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Maslov class of an isotropic map-germ

arising from one dimensional symplectic reduction

Goo ISHIKAWA

0. Introduction

Let (M?",w) be a symplectic manifold of dimension 2n and N™® C M*" be a Lagrangian
submanifold with singularities. For each regular point z of N, T, N is a Lagrangian sub-
space of the sympletic vector space T, M.
~ To investigate the local structure of N near a singular point 2g of N , it is natural to
study the behavior of the distribution {T,, N | z is a regular point of N} near #¢. Then we
- can grasp an invariant of the singularity, which is called the Maslov class in this paper.
| Origiﬁa.ry, the notion of Maslov class (or Keller-Maslov-Arnol’d class) is a global one,
and it appears in context of asymptotic method of linear partial differential equation and
symplectic topology ([A1],[GS],[Gz],[Hd],[Ma],[V],[W]).

Maslov classes represent obstruction for transversality of two Lagrangian subbundles.
Applying this, we define the Maslov class of isotopic mapping as an obstruction for ex-
tendability of a partially defined Lagrangian subbundle.

Related to variational problems, Arnol’d introduced a Lagrangian variety, so called
an open swallowtail, and invesigated it ([A3],[J]).

On the other hand, related to the problem of Lagrangian immersion of surfaces to four
dimensional symplectic manifolds, Givental’ introduced a Lagrangian variety, so called an
open Whitney umbrella, and investigated some local and grobal problems. Especially he
calculated the ”Maslov index” of an open Whitney umbrella.

Our results generalize this result of Givental’.

The purpose of this paper is to develbp a general theory on objects containing La-

_ grangian varieties mentioned above.

Singular Lagrangian varieties appear typically in the process of symplectic reduction.
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Let M2(»+*) be a sympectic manifold of dimension 2(n+k), and K2** a coisotropic |
submanifold of M of codimention K. Then naturally we have a symplectic manifold M'?"
of dimension 2n, at least locally, and we call M’ a k-dimensional reduction of M. Let
L™** be a Lagrangian submanifold (without singularities) of M. Suppose N = LN K
is an n-dimensional submanifold of K. If L intersects transversely to K, then we have
an immersed Lagrangian manifold L' in M’'. Otherwise, we have a singular Lagrangian
variety by reduction. (Open swallowtails are obtained in this situation; [A3],[G1],[J1]).

More generally, let N™ be an isotropic submanifold of M contained in K. If a charac-
teristic direction of K is tangent to N, then, by reduction, we have a singular Lagrnagian
variety.

Notice that singular Lagrangian varieties obtained by reduction are parametrized by
isotropic mappings.

We consider, in this paper, Maslov classes of isotropic mappings obtained by one

dimensional reduction process.

The first result is on vanishing of Maslov classes: The Maslov class of an isotropic
map-germ obtained by 1-dimensional reduction of a Lagrangian manifold is zero (Theorem
6.1).

Thus, for a singularity of 1-dimensional reduction of an isotropic manifold, the Maslov
class has a meaning of obstruction for representability as an intersection of a Lagrangian
submanifold and a hypersui;face.

In general, Maslov classes do not vanish. We give local model of singularities of
isotropic mappings generically obtained by 1-dimensional reduction of isotropic submani-
folds, up to local symplectic diffeomorphisms of the reduced symplectic manifold (Theorem
9.1). These models are open whitney umbrellas of arbitrary dimension and their suspen-
sions, and their Maslov classes do not vanish (Theorem 10.3). Therefore we see that a
‘generic isotropic submanifold in a hypersurface of a symplectic manifold is not an intersec-
tion of a Lagrnagian submanifold and the hypersurface, logé,lly at each point, where the

characteristic direction tangent to the hypersurface (Corollary 10.4).
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1. Classical Maslov class

Let (M?™, w) be a symplectic manifold, N® C M a Lagrnagian submanifold (w|N = 0),
and r: M — B a Lagraﬁgian fibration. Then the symplectic vector bundle E = TM|N
~ has two Lagrangian subbundles L = Kerm,|N and L' = TN.

In general, for a symplectic v:ector bundle E of rank 2n over N and Lagrnagian sub-
b_:undlres L and L' of E, the Maslov class m(E;L,L') € H'(N, Z) is defined as follows.

Consider the bundle A(E) over N of Lagrangian subspaces of fibers of E. The La-
grangian subbundle L' define a section s(L') : N —» A(E) by s(L)(2) = L', € A(E,) C
A(E),(z € N). - | -

Let Q denote the symplectic form of E. Then there exist a complex structure J and
a Hermitian form G on E, unique up to homotopy, such that (2 is the imaginary part of

G. Denote by g the real part of G.
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Let {e1,...,en} be an orthonormal frame of L over an open subset U of N, with
respect to g. Then {ey,...,e,} turns to be a unitary frame of the Hermitian vector bundle
(E;J,G) over U. Then we have an isomorphism E|U 2 C™ x U as Hermitian vector bundlé,
which maps L|U to R™ x U.

Since U(n) acts on the space A(C™) of Lagrangian subspaces of C™ transitively, A(C")
is identified with the homogeneous space A(n) = U(n)/O(n), (see [A]).

Thus we have A(E)|U — A(n), which is glued to a C°° mapping ®(L) : A(E) —
A(n).

Set & = (L)oo s(L') : N — A(n) = U(n)/O(n). The homotopy type of & is
independent of the choice of (J, G).

If {¢{,...,€,} is an othonormal frame of L' over U, then, at z € U, e; = S, aije;,

i=1

for some A = (a;;) € U(n). Then &(z) = [A] € A(n). Remark that G(e}, e;) = a;;.

Define m(E;L,L') to be the image of the generator of H}(S!,Z) = Z, relatively to

counterclockwise orientation, under
(det® o ®)* : H'(S',Z) — H'(N,Z),

where det? : U(n)/O(n) — S! is defined by det?([A4]) = (det4)?, A € U(n).

LEMMA 1.1. The Maslov class satisfies following properties:

(0) m(E;L,L) = 0.

