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ABSTRACT

Breakdown and rearrangement of regular vortex streets in the
wake of a circular cylinder are examined experimentally. The
evolution of vorticity field is obtained using digital image
processing for visualized flow fields. For 100 < R < 140 ( R is
the Reynolds number based on the. velocity Up and diameter of
the cylinder ) a primary vortex street evolves to a parallel shear
flow of Gaussian profile due to anisotropic  extension of the vortex
regions. Subsequently a secondary vortex street of larger scale
appears. The wavelength of it is Qithin the instability region in
the linear stability theory for the above velocity profilee The
wavelength ‘is, however,  fairly smaller than that of the most
unstable mode. Finally it is shown that the vortex regions in the
primary and secondary vortex street move at the speeds 0.15U; ~

0.19Uy and 0.05Uq~0.10U,, respectively, relative to the fluid at infinity.
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It is well known experimentally that regular vortex streets
( Kdrmén vortex streets ) are generated for 40 S R < 200 when
a circular cylinder of diameter d moves in a fluid at velocity U,.
Here R = Uod/v,‘ and V is the kinematic viscosity of the f{luid.
Taneda” showed that this primary vortex street breaks down at
some downstream distance X; from the cylinder and that a
secondary vortex street subsequently appears for 50 < R < 200.
( Honji” obtained the dependence of To/d on R. ) It is, however,
not resolved clearly what mechanism is dominant in the above
breakdown and rearrangement of vortex streets. Taneda and
Cimbala et al? claimed that the above process can be explained
by the theory of hydrodynamic stability for a parallel shéar flow.
Matsui and Okude” claimed that pairing of vortex regions is a
dominant mechanism.

The main purpose of this letter is to make clear the evolution
of vortex regions associated with the above breakdown and
rearrangement. In order to experimentally examine this problem,
we used ‘digital image processing for visualized flow fields.

Figure 1 is =a schematic diagram of our apparatus.
Experiments 'were carried out using two water tanks with glass
sides. The sizes of them are 400 cm long, 40 'cm deep, and 40
cm wide ; 700 cm long, 40 cm deep, and 60 cm wide. Carriages
to which a model is fixed upright move uniformly along rails
mounted horizontally over the water tanks. A stainless steel
circular cylinder of diameter 1.0 cm was used as a model, and ‘a
scrap of flexible tape was attached at the bottom end of the
cylinder in order to diminish end effects.

The - working fluid is water containing: . polyethylene particles.



The particles of - diameter 75 ~ 150 pm, coated with a bond
(Alone—alpha) in order to make their density same as water’s one,
were suspended for flow visualization. They were illuminated
horizontally at the height 25 e¢m from the bottom by sheets of light
from slide projectors. The thickness of the sheets was about 5
mm at the position of a model. Movements of the particles were
recorded by a video camera. Elapsed time also was recorded on
a video image.

Two types of experiments have been performed for 100 < R
< 140. The first one was made using the shorter tank with the
video camera fixed at 1.5 m ahead the initial position of a model.
The second one was made using the longer tank with the video
camera moved at velocity U,, which is comparable to that of
primary vortex. streets. Each experiment was repeated over 10
times, and image data having good contrast and adequate particle
density were analyzed.

Velocity and vorticity fields were computed fx;om each image
data by means of the following procedure. When we want to
obtain the fields at time T, two instantaneous images of
polyethylene particles at Ty = T — 4T and T, = T + 4T and a
track image for the time from T, to T: are generated on an image
processor ( NEXUS 6400 ) through' an A/D converter. These three
digital images are reduced to binary images with a threshold value
b. Then velocity data are computed from the positions of the ends
of available pathlines during appx:opriately small time 24T in the
track image. Here the data acquisition is made automatically with
removing intersecting pathlines. Furthermore, pathlines‘of particles

which appear later than T, or disappear earlier than T, whose
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ratio is fairly small, are also removed automatically. We used a
few values of b for each image in order to obtain as many velocity
data as possible. We usually obtained 300 ~ 600 data for each
image.

Velocities at lattice points of a square lattice of spacing I,
which is 0.5d ~ 06d, are computed from the above velocity data
by an interpolation method. Figure 2 shows ons example of
original velocity data (thin lines) and velocities at lattice points
(thick lines). It is found that the interpolation methoa works well.

Here we use ¥ and Y as the coordinates in the longitudinal
and transverse directions, respectively. The origin of the coordinate
system is located t;t' the backward edge of the cylinder. The
vorticity @ at each lattice point is computed from the data of
velocities (v, v) in the (x, y) directions at four neighbouring lattice
points using a centered difference.

