. Propositions 1.6 and 1.7 are due to Hoppe
([H;Satz 7, Korollar 7.11, see also [M61). However Hoppe's
result contains a slight inaccuracy, which results from that
he missed the fact that, when =m = 2n, Po(x)fn_l(x) can be

divided by Pn(x).

t

Take a W € GLm,C) such that J = “WW. For Xx € A",
put
_ -1,
%l = {(QW "z); Q) € Rx}'
Then
(1.3) R= @ ® (det txz)Q %l
2=0 x€A v

gives a decomposition of R into simple SO(m)-modules. Put

t

K =S80m) = {(k € GL(m)R; kk = 13}

m
and

k., 0
_ 1 . _
K, = {[ 0 &, ] € SOm); k, € SOm), k, € SO(m n)}.

Let C(K/KO) (resp. L2(K/KO)) be the space of continuous
functions (resp. measurable functions square integrable with

respect to the normalized K—ihvariant measure) on K/KO.



Define a mapping o:®, —— C(K/K;) by

‘ 1
(1.4) x(@ (k) = Qkz ), T, = { n ].
0
We denote the image a(%l) by Hl‘ Since @l is a simple

SO(m)-module, the mapping a:ﬂl —_— Hl is an isomorphism
and HA gives an irreducible unitary subrepresentation of K

of LZ(K/KO)L

Proposition 1.8. The irreducible decomposition of .the
regular representation of K on K/KO i8 given by

2
L"(K/K,) = @& _ H .
0 2e T A

§2. Integral represent%ﬁons 04 the Maass zeta functions

2.1, Put

t

K =80m = {(k € GL(m)R; kk = 1_1}.

m
We consider the R—structure of (G,p,V) such that

G = GR = K x GL(n,R) and Vp = M(m,n;R).
Put

GL(n,B)* = (g € 6L(n,R); det(g) > 0}
and ¢t = Gi = K x GLxn,R".
Put I' = SL(»,Z) and let L ©be a lattice in VR stable
under the I'-action from the right. Set

y' = VR—SR.=“{$ € VR; rank z = n)

and L’

Lnyv:'.

The set V' is a single G -orbit.

=15 -
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For ‘a homogeneous’ polynomial - Q(x) in R of degree d,
the Maass zeta function is defined by the Dirichlet series

€(Q,L;8) = 3 Q(z) (det tzz)—s—d/Zn,

z€L'/T
which is absolutely convergent for Re s > mn/2 (see
Corbllary to Proposition 2.3).
We also consider the local zeta function

s-d/2n-m/2

®Q,f;8) = f (det tzx) Q) f(x) dzx

(f € 9(VR), s € ),

where dz is the standard Euclidean measure on VR
= M(m,n;R). The integral ®(Q,f;s) is absolutely convergent
for Re. 8 > 0 ‘and has an analytic continuation to a
meromorphic function of -8 in (.

Let n Dbe an irreducible unitary representation of the
compact Lie group K. Denote by Hn the representation space
of n equipped with hermitian inner product < , >.

In order to obtain an integral representation of the
Maass zeta function, we introduce the following
End(Hn)—valued integral:

Zn(f,L;é) = f . det(9) %% nky S flpk,grx) dk dg,
o G /T , T€l’

( f € 9(VR))
where dg is a Haar measurelon' GL(n,IR)+ and dk is the
- Haar measure on K so normalized that the total volume
is equal to 1.  If = is the trivial representation of

K, then Zn(f,L;S) gives an- integral representaion of the
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zeta function considered. by Koecher ([KI and is absolutely
convergent for,. Re s > m/2. This implies the following

lemma:

Lemma 2.1. The integral Zn(f,L;s) " i8 absolutely

convergent for Re s > m/2.

Put

k, 0 *
Ky = { o k, € K; k, € SOm), k, € SO(m-n)}.

and

Hn,0_= {v € Hn; n{k)v = v (k € KO)}.