(1) m(E; L, L") + m(E; L'L") = m(E; L, L").

(2) L and L' are transverse in E ,then m(E;L,L') = 0.

(3) If there is an isomorphism between symplectic vector bundles E; and E; mapping
L,,L] to Ly, L}, then m(E;; Ly, L) = m(Ey; Ly, L5).
(4 m(h*E;h*L, i*L') = h*m(E; L, L') € HY(P,Z).

Here L,L',L" are Lagrangian subbundles of E and h: P — N.

Remark 1.2. Vaisman [V] defines the Maslov classes pj(E; L, L') € H**~3(N,R),(h =
1,2,3,...), for two Lagrangian subbundles L, L’ of a symplectic vector bundle E over N ,
such that |
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(i) p (B L, ') = (1/2)m(E; L, ') € H'(N, R)

(11) py satisfies the properties of Lemma 1.1.

Though Lemma 1.1 is well known (see[V]), we give here an elementary proof of this

fundamental lemma in this paper.

Proor oF LEMMA 1.1: Since & = ®(L) o s(L) is constant, we have (0).

To show (1), we will show the followings:

(5) For Langrangian subbundles L;, L} of E; and Lj, L} of E; of symplectic bun-
dles E; and E; over N respectively, m(E; & Ep;L; @ Ly, L} & L)) = m(E,, Ly, LY) +
m(E,, Lj,L5).

(6) For Lagrangian subbundles L;, L, of E and L of E & E respectively, m(E; L,L; &
L;) = m(E;L,L; @ Ly).

If we have (5) and (6), then

m(E; L, L")+ m(E;L L") =m(Ee E Lo L',L' 8 L"), (by(5))
=m(EoE, Lo L' ,L"®L'), (by(6))
=m(E; L, L") + m(E; L',L’), (by(5))

= m(E; L, L"), (by(0)).

Thus we have (1).

To show (5), compare three maps
§1 = §(L1) o S(Lll) : N — A(n),
®; = ®(L;) 0 3(Ly) : N — A(m),

and

$; =3(L1®Ly)os(L;®Ly): N — A(n + m),

where we set rank E,; = 2n and rank E, = 2m.
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Define ’ : ”
A : A(n) x A(m) — A(n + m)

A O
A([AMB])=[(O B)],

where we denote by [A] the class of 4 € U(n) in A(n) = U(n)/O(n).

Then &3 = Ao(®;,®;) and det?oA([A], [B]) = det?([4])-det?([B]). Thus det’o®; =
(det? o ®,) - (det? 0 ®,) : N — ST,

For the generator 1 € H(S!, Z),

by

m(E, ® Ey; Ly ® Ly, L, @ L) = (det? o &5)°1
= ((detz 0 ®,)-(det? 0 $;))*1
— (det? 0 &;)"1 + (det? 0 &;)"1
= m(E;; L1, L)) + m(E; Ly, L)).

Therefore we have (5).

To see (6), compare two maps
$ =&(L)os(L; ®Ly): N — A(2n),
¥ =$(L)os(L; ®Ly): N — A(2n),

Define & : A(2n) — A(2n) by .

({2 )D=1(0 o)1

A B
(C D)GU(2n),

with A, B,C,D € M,(C). Then k0 ®' = & and det? o k = det?. Thus

for

m(E; L, Ly @ L,) = (det? 0 $)*1
= (det? ok 0 &')*1
= (det? o @')*1

= m(E;L,L; ® Ly).



Therefore we have(6).

To see (2), remark tha.t if L and L' are tra.nsverse, then we can choose (J,G) such
that JL = L'. Then & = ®(L)os(L') is constant and m(E;L,L’') = 0.
For (3), suppose a : (Eq; Ly, L)) — (E2; L2, L)) is an isomorphism. Choose a Hermi-
tian structure (aoJoa'ly Go(a‘l, a~1)) on E;. Furthermore « induces a diffeomorphism
& : A(E;) — A(E;). Then we have s(L;) = & o s(L}) and @(Lz) o& = ®(Ly). Therefore
®(L,) o s(Lj) = ®(L2) o s(L}), and m(E;; Ly, L}) = m(E,; Ly, L).

Let h : P — N be a C*® map. Consider s(h*L') : P — A(h*E) and ®(h*L) :
A(R*E) — A(n). Then we have &(h*L) o s(h*L') = (L) o s(L') o h. Thus

m(h*E;h*L, hL') = (det? 0 8(h*L) 0 s(h"L"))*1
= (det? 0o $(L) o s(L') oh)'1
= h*m(E; L,L").

Thus we have (4). Q.E.D.
Cororrary 1.3. m(E;L,L') = -m(E; L', L)
Proor: By Lemmal.1.(1),(2),

m(B; L, L') + m(E, L', L) = m(E; L, L) = 0.

Returning to the first situation, we define the Maslov class m(N) by

m(N) = m(TM|N, Ker «,|N,TN) € H(N, Z).
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2. Maslov class of an isotropic mapping

Let (M?*",w) be a symplectic ‘mdnifold of dimension 2n, and N™ be a C*® manifold of
dimension n. |

A C* mapping F : N — M is called an isotropic mapping if, for each 2 € N the
image of T, f : T, N — T, M 1is an isotropic subspace of the symplectic vector space T, M,
that is, if f*w = 0.

For an isotropic mapping f, set
¥ =3%(f) = {z € N | T, f is not injective}.

Then the restriction fI]N —X: N — X — M is a Lagrangian immersion.
Set A(M) = A(TM), and denote by = : A(M) — M the canonical projection. In the
symplectic vector bundle #*T'M over A(M), define the tauntological bundle £ by

ﬁ(y,;) =A - TyMa

(,2) € A(M).
Associated to f, define
o(f): N - — A(M),

by ¢(£)(2) = (f(2), Im(T2f)). Then =0 p(f) = f.
Set Ly = ¢(f)*L. Then L; is a Lagrangian subbundle of f*TM = o(f)*x*TM over
N -%.