Next the evolutions of vorticity and velocity fields obtained.by
the above method are discussed. In order to specify each image,
we introduce a variable L defined by the x value of the center
of the image. Figure 3 shows the evolution of vorticity field.
Contour lines for positive and negative vorticities are expressed by
solid and dashed lines, respectively. It should be noted that the
contour lines are drawn based on the values normalized with the
largest absolute value of vorticity of each image, which decreases
with the increase of L. Both Fig.3(a) for R = 140 (and U, = 0)
and Fig.3(b) for R = 106 (and U, = 0.2U;) show that primary vortex
streets evolve to parallel shear flows due to anisotropic extension
of vortex regions. Furthermore, subsequent appearance of secolndary

vortex streets of larger scale is found.



In order to show this process more clearly, we computed
transversally integrated vorticity Q for several L. Figure 4 shows
three examples of the r—dependence of Q normalized with Qn, which
is computed by the longitudinal averaging, over all x in an image,
of transversally integrated absolute value of vorticity. Transitions
among the states éf primary vortex streét, parallel shear flow,
and secondary vortex street of larger longitudinal scale, are easily
found.

-In the extension process of vortex regions in primary vortex
streets, . the effect of viscous diffusion does not seem dominant.
One reason for. it is that the time required for the diffusion of
vorticity over the representative longitudinal length scale of primary
vortex streets is estimated as about 25 times as long as the time
spent for the extension in the .experiments. Another reason is the
anisotropic extension of vorticity. Therefore, it is suggested that
an inviscid theory may explain most of this extension process.
Using a discrete vortex method, Tsuboi and Oshima® showed that
the evolution of a vortex street to a parallel shear flow can be
found in an inviscid theory. This result is consistent with our
suggestion.

Next it seems interesting to compare the wavelength 4, of the
secondary vortex street with the result of the theory of
hydrodynamic stability for parallel shear flows, since the observed
velocity field becomes approximately parallel_ just before the
appearance of the secondary vortex street. The longitudinal velocity
profiles obtained by averaging over all ¥ in each image-and by
subtracting the velocity at infinity, are shown in Fig.5 (thick lines)

for L yielding approximately parallel shear flow. Best—fitted
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Gaussian profiles ugexp(—a’y’) are also shown there (thin lines).
The observed velocity profiles are well approximated by the
Gaussian ones. The local Reynolds numbers R based on U, and

! of these Gaussian profiles are 71 and 54 for R = 140 and R

Qa
= 106, respectively. These values are much larger than the critical
value of Ri, 4.5, in the linear stability theory. The observed
wavelength &, is 75d ~ 8.5d for R = 140. According to the
computation by Fujimura et al.® the mode of this wavelength is
unstable in the linear theory. The mode of the largest growfh rate,
however, has wavelength 12.5d, which is fairly larger than A&,.
Therefore, the generation of the secondary vortex street can not
be explained only by the direct application of the linear stability
theory to the observed parallel shear flow. This problem may be
resolved by the consideratidn of the downstream development of a
mean velocity profile.

Finally, the ‘movement of the regions of large vorticity is
examined. The speed of vortex regions in the primary vortex street
in the longitudinal direction relative to the fluid at infinity is 0.18U,
~ 019Uy for R = 140 and is 0.15U; ~ 0.18U, for R = 106. Vortex
regions in the secondary vortex street move at the lower speed of
0.05U, ~ 0.10U, for these values of R. - Movements of the vortex
regions are expressed by arrows in Fig.3.

In conclusion it can be said that for 100 < R < 140 the primary
vortex street evolves to a parallel shear flow of Gaussian profile
due to anisotropic extension of the vortex regions. Subsequently
the secondary vortéx street of larger scale appears. The wavelength
of it is within the instability region in the linear stability th;aory

for the above velocity profile. The wavelength is, however, fairly
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smaller than that of the most unstable mode. Moreover, the vortex
regions in the primary and secondary vortex street move at the
speeds 0.15U; ~ 0.19U, and 0.05Us ~ 0.10U,, respectively, relative to

the fluid at infinity.
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Fig.l Schematic diagram of the apparatus. U, is the velocity of

a cylinder, U, the velocity of a video camera.
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Fig.2 Original velocity data (thin lines) and velocities at lattice

points (thick lines).
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Fig.3 Evolution of vorticity field. Contour lines for positive vorticity

(solid

lines) and for negative vorticity (dashed lines) are

;y T0.90max.

+0.3Wwmax,

drawn based on the values *0.20max,

is the maximum absolute value of the vorticity

Here ®Wmax

Movements of the vortex regions are denoted

for each L.

(b) : R = 106, U] = 0.2Uo.

(a) : R = 140, U, = 0.

by arrows.
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Fig.4 Evolution of normalized transversally integrated vorticity /Qn.

R = 140.

(a) L/d = 99, (b) L/d = 685, (c) L/d = 150..
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Fig.5 Longitudinal mean velocity profiles in the experiments (thick

lines) and best—fitted Gaussian profiles (thin lines).

(a) R

= 140, L/d = 685, (b) R = 106, L/d = 711
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