By the irreducibility of =n, we have dim Hn 0 < 1. When dim

Hn 0 = 1, the representation m  is called of class 1 (with

respect to KO). The projection pr of Hn onto HK,O is

given by the integral ‘
pr = IK n(ko) dko,
0
where dk0 is the normalized Haarmeasure on KO'
1, - "
Put Ty = [ O(m_n’n)J. Then we can find a ~(k$’9$) € G

such that p(kx,g:c):z:O = ¢ for any Z e‘V = VR_SR’ since V
= {x € VR; rank £ = m} is a single G -orbit. We define an
End(Hn)-valued function wn on V' by setting

wﬁ(z) = n(km)opr (z € V).
Since the coset kaO. is uniquely determined by 2z, the

function ¢ does not depend on the chioce of k

n x°

- 17 -
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Lemma 2.2. ‘Assume that Re 8 > m/2.
(i) The integral Zn(f,L:;s) vanishés unless n is of
class 1.

(ii) If n 1is of class 1, then

Z_(f,L:8) = {f (det tzz)yS™2 o (2) F(z) dx}
n v n

t

x{ 3 wn(x)* (det ‘zz) S}.

zel' /T

where wn(m)* is the adjoint operator of wn(m).

Proof. Note that, for Re s > m/2, the integral
Zn(f,L;s) is absolutely convergent and the following
calculation is'justified by the Fubini theorem.

14 3 +

For an g = p(km,gz)xo € V ,_thellsotropy subgroup Cx

of G+ at £ is given by .

+

o
1

k, 0
1 -1 -1, _
- ((kx[o kz]kw ’gmklgx ) k1 € S0y, k2 € S0(m-n)}

x> KO' ,
We normalize the Haar measure du on G by I du, = 1.
: x z ct T

z

The measure o(z) = (det °zx) on V' is G -invariant.
We can normalize a Haar measure dg on GL(TL,IR)+ so that the

following integral formula holds:

fc* Fek,9) dk dg = fv 0 () fc* FUky,g,0h) du (R
A z .
| (F e Lt

By this formula, we obtain

- 18 -
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Z (f,L;s) = 3 det IS riy) acy) I n(kykokxl) dk,,
‘ z€L' /T *V' det ‘zx : KO
P det tyy S -1
= ( 7 )Y fly) m(k )opron(km ) o(y)
z€l'/T YV' det "zz y
_ t S
= (det “yy)° f(y) n(ky)opr o(y)
V'
X 2 (det ‘zz)~S pron(kél).
x€l' /T
Since n is unitary, we have pron(k;I) = (n(km)opr)*.

Hence we get
zf,Lss) = [ et bynd® o ) 1) e}
Yy L ,

t

x{ 3 e @ et ‘zz)7%}.

z€l' /T
If nm is not of class 1, then pr is the O-map and hence

Z . (f,L;8) = 0. 0

2.2. An irreducible unitary representation n of K is
contained in the regular representation of K on LZ(K/KO) if
and only if N is of class 1 with fespect to ‘KO and then
the multiplicity of = is equal toe 1. For n of class 1,

take a unit vector v, in Hn o Then the mapping
. , 72
vV ———— q3k) = <v,n(k)—lvo>
gives an embedding of Hn and the image ‘q(Hn) coincides

with Hl for‘some X - € A* (cf. Proposition 1.8). In this

case we write m = nl.

Composing the mapping q with the inverse mapping of o

- 19_
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defined by (1.4), we define a K-isomorphism Q:Hn'———a‘@l' by
Qu:z) = « tqwik@ W €H,

namely, Qv;I) is the polynomial in %A satisfying
. _ 31
Q(v,kmo) = <v,nk) g

Proposition 2.3. Let n = Jt)L (X € A*) be an

irreducible unitary representation of SOm) ' of class 1.
When Re s > m/2, the following identity holds for any v, w

€ Hn‘

Z (f,Li)v,w> = QW3 ),Lis) 0 Qs ), fis).

Proof. For x, ¥ € V', we can easily prove the identity

Q) . Qw;y)
. X, /2 X, /2 °
(det tmx) 1 (det tyy) 1

@ (PIe (@) v, u> =

Now the 1lemma follows immediately fromlhthis 'identity and

lemma 2.2. |

Remark. By the decomposition (1.3), it“ is sufficient
for the description of analytic properties of the Maass zeta
fué%ions to consider the case where Q(z) is in ﬁx for
some A € A*,V Conversely, sihce the form of the functional
equations of the Maass zeta functions depend on X (see
Theorem 3.1 below), it is hocessary to cohsider vfhé

.decomposition (1.3).
Corollary to Proposition 2.3. For any homogeneous

_'20...
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polynomial Q(x) in R, the Maass zeta function &Q,L;s)

is absolutely convergent for Re. s > m/2.