Definition 2.1. Assume f*TM has a Lagrangian subbundle (over N). Then define the
Maslov class of f by

m(f) =8(m(f*TM;L,L;)) € H*(N,N — 3; Z),

where L is a Lagrangian subbundle of f*TM over N,and § : H}(N -3;Z) — H*(N,N —
¥;Z) is the coboundary map.
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Remark that m(f*TM,L,L;) € H(N —%; Z). For an another Lagrangian subbundle
L' of f*TM over N, we have

m(f*TM;L' L) =m(f*TM;L',L)+ m(f*TM;L,L;),

in HY(N — ¥;Z), by Lemma 1.1.(2).
Since m(f*TM;L',L) comes from an element of H'(N;Z), we have

§(m(f*TM; L', Ly)) = 6(m(f*TM; L, Ly)).

Therefore m(f) is independent of the choise of L.

Remark 2.2. By Remark 1.2 and the argument as above, we can define a class pp(f) €
H4h_2(N, N — %;Z) for an isotropic mapping f: N — M by

l"’h(vf) = 6(”h(f*TMa L) Lf))’

(h=1,2,...), provided f*TM has a Lagrangian subbundle L.

3. Symplectic equivalance

Let f: N* — (M?",w) and f': N'» — (M'?™,w') be isotropic mappings.

Defnition 3.1. A pair (o, 7) of a diffeomorphism ¢ : N — N' and a symplectic
diffeomorphism 7 : M — M',(r*w' = w), is called a sympectic equivalance between f

and f'if ro f = f' oo. Then we call f is symplectically equivalent to f, and write f ~ f'.

If (¢, 7) is a symplectic equivalance between f and f', then o incluces an isomorphism
o*: H}(N',N' — ¥';Z) — H?*(N,N — %;Z), where &' = £(f'), and o*m(f') = m(f), if
f*TM has a Lagrangian subbundle L. '

In fact, 7 induces isomorphisims

' :r*TM' — TM and 7" :0*f*TM' = f**TM' — f*TM
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of symplectic vector bundles over M and N respectively, and 7"’ maps 6*Ly: to L. Thus

c*m(f*TM', "L, L) =m(a*f*TM'; o' 1L, o*Ly)

=m(f*TM,Lq, Ly).
for some Lagrangian subbundle L; of f*7M, by Lemmal.1.(3) and (4). Therefore

o,*m(fl) — cr*rSm(f'*TM',T”_lL, Lfl)
= §(m(f*TM;Ly,Ly))
=m(f)

4. Maslov class of an isotropic map-germ

Let f: N*,2 — (M?",w) be a germ 'of an isotropic mapping. For each representative
(f,U) such that f : U — M is isotropic and U is a contractible neighborhood of z, we
‘have m(f, U) € H¥(U,U — %;2Z), since f*TM is trivial over U. If V is a contractible
neighborhood of 2, with V C U and .* : HIZ(U,U - 3;Z) — HYV,V — 3;2) is the
restriction, then ¢*(m(f,U)) = m(f,V) by Lemmal.1.(3). Set

H*(N,N - %,Z), =lim H*(U,U - %;Z),
where U runs over contractible neighborhoods of z. Then we have an element
m(f) € H}(N,N — 3;Z),.

We call it the Maslov class of the isotropic map-germ f.

We can define the notin of symplectic equivalance between two isotropic'ymap-germs
similarly as §3.
If (¢, 7) is a symplectic equivalance between f and another f' : N',2' — (M',d'),

then o* : H}(N',N' — ¥',Z) — H?*(N,N — ¥;Z) maps m(f') to m(f).

10
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5. Symplectic reduction

Let (M2(»**) ) be a symplectic manifold of dimension 2(n + k), and K?"t* C M be
a coisotropic submanifold of codimension k. We denote by (T K )1 the skewothogonal
complement to TK in TM|K.
 Remark that the rank of (TK)' is equal to k. Since K is coisotropic, (TK)* C
TK and (TK)* is integrable ([AM]). We call (TK)* (resp. induced foliation on K) the
characteristic distribution (resp. foliation) relatively to K.
Let 2 € K. Then, in an open neighborhood U of z in K, a submersion 7 : U — M'?"
induced, where M' is the leaf space. Then M’ has the unique symplectic structure w' up

to symplectic diffeomorphisms of M' such that =*w' = w|K ([AM]).

(1) By this reduction procesui’e, Lagrangian submanifolds of M also reduced to ”La-
grangian varieties”.
Now, let L®** C M be a Lagrangian submanifold and 2 € L. f N = L N K is an

n-dimensional submanifold of K in a neighborhood of 2, then
f : 7r|.N :N,2 — M'.
1s an isotropic map-germ. In fact
ffo' =7 |[N=w|N=0.

Remark that f is an immersion at z if and only if T, L N (T, K)* - 0.

Especially, if L is transverse to K, then we have an immersed Lagrangian submanifold
in the reduced symplectic manifold M’'. _

In fact, in this case, T,L N (T, K)* = T,L N (T,L + T.K)* = T,L N (T,M)* =
- T,LN0=0.

In general, f is not an immersion and has a singularity.

Defition 5.1. Let f be as in above. Then f is called an isotropic map-germ arising

from a k-dimensional reduction of a Lagrangian manifold.

11
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(2) More in general, let N® be an isotropic submanifold of M2™**) contained in

K?** and containing 2.

Then f = x|N : N,& — M' is isotropic and f is immersive if and only if T, N N
(T-K)* =0.

Defnition 5.2. Such germ f is simply called an isotropic map-germ arising from k-

dimensional reduction.

In what follows, we concentrate to the case k = 1.

6. Reduction of a Lagrangian manifold and Maslov class

In §4, we have defined the Maslov class m(f) € H%(N,N — ,Z),, for an isotropic map
germ f: N™ 2 — M?" where ¥ is the singular set of f.

THEOREM 6.1. Let f : N2 — M be an isotropic map-germ. If f is symplectically
equivalent to an isotropic map-germ arising from a 1-dimensional reduction of a Lagrangian
manifold, then m(f) =0 € H*(N,N — %,Z),. ‘

Precisely, for any open neighborhood U of z, and for any respersentative f : U — M
of f, there exist a contractible open neighborhood V such thatz € V C U and m(f|V) =0
in H3(V,V — %; Z).

12
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7. Reduction of symplectic vector bundles

(1) tet E be a symplectic vector bundle over a manifold X, and K be a coisotropic
subbundles. Then th(; bundle K/K* has the induced symplectic struct‘ure, where K+ is
thé skew-orthogonal complement of K in E (see [AM],[W]).

Let L be a Lagrangian subbundle of E. If L C K, then K+ C L' = L C K, and
L/K* C’K/KJ- is a Lagrangian subbundle.

LeMMA 7.1. Let E be a symplectic vector bundle over X, K a coisotropic subbundle of

E, and L (resp. L') be a Lagrangian subbundle contained in K. Then
m(K/K5HL/KH L'/KY) = m(B; L, L)

in HY(X;Z), (cf. §1).

ProoF: Set rankE = 2(n + k) and rankK = 2n + k. Then rankK+L = k.
Compare

®, =®(L)os(L'): X — A(n+ k),

and

&, = H(L/K')os(L'/Kt) : X — A(n).

Set A(n + k,k) = {1 € A(C***) | A C C™ x R*}. Then we can choose a Hermitian
structure on E such that &;(X) C A(n + k, k) and % 0 &, = &;, where 7 : C* x C* —
C™ is the projection and % : A(n + k,k) — A(n) is defined by #(A) = =(A) C C™,
(A € A(n + k, k)). Remark that det? o 7 = dét?: A(n +k,k) —> S. Then det? o ®, =
det? o 7 0 ®; = det? 0 @;.

Thus we have required result.

(2) We apply Lemma’7.1 to the situation of §5,(1).

13
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Shrinking K, around z if necessary, we assume that the characteristic foliation of K
comes from a submisssion xm: K — M', N=LNK is an n-dimential submanifold in K,
and that K 'and N are contractible.

| Set E=TM|N -3, K = TK[N ~5,K' =(TN)L|N-Z,L=TL|N - %, and L' =
TN + (TK)N - 2.

Notice that TN +(TK)* is a direct sum in T M over N —X. therefore L’ is a subbundle
of E of rank n + k. Furthermore L't = KN K D L'. Therefore L’ is Lagrangian.

Thus we have a symplectic vector bundle E, coisotropic subbundles K and K’ of rank

2n+k and n + 2k respectively, and Lagrnagian subbundles L and I with L C K"\’ C K
and L' Cc K'.

Since M'is a symp’lectic reduction of M relatively to K, we have anisomorphism
a:TK/(TK)* —> =~ TM',
which induces an isomorphism
B:TK/(TK)*|N — f*TM'.

For each y € N — X, B(L, /K;) = T, f(TyN) = (Ly), in the fiber (f*TM') over y.

By restriction, 3 induceé an isomorphism
v:K/Kt — f*TM'|N - 3,

such that 8(L'/K') = Ly.
Therefore, for a Lagrangian subbundle L; of f*T'M' over N, we have

m(f*TM'; Ly, Ly) = m(K/K*; 7} (L), I/ /K*),

in HY(N — £;Z), by Lemma 1.1.(3).
Take the Lagrangian subbundle L, of TM|N contained in TK|N which projects to
B~ Y1) C(TK/TK')|N. Then, by Lemma 7.1,

m(K/K*; B(L1),L'/K') = m(E; Ly, L').

14
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By Lemma 1.1.(1),
m(E; Ly, ') = m(E; Ly, L) + m(E; L, L").

Since L = TL|N — X is a restriction of the Lagrangian subbundle TL|N over N,
m(E; Ly, L) is the restriction of an element in H(N,Z).

For these arguments are valid over any contiractible neighborhood V of z in N, we
have Theorem 6.1 if m(E;L,L') =0in HY(N - %, Z),.

Furthermore, by Lemma 7.1 again,
m(E;L, L") = m(K'/K'"; L/K', L' /K').

In the next sectioh, we will show the right hand side is eQual to zero in HY(N —%,Z),,
at least if k = 1. | |

8. Proof of Theorem 6.1

Tt is sufficient to show m(K'/K+; L/K*,L'/K't) = 0 in HY(V — £, Z) for any sufficiently
small contractible neighborhood V of «, under the notations in §7,(2).

Let h = 0 be a local equation of K in M, where h € C®°(M). By the sign of h, L — N
is devided into two part: L— N =L, UL_,Ly = {y € N | +h(y) > 0}.

Take a vector field v tangent to L tawarding to L, over N. Then dh(v) > 0.

Let W be the Hamiltonian vector field wiih Hamilton h. Then the imaginary part of
G(w,v) is equal to Q(w,v) = (w]Q)(v) = —dh(v) < 0.

Remark that normalized v (resp. w) turns into an orthomormal frame of L/K?' (resp.
L'/K'%), Therefo&e, ford:V -3 ——» A = U(l)/O(l) in the definition of Maslov class,
we see deto® : V — ¥ — S C C has non-positive imaginary part. Therefore det o ® is

homotopically zero, and so is det? o ®. Thus
m(K' /K'Y L/K' L' /K'Y) = (det? 0 8)*1 = 0

~in HYV — 3; Z) for any sufficiently small contractible neighborhood V of z in N. Q.E.D.

15
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9. Local models for generic 1-dimensional reductions

We consider a generic local classification by symplectic equivalances of isotropic mapping
arising from a symplectic reduction relatively to hypersurface (i.e. 1-dimentioanl reduc-
tion),(see Definition 5.2).

Let (M?"*2 &) be a symplectic manifold, K?"*! be a hypersurface if M, and N™ be

an n-dimensional manifold.

Denote by 7 the set of isotropic embeddings : : N — M with i(N) C K, endowed
with the Whitney C* topology.