8§3. Functional equations

3.1. For a lattice L 1in VR’ let L* be the lattice

dual to ,L:

*

L = {y € VR; tr(t

yz) € L for all <z € L}.

The following is the main theorem of the present paper:

' Theorem 3.1. Let Q(z) be a polynomial in ﬁx (€ AM).

Then
(i) £(Q,L;8) has an analytic continuation to a
meromorphic function of s in € and the function

n li-i—l li+m—i+1
M (s + 2—)(8 = —'2——) - §Q,L;s)
=1

is an entire function.
(ii) Put
n A —i+]
£@Q,L;s8) = w12 xS mr(s + —ki—e—) £@Q,L;s),
i=1

where vy = dz. Then the following functional

o

equation holds:

n
£Q,L%;m/2-3) = exp(n‘/:T 2 x;) EQ,L;s).
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3.2.. The proof .of. the theorem above is based on the
functjonalxequations satisfied by Zn(f;L;S) and ®@Q,f;:;8).
First let us %ﬂgﬁ%r the functiqnal equation satisfied by
Z (f,L5s). '

For f € Q(VR), define the Fourier transform ? of f
by setting

fy) = f f(z) exp2n/-1 tr(tyx)) dz.
R
The proof of the following proposition is quite similar to

that of [S1; Lemma 6.11.

Proposition 3.2. If f € chR) satisfies the condition
(3.3) f(z) = fx) = 0 for any z € VR such that rank z < u,
then Zn(f,L;s) has an analytic continuation to an entire

funcetion of s and satisfies the functional,équation

Z (f,L;s) = u(L>flzn<f,L*;m/z—s).

Remark. Let f, be a function in C;(V'). Then the

. t(d 2] t
functions det( (55](5§J)f0($) ﬁ?d det(»

zm)fo(m) satisfy
: v
the condition (3.3) .in the propoation above (cf. [SS; p.169,

Additional remark 2]),‘[81; Lemma 6.21).

'3.3. The "local - functional equation satisfied by

®(Q,f;8) 1is given in the following theorem:

- 22 -
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Theorem 3.3. Let Q(z) be a polynomial in R Then

K
the following functional equation holds for any f € Q(VR):

~ A /=172 —2ns+2-(—i’52"1—_-—2-l n B A m-i-l
®Q,f;8) = e 7 T sin (8 - ———5—)
i=1
n X =i+] A +m-i-1
X W T(s + —5—I(s - 5 ) ®Q,f;m/2-3).
i=1

The proof of Theorem 3.3 is based on the following

proposition, which will be proved in Section 4.

Proposition 3.4. For Qx) in %l (. € A*), let

Q(%§)~ be the differential operator with constant

coefficients satisfying

Q(%E)exp(tyz) = Q(y)exp(tyw).
Then
' : S-x
(i) Q(%—)(det tmm)s = b_(8)Q(Zx) (det tmm) 1,
z X ‘
where
A (A1+li)/2 i (;l—xi)/z .
bA(S) = 2 n n (s + 5 D) m (s + — - .
i=1 § =1 v J =1
.. t({o o t S, _ A s-1
(ii) det( (axj(ax)){Q(x)(det )Y = Bl(s)Q(m)(det zz) s
where
2n n X, =X . X+ .
_ 1 74 -1 1 71 m-i-1
B, (8) =2 1_’Tzll(s P TS 5y T
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Proof of Theorem 3.3. First we consider the case where
A ﬁl(O,...,O)i» and Q) is a constant function. In this
case, it“is well Kknown that the functional ® equation: in
Theorem 3.3 holds for any f € Q(VR). When Q(z) = 1 let us
. write simply ®(f;s) instead of ®(Q,f;S). Now we consider

the general case. VIt is easy to see that

AN

Q) f(z) = (-2n/=1) 1| (Q(%E)f) ).