Next we prepare special isotropic map-germs f, , as local modes for singularities
of isotropic mappings. Consider the cotangent bundle T*R™ with canonical coordinates

q1,---19n;P1 -, P and with the symplectic form w =}, dp; A dg;. Besides, consider the

space R™ with coordinates 21,...,2,. Then
fak :R*,0— T*R",(0 <k <[n/2])

is defined by

qiofn,k:zi,(]-SiS‘n—-l),

k41 k-1 k—i
‘ z, z,
Z=qnO Jak =700 i
k-1 k—i

z
V=PnO fap =) 2h+i(71_‘_—2.),,
i=0 )

and ‘
™ (v Ou  Ov Ou
j n,k — - g d n [<3<n-1 ,
P © fak /:, (02,-02:,, Ozn(?zj) ’ (_?_n )
that is,
k-1 z?h—i—j .
— 2i=0 Tkt OGS (1<j<k-1),
@t it k-1 p3k—i-J .
Pi =\ W= Gr—+D) T Zei=1 TEmi- D) (2k—5)(3k—i-7)" (k<j<2k-1),
0, - (2k < j < m).
Remark that each f; j is a polynomial mapping of kernel rank one and of very simple
form.

16



31

. THEOREM 9.1.. There exists an open dense subset G in T such that, for each i € G and
for each z € N, the isotropic map-germ f : N*,2 — M'?*" arising from 1-dimensional

reduction relatively to K is symplectically equivalent to some f, 1,(0 < k < [n/2]).

10. Maslov class of an open Whitney umbrella

Let us study properties of local models f,k : R*,0 — T*R™,(0 < k < [n/2]), in §9,
For k =0, f, o is just the zero-section ¢, : R",0 — T*R" and is an immersion.
For k # 0, easily we verify ¥ = X(f, 1) = {6u/082z, = 0v/8z, = 0}, is a submanifold

of codimension 2 in R®. Thus we have
(+) : H}(R*,R™ — 5, Z)o & H\(R" — 5,Z)o = Z.

By defnition, we can write f, x = fakx X (n—2k- Then f,  is a ”suspension” of fyp ».
Definition 10.1. fa, , is called the n-dimensional open Whitney umbrella.

Remark 10.2. f, is just the (2-dimensional) open Whitney umbrella inroduced by
Givental’[G].

For Maslov classes, we have

THEOREM 10.3. Under the identification (*),

4 0, k=0,
m(fn,k) = {

+2, 0<k<[%].

CoRroLLARY 10.4. For a generic, that is belonging to G in Theorem 9.1, isotropic sub-
‘manifold i : N — K"+l C M?+2 if T, N contains the characteristic direction of K
at a point ¢ € N, then N is never representable as an intersection of any Lagrangian

submanifold and K, as germ at z

Proor: If N is an intersection of a Lagrangian submanifold and K, then the Mésloy
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class of isotropic map-germ arising from reduction relatively to K necessarily vanishes, by

. Theorem 6.1.

By Theorem 9.1, that map-germ is symplectically equivalent to some f,,(k # 0).
By Theorem 10.3, m(f, 1), (k # 0), does not vanish. Combined with the argument in §4,
this leads a contradiction. Q.E.D.

11. Generating functions

Let ¢ = (91,---,9n) : R*,0 — R™,0 be a map-germ, and f : R*,0 — T*R™ be
an isotropic map-germ covering g, that is, 7 o f = g, where = : T*R™ — R" is the
projection. Set § = Y7 . p;dg;, (Louiville form on T*R™). Then f*§ is closed. Thus, by
Pioncaré lemma, de = f*8, for sofne e € E,, where E, denotés the R-algebra of function-
germs of R™, 0. The function-germ (unique up to additive constant) e is called a generating

function of f.

Denote by H, the set of generating functions of isotropic map-germs covering g.
LemMma 11.1. H, = {e € E, | de € (dg1,...,dgn)E,}.
ProoF: Let e € H,;. Then de = f*0, for some isotropic f : R™ —> T*R™. Then
de = ipg o fdg;.
i=1

Conversely, suppose de = Si_, aidg;, for some a; € E,. Then define f by p;o f =a;
and ¢; o f = g;,(1 <7 < n). then f is isotropic and covers g.

Definition 11.2. Two isotropic map-germs f and f' : R",0 — T*R" are called
Lagrangian equivalent if there exist a diffeomorphism-germ o : R*,0 — R",0 and a
w-fiber-preserving symplectic diffecomorphism-germ T : T*R™, F(0) — T*R™, f'(0) such
Athat floeo=Tof.
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Definition 11.3. Let g and ¢’ : R",0 — R™,0 be map-germs and e and ¢’ : R, 0 —
R be function-germs. Then two pairs (e,g) and (¢',g') are called R*-equivalent if there
exist diﬁ'eomOII;hism-gérms o and 7 : R",0 — R™,0 are function-germ a : R",0 — R

such that

e=¢ooc+aog,and goo=T10g.

(See [AVG].)

ProPOSITION 11.4. Let f and f' : R*,0 — T*R™ be isotropic map-germs covering g -
and g' : R*,0 — R™,0 with generating functions e and €' respectively. Then, if (e, g)
- and (€',g') are R*-equivalent, then f and f' are Lagrangian equivalent.

Furthermore, assume the critical point set-germ of g' is nowhere dense. Then, if f

and f' are Lagrangian equivalent, then (e,g) and (¢',g') are R*-equivalent.

Proor: First suppose f and f' are Lagrangian equivalent, and (o, T) realizes this equiv-

alence. Write T in the form

(p,9) = (P(p,9), T(é))- |

Then ), Pidr; -, pidg; = dA(p, q), for some A : T*R™, f(0) — R. Since §A4/8p; =
0, (1 <i < n), we have A = n*& for some & : R*,0 — R. Thus T*0 = 0 + =*da.

Since f'oo =T o f, we see

d(o*e') = o0 = *T"0 = f*(6 + n*da)

= d(e + g*&),

Thus e -—-eoo;-—dog%—cfor some ¢ € R. then it suffices to set a = —a + c to see
(e,9) and (e’,g") are R*-equivalent.
Next suppose (e,g) and (¢',g') are R*-equivalent, and (o, 7,a) realizes this equiv-

alence. ‘Define a fiber-preserving symplectic diffeomorphism-germ 7' : T*R™® , Ty R —
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T*R™, TgR™ covering T by T%0 — 6§ = —dn*a. Then,

(Tofoo ™ )0 =0"1f(0—dr*a)=0c""*(de - dg*)
= o *(do*e') = de'

= f™o.

Both T o foa~! and f' cover g'. Since the critical point set of g’ is nowhere dense,
as easily verfied, each map-germ covering g' is uniquely determined by the pull-back of 6.

Hence To foo 1= f. Q.E.D.

Now, assume g is of form g = (2',u(2',2,)), where &' = (21,...,2,-1).

Let f: R™,0 — T*R™ be an isotropic lifting of g. Set v = p, o f. Then we have

LeMMmA 11.5. For a generating function e of f, there exists a function-germ a = a(z')

such that
I on i au ! 1
e(z',2,) = / v(e ,t)ﬁ(z ,t)dt + af2').
o ,

ProoF: Since de = Y317, p; o fdz; + vdu, we have de/dz,, = v(0u/dz,). This leads the

required result.

Given v € E,, with v(2',0) = 0, define f, : R*,0 — T*R™" by no f, = g,pnofy = v
and
I fOv,, Ou,, ov, , . Ou, , }
; = _— t)— t)— — t)— t) s dt
pof= [ { e 0gEn - g &,

z

(1<ji<n-1)

LEMMA 11.6. Let v € E, with v(2',0) = 0. Then f, is an isotropic lifting of g. Further-

more, any isotropic lifting f of g with p, o f = v is Lagrangian equivalent to f,.

PROOF: Set e, = [, " v(2',t)(0u/t)(z',t)dt. Then we see Oe,/0z; = p; o f, +v(0u/dz;).
Thus we have de, = f*0. Hence we have the first half. By Proposition 11.4 and Lemma

11.5, we have the second half.
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Example 11.7. Set g = (21,...,2n_1,u(2',;2,)),u = zﬁ'+1/(k+1)!+2?:.11 22"t (k-
i)!. Then f, 1 = f,, where v = ngol eprizk ™ /(k — ). (See §9.)

12. A differential analysis

Consider the space R® x R with coordinates y1,...,y,;t. Write R” = {(v1,..-,%) €
R" | pp1 = =9y =0}, (0L 7 SAn). Denote by j, : R""! xR — R™ xR
the inclusion defined by j.(v1,...,%-1;t) = (¥1,.-.,¥-1,0;t),(1 < » < n). Then, set
$r=jno0dpy1 R xR—R*xR,(0<r<n—1),and ¢, = idroxr.

Denote by E, ;; the R-algebra of C® function germs at (0,0) in R” x R. Then E,
has uniqﬁe maximal ideal m, ,; generated by ¥;,...,y, and ¢.

Now fix an element of F, 4,
P=tr/k! +ar()t* Y /(k — 1)+ - + ar(y),

which is a monic polynomial with respect to ¢, and assume each a; is an analytic map-germ
with ¢;(0) =0,(1<i < k).
Then, set

B, = {h € E,;, | Ok/0t is a multiple of §; P in E, 1},(0 < » < n),

t s[
Hiv,t) = [ 5P(s)ds € Bays, (0< LS R),
0 .

and

T, =(y1,-..,y,,¢:Ho):R’ X R—’;“’R’ X R,(OST Sn)

ProrosiTioN 12.1. We have
a,) 1,¢*Hy, ..., ¢* H), generate B, over B, 1 viaT*: Eypq1 — E,p1,(0 <7 <n).
g
(b.) Ker j;,, CT; imyy141Bry1, where ) : B4y — B,, (0<r <n-—1).

(c;) j741 induces an isomorphism
: .7 : Br+1/r:+1'mr+1+lBr+1 E Br/r:mr+1B‘r,
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of R-vector spaces, (0 <r<n—1).

ProorF: Step 1: (ap).

It 1s easy to see that
Bo = {h(t) | Oh/Bt is a multiple of t*}

is generated by 1,t*+2 ... t?**1 over By, via (¢t**')* : Eoy1 — FEoy1. Thus By is
generated by 1,¢5H1,...,¢5Hr over Egyy via I'y : Egyqy — Egi1. Therefore we have
(a0).

Step 2: (b,), (0 <r<n—1).

Let A(y1,...,%,0;¢t) = 0. Then b = ¥, 119(¥1,-- -, ¥r+1,t) for some g € E, ;141 and
8h/Ot = y,,1(0g/0t). On the other hand, Oh/8t = w; P for some w € E,1,1. Set
Yr+1 = 0. Then w(y1,...,9,,0,t)¢> P = 0. Since @} P is not flat, we see w(y1,...,%,0,t) =
0. Thus w = y, ;1% for some € € E,141. Hence y,41(8g9/0t — W] P) = 0. Therefore,
8g/0t = w¢; P. This implies g € B,y and b € T} ;m,1141B,41. We have (b,),
(0<»<n—-1).

Step 3: (a,)+(b,)=>(¢cs), (0 <» <n—1).

For this, first we will show j}; is surjective. In fact, let h € B,. By (a,),

k
* * *
h= P,wo + ZI‘,+1w.¢,+1H.,
=1 '
for some wg, wy,..., W, € Myyq. Set
_ k
1 * -~ * ~ gk
h =T7 %0+ er+1wa¢f+1Hu
=1

where W, € m, 1141 is defined by w,(y1,..., %, ¥r+1;t) = w,(%1,...,%;t). Then j,’,"Hiz =
h. Therefore j is surjective. «

Next we will show j is injective. For this, let h € B,,; with 7} +1h € I''m, 1 B,.
Then j; A =3, Tiw, - u,,(u, € B,,w, € m,;1). By (a,), there exists 4, € B, such

that j*, 4, = u,. Set h = 3, T, 4,4, € I'%, m,1141By41. Then j*, h = j*  h. Thus
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jio(h—h) =0,and h —h € Ker ji,,. By (b)), h—h € T3, m,4141B,41. Hence
h el imeyit1Brya. ,, .