Therefore, by the iunctional equation for Xx = (0,...,0), we
obtain

~ —,\_In 3 ~
®Q,f;8) = (-2n/-1) Q((Q(gi)f) ;8—11/2)

“Xym —2n(s—11/2)+n(m—2)/2

= (-2n/-1) n @(Q(%E)f;(m+11)/2-s)
n , 11+m-i—1 11+i-1 , 11+m—i—1

x W sin n(8 - ——) I'(§ - —5—)I)(8 - ——).
i=1 2 2 2

By integrating by parts, we have from Proposition 3.4 (i)

A,n :
8 - — — — 1 — 4 —
Q5 f5 (mer ) /2-8) = (-1) b, (x;/2-8) ®(Q,f;m/2-9).
This proves the theorem. O
Remark. Local functional equations and b-functions

aftached‘ to representatibns dh polynomial ‘fings, which are
similar to Thoerem 3.3 and proposition 3.4 (i), have been
previously c¢onsidered in [RS1] for prehomogeneous vector
spaces of commutative parabolic type.

€&l
Proof of Theorem 3.1. As in the remark fegwing
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Proposition 3.2, let fO -be.a function in. C:(Vf) and put

f(z) = det(t.(-g-i) (_g—:i) )fo(:c). For a Q(x) in R - take

l,

v, w € Hn such that Q;z) = Q) .and Qw;z) = Qx).
A . '

Then, by Proposition 2.3 and Proposition 3.2, the function’
£Q,L;3)0Q,f58) = <Z (f,Lis)v,u>
is an entire function. By integrating by parts, we have from
Proposition 3.4 (ii)
| ®Q,f;8) = Bl(é - (11+m)/2)Q(Q,f0;S—1).

We can choose an fO so that ¢(Q;fd;s-l) # ‘0. Hence fhe
function BA(S - (A *m)/2)8Q,L;8) has an analytic
continuation to an entire function. . This‘proves the first
part. By the functional equation on Zn(f,L;s)v in

Proposition 3.2, we obtain
£(Q,L;8)0(Q,f38) = v(L)-lg(Q,L*;m/2~s)¢(Q,f;m/2—s).
Hence it follows from Theorem 3.3 that

vy e, L*;m/2 - o)

Alnn/—l/z _2n3+2£%:&l
= e n £Q,L;8)
n ll+M*i-1 li—i+l Ai+m—i—1
X MW sin (g - ———)I'(8 + —/——) (¢ - ————).
- 2 2 2
i=1
Using the formula T (8)I(1-8) = n/sin(ns), we can easily

rewrite the identity above into the form given in Theorem 3.1

(ii). |
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§4. Local functional'equaﬁienﬁaqd the b-function of (P,p,V)

In this section we retain the‘notation used in Section 1.
Consider the standard R-structure of P,p,V):
Pp = Bm)p x GLn)p, Vp = Mm.n;R).
We identify the vector space dual to V with V itself via
the symmetric bilinear.form

(rz,y) = tr(tny).

Then the represéntation *p*> of P contragredient to p is
given by

¥ b,9y = pb,ta Dy = byl |
Then PO,...;‘Pn are relative iﬁvarignts of (P,p,V) and

the corresponding rational characters are given by

xz(h,g) = det(9)2,
x¥h,g) = det(@?-(a;--rapTt A< i< a2
2 _ -2 .
* det (g) -(a1~'-a ) T if m > 2n,
— n-1
Xp-1 9 = | -1,
det(g)'(al---an_l) a, if m = 2n,
x¥(h,g) = det(g)-(a,---a ) !
n 1 n
S a,y . *
for h = b, (A)b, (Wb, (B) € Bm) (A = . ) and
1 2 2 . . o v
: 0 a. .
K
g € GLn).
' Hence
_ ¥l
XO - XO 3

- 26 -



218

X; = Xg X (1 £ i< n-2),
o Xp-1 ~ xé:j-x;_i ?f "o
X0 Xp-1 if m = 2n,
x, = x¥Ix*
n 0 n
and
(4.2) det p(b,g) = det(g) ™ = xﬁ/z.