Step 4: (a;)+(c;)= (ar,41), (< r <n—1).

Remark that .

Jrp1Pr41 Hy = (fr+1 qj,+1)*H. =¢;H,,(1<s<k).

By (a,), 1,¢; H1,...,¢; Hy generate B, /T.m, 1B, over R. Thus 1,4}, Hy,..., 47, Hy
generate B, 1 /T; ym, 141B, 41 over R, by (c,).
By [I], we see B, is a differentiable algebra in the sense of Malgrange. Then, we

have (a, 1) by Malgrange’s preparation theorem ([M1}).

13. Generic condition for isotropic submanifolds

Let Z be as in §9.
Define G, cT by the following condition: 7 € G; if and only if, for any « € N, there
exist a chart (V;24,...,2,_1,t) around z and a symplectic chart (U; po,---,Pn;,q0s---,qn)

around i(z) such that (1) i(V) C U, K nU = {po = 0}, w|U = 3°7_,dp; A dg; and

goi=z;, 1<j<n-1,

. o k=1 . ,
gnoi=nau(a,t) =t"/(k+ )1+ 2;t*7 /(k - j),
: i=t
pnoi=(2,t),
with (8v/6)(0,0) = --- = (8*v/8t)(0,0) = 0, for some k, (0 < k < n), where &' =

(21, ey 2n_1).

It is easy to verify that G, is open dense in Z.

Let i € Gy and 2 € N. Set § = 377, pjdg; on U. Then d|K NU = w|K NU. Thus
i*0 is a closed 1-form on V. Therefore, for some function-germ e : N,z — R (up to

additive constant),
n—1

de = Zp,- otde; + vdu. -

i=1
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Then de/dt = v(Ou/Bt). Thus e belongs to B,y; introduced in §12, setting P =
Ou/0t, with respect to the coordinate (« ,f). Remark that, in this situation, Hy = u and
T, =(¢1,...,2n-1,u) is identified with g =(g1 01¢,...,g, 02): N,z — R"™,0.

By (a,) of Proposition 12.1, e = ag o g + E?zl a; o gH;, for some function-germ
ag,a1,...,a : R*,0 — R.

Define G C T by the following condition: 7 € G if and only if 7 € G; and, for each
point @, there exist a chart (U;2’,t) around z and a symplectic chart (U, p, q) around i(z)
satisfying (1) and (11):

dgy N---ANdgr_1 ANday A --- Adap ANdg, # 0,

at 0in R™.

Remark 13.1. (1) The condition (}t) is independent of the choice ag, a1, ..., as.
(2) The condition (}}) is equivalent to that a = (a;,...,ax) : R*,0 —» R* 0 ia a
submersion and that g(2'+%(g)) = {q1 = -+ = gx—1 = ¢» = 0} is transverse to a~*(0),

-+, 1,0

Nersem
where £1%0 =% & is the Thom-Boardman symbol.

LEMMA 13.2. For any # € N and for any isotropic embedding i : N — K belonging
to G, the isotropic map-germ f at z arising from symplectic reduction relatively to K is

symplectically equivalent to f, j for some k,(0 < k < [n/2]).

PROOF: Choose charts satisfying (1) and ({1). Then define o : N,z — N,z by
%, (1<i<k-1,2k<i<n),
z;00 = ’
a2k-i 0 9, (k S 1 S 2k — 1).
Then H; o0 = H;,(1 < j < k), and goo = 7og, for some diffeomorphism-germ
7:R", 0 — R",0.

Furthermore,
k

e:auog+ZajogH,- =agpog+e oo,
i=1
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where,

k ‘ t k ]
e = Ezu—jﬂj = / {Zzzk_js’/j!}au/ﬁs(z',s)ds
j=1 C Y0 =1

is a generating function of f, . Thus (e,g) and (€',g) are R*-equivalent, and f is La-

grangian, hence symplectically, equivalent to f, by Proposition 11.4.

14. Variety of singular isotropic jets

Let N be a manifold of dimension n and M be a symplectic manifold of dimension 2n. In

the k-jet bundle J*(N, M), we set
JEH(N, M) = {j*f(z) € J*(N,M) | f : N,2 — M isotropic},

and

%= {j'f(z) € J{N,M) | f: N,z — M is not an immersion}.

Further set _
5 = {j'f(2) € JA(N, M) | dim Ker T, f = i}.

Then we have
5- )%
i=1

Set

= |5,
. ‘:j

PROPOSITION 14.1. Theset J}(N, M)—X? ofisotropic 1-jets with kernel dimension < 2 is

a submanifold of J*(N, M). Further, ¥! is a submanifold of J1(N, M) —%? of codimension
2. |

Set V.= Homg(R",C") = M,(C).
Let (-,-) denote the standard Hermitian structure on C™. Define the symplectic struc-

ture [-, -] oﬁ C™ by [u,v] = Im(u,v),u,v € C*. Let X C V be the set of isotropic linear
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maps R® — C™, and £ C X be the set of isotropic linear maps R* — C™ with kernel
dimension 7. Set §7 = Ui-; T

To prove Proposition 14.1, it is sufficient to show

LEMMA 14.2. X is a real algebraic variety in V, with Sing(X) C S*. Further, $' is a

submanifold of codimension 2 in X — S2.

ProOF: Denote by Alt(n) the set of skewsymmetric bilinear forms a : R x R* — R on
R™ and by Sp(n) the group of symplectic linear isomorphisms on (C*, [, ]).
Set G = GL(n,R) x Sp(n). Define G-actions on V =Homg(R",C") and Alt(n) by

1

(o,7)d=To0lo0o™ ",

(6,7)a=ao(c™! xo71),

((e,7) € G,L € V,a € Alt(n)), respectively.
Consider the map p : V — Alt(n) defined by p(£)(u,v) = [fu,Lfv], (£ € V,u,v € R™).
Then p is a G-equivariant polynomial map and X = p~1(0). Especially, X is a real

analytic variety.

Let £ € X. Then rank({) =4,(0 < i < n) if and only if there exists g € G,

, E; O
g-t= :
0O O

In fact, if rank(£) = i, then there exists 7 € U(n) C Sp(n), such that r(image ) =
R x 0 C C™. Thus, for some o € GL(n,R), Tolo o~ !l :R™®™ — C" is the projection to
R’ x 0 C C™. The converse is clear.

Remark that the matrix representation of p is
A++vV-1B ! BA-* AB € Alt(n), A,B € M,(R).

Let £ be.isotropic. Then p is submersion at £ if and only if kernel rank(£) < 1.

E;, O
L= ,
\O0 O

. 26
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without loss. of generarity. The tangent map of p at {,
" Tu(p) : TUV — Ty Alt(n)
is described by

' tB,, —By; —B
A’+x/—-lB'r—>‘B’£—‘£B’:( e “),

t312 ) 0

o (Bn Bn)
By By’

Biy1, Bz, Bay and By, are real matrices of type (2,7),(¢,n — i),(n — 1,2) and (n — i,n — 1)

where

respectively.

Therefore T;(p) is surjective if and onlyif i =nori=n—1. Q.E.D.

15. Transversality

Let i € Gy in the situation of §13 and z € N. Take a chart (V,2',t) around z and a

symplectic chart (U, p,q) around i(z) satisfying (). Define
f:V—R"1?

by f'=(q104,...,qn 0%;pp 07). Then we have

PrOPOSITION 15.1. Let i € Gy and 7> [n/2] + 1. Then i € G if and only if the r-jet
extension j7 f' : V. — J"(N,R™*!) of f' is transverse to X'¢°, (0 < £ < r), forallz € N.
(See [B],[Mat1].) o

ProoF: By assumption, j7 f'(z) € 1% for some k. Under the notion of §13, e =agog+
E;:l aj o gH;, and fe/8t = vOu/0t. Therefore, we have

n k
Pnot=v=(0ao/0yn)o g+ Z(Baj/ﬁyn) ogH; + Za,' ogt! /5!,

j=1. o ) S

27



42

Since j"+1Hj () = 0, where z is the origine of coordinates; we see j**1f' is transverse
to X'*% at z if and only if k < [n/2] and dg1 A+--Adgu-1 Aday A+~ Adax Adgy # 0, (see
[B],[Matl]), and this is equivalent to that j7*!f' is transverse to '¢% (0 < £ < 7), near

&.

| This is valid for all # € V. Thus we have required result. Q.E.D.

16. Proof of Theorem 9.1

By Proposition 15.1, G defined in §13 is open dense in 7 endowed with the Whitney C'®
topology. Futher, by Lemma 13.2, we see § satisfies the required property. Q.E.D.

17. Universal Maslov class

The calculation of Maslov classes of isotropic map-germs can be reduced to that in jet

spaces.

Define ¥ : J1(N, M) — 3 — A(M) by
¥(j' f(2)) = T f(T=N) C Ty(z) M,

(7*f(z) € THN, M) = ).
Remark that ¥ o j1f = o(f), (see §2).

Definition 17.1. The universal Maslov class of an isotropic 1-jet z = j! f(z) is defined

by
m(z) = §(m(¥*x*TM;L,¥* L)) € HX(J}(N,M),J}(N, M) - £,Z),,

where L is a Lagrnagian subbundle of ¥*x*T M|U over a contractible neighborhood of z
in J}(N,M) and £ C #*TM is the tautological Lagrangian subbundle over A(M).

LEMMA 17.2. Let f : N,# — M be an isotropic map-germ.‘ Then j'f : N,2 —
VJ}(N, M) induces

(Grf)* s HX(JH(N, M), JH(N, M) = £,Z);14(s) — H*(N,N - £, Z),,
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which maps m(j! f(z)) to m(f).

PROOF: We have
(1 1) m(i* f(=)) = (7' )" 6m(L, ¥ L)
= ém((3' f)*L, (¥ o 1 )* L)
= 6m((5' f)*L, (p(£))* L)
— 6m(()"L, Ly)
= m(f).

18. Calculatidn of an universal Maslov class

PROPOSITION 18.1. Let z € 3. Then

HYJYWN,M),J}N, M) -%;2), ~ Z,
and m(z) = £2.
PRroOF: The first half is clear from Proposition 14.1.

Without loss of generarity, we may assume z = j1 f(0) € J}(R",T"' R™) with g o f =
2;,(1<i<n—-1),¢goof=0,p0f=0,(1<i<n). Define c: R? — J}(R™,T*R") by

c(t,8) = jl(zl, ceeyZn_1,t24;0,...,0,82,)(0),

(t,s) € R2. Then ¢(0) = z and c is transverse to .

~ Take a small loop £, : S* — J}(R"™, T*R™), where f,(gig) = c(e cosf,esinf). Then
£, is a generator of Hy (J1(R™, T*R™)—X, Z),. Thus |m(z)| is determined by the evaluation
to £,. Remark that ¥ o £, is represented by |

. En—1 O
e .| €Un)
0O €%/ :

Thus det? o ¥ o {, : S —> S1is of degree 2. Therefore, |m(z)| = 2.
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19. Proof of Theorem 10.3

LEMMA 19.1. Let f: N,z — M be isotropic. If j1f(z) € ¥! and j1f is transverse to
$1 in JY(N, M). Then
H*(N,N - %;Z), & Z,

and m(f) = +2, where © = 2(f) = (;1£)" ().

PROOF: Since j1f is transverse to £!, and & = (jlf)_l(f]l), we see X is a submanifold of

codimension 2 in N near 2, and

(G f)* : HY(N,N — 3 2) = H*(JH(N, M), JH(N, M) — £, Z);1(z)

=~ 7.
Since m(j! f(2)) = £2 by Proposition 18.1, we have

m(f) = (51 f)*m(5* f(2)) = £2,

relatively to the above isomorphism.
LEMMA 19.2. jlf, &, (k # 0), is transverse to ¥1 in JHR™, T*R™) at 51 f, 2(0).
Proor: It is clear, by checking 2-jets.

Now, Theorem 10.3 is clear from Lemmata 19.1 and 2.
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