For & =%l and 0 = (N ,...,0) € (=13 ", put

‘N (0 £ 1 £ n-2)j

sgn Pi(m) =N, N,
N, m > 2n)
V8 p =% G'VR; sgn Pn_l(z) = { “ P
K : enn' (m = 20)
sgn Pn{m) = g _)
We have
Vo, - S = U 14 .
RPR - (g men™! &0

Define the local zeta functions of (P,p,V) by the integrals

me,n(f;so,s) = ms,n(f;SO’sl"‘°’Sn)
s, n-1 (s.-8 )/2: 3*
= f 1Pyl Pl PPN P @)t f@ de
v i=1 * o

€,n

(f € 9V, (54,9 € €', @,m € ™), vhere sk = s

or (Sn_1+ Sn)/2 according as =m > 2n or m = 27n. Then
¢8 n(f;so,s) are absolutely convergent for

(4.3)

Re Sn >0 (m > 2n),
>0, Re s, 2 ... 2 Re Sp-1 >
‘ |Re snl (m = 2n),

and have analytic continuations to meromorphic functions of
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(84,8) in ¢l

Define the Fourier transform f of f € 9(VR) by

. t
Fap = f Fiz) 2WItr(Cydzy o
| vy

Theorem 4.1. The following functional equations hold

for any f € 9(VR):

A % %k
. - € 0 : . e -
mg’n(f,so,s) = *2 , n+1r8,n (30,3)08* n*(f, m/2 Sy~Sy)>
(€ ,n YE{x]l} ’
where
r8*5"*(s oy = o R(¥1)/2 n—n(280+31)-n(m+2)/2
€, 0’
n 8,-8. . S, +8 .
1 "4 i+1 1 71 m-1i+1
X -H I‘(s0 + 5 * 5 )F(s0 + > + > )
i=1
n/=1,(-1D% % v
X > exp (=5— {5 seg” + L £(Sg:8)1),
vooeey_=gg”
1 n

v 1 2 Lz v *
L «(8g:8) = 3 > v, ( > n; + 2 nj)
i=1 Jj=1 J=1i+1

n 8,-9 . - S,+S . -
_ 1 7i i+] * 1 "4 m-i+l
¥ iéi{"i”i(so rTr t T St T T )

and 8 =1 or 0 acceording as m i8S odd or even.

In the special case =n = l)Theorem 4.1 has been proved in
[S3; Theorem 3.61. The proof of the general case is simlar

and is omitted.

- 28 -
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3

For (lo,l) € A, let PAO,A(ﬁ be the differential

operator with consfant coefficien{s satisfying

t _ t
Plo,l(az)exp(tr( zJy)) = Plo,l(y)exP(tr( TJY)).
Then there exists a polynomial b (8,.,,8) such that
» Ager O
s, n-1 (s.-8 )/2 S*
2 0 i Ti+l n
4.2) P, ’1(5—5){130(3:) T OP@ P (T) }
0 i1=1
= b (8.,8)P ()
Xgs A 0 XgoR
S,.-x,. n-1 (8.-8 )Y/2 g¥
X Pb(z)’o O “n P i+l -P_(z) T,
| i=1 v n

which is called the b-function of P,p,V) (see e.g.
[Sl;Lemma 3.11). By Theorem 4.1 and the expression of the
b-function in terms of the coefficients of the local
functional equation (cf tSl;(S—B)]), we can easily calculate
b JL(so,s).

AO,

Theorem 4.3. For ‘(10,1) € A,

| Agn M (lo+li)/2 s,-8, el
b, (84,8 = 2 T | n (8 + 5 v 5 - D
0° i=1 i=1
(Xy=1;)/2 S,%8, i _
X m (s, + —5— + B2 - )
J =1

~ Proof of Proposition 3.4. Since Q(x) € ﬁa. is a

..29._



K-translate of - Pk l(W_I:z:), we may assume that Q) =
1’

P, l(W_l:l:). Then Proposition 3.4 is an immediate
1’

consequence of (4.2) and we have

n
b b
1(3) = 11’1(3,0,...,0),
Bk(s) = bz’o(s,xl, ,ln),
where 0 = (0,...,0) € A*., @O
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