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THE CONFIGURATIONS OF THE M-CURVES OF DEGREE $(4,4)$

IN $RP^{1}\cross RP^{1}$ AND PERIODS OF REAL K3 SURFACES

Dedicated to Professor Haruo Suzuki on his 60th birthday

SACHIKO MATSUOKA 松岡幸子（北大・理）
Abstract. For M-curves of degree (4,4) in RP1 $\cross$ RP1 whose components are

all contractible, it is known that three configuration types are possible. We

prove that all these configuration types are realized by some M-curves of degree

(4,4) by means of the existence of locally universal families of real K3 surfaces

and the local surjectivity of period mappings defined over those famihes.

0. introduction.

We consider the zero set $RA$ of a real homogeneous polynomial $F(\neq 0)$ of degree

$(d, r)$ in $RP^{1}\cross RP^{1}$ , where $d$ and $r$ are integers $(\geq 1)$ . We assume that the zero set $A$ of $F$

in $CP^{1}\cross CP^{1}$ is nonsingular. (In what follows, we write $P^{1}\cross P^{1}$ for C$P^{1}\cross CP^{1}.$) Then
$A$ is a connected complex l-dimensional manifold. But $RA$ is a possibly disconnected

real l-dimensional manifold (a disjoint union of finitely many copies of $S^{1}$ ) or the empty

set. It is known that the number of the connected $components\vee$ of $RA$ does not exceed

$(d-1)(r-1)+1$ (see [5]). We remark that the number $(d-1)(r-1)$ is the genus of

the nonsingular curve $A$ . We say $RA$ is an M-curve of degree $(d, r)$ if it has precisely

$(d-1)(r-1)+1$ connected components.

In this paper we make clear the “configurations”of the M-curves of degree $(4,4)$ in
$RP^{1}\cross RP^{1}$ , where we consider only the curves whose components (embedded $S^{1}$ ) are

all contractible in $RP^{1}\cross RP^{1}$ . We define the meaning of the “configurations“as follows.

In our cases, each component of $RA$ , which is called an oval, divides $RP^{1}\cross RP^{1}$ into

two connected components. One of those is homeomorphic to an open disk and caUed the

interior of the oval. The other is called the exterior of that. As a consequence of [5], every

M-curve of degree $(4,4)$ lies in one of the following three cases.
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(1) Each of certain 9 ovals lies in the exteriors of the others, and the interior of one

of those contains one oval. (Notation: $\frac{1}{1}8$ )

(2) Each of certain 5 ovals lies in the exteriors of the others, and the interior of one

of those contains 5 ovals. Each of the latter 5 ovals lies in the exteriors of the others.

(Notation: $\frac{s}{1}4$)

(3) An oval contains 9 ovals in its interior and each of the 9 ovals lies in the exteriors

of the others. (Notation: $\frac{9}{1}$ )

$OO$

$\frac{1}{1}8$
$\frac{5}{1}4$

$\frac{9}{1}$

We call the above three cases the configurations of types $\frac{1}{1}8,$ $\frac{s}{1}4$ , and 1 respectively.

We can easily construct curves of degree $(4,4)$ of configuration type $\frac{1}{1}8$ by the “Harnack’s

method”, which is well known in the studies of Hilbert’s 16th problem (see [2]). Here

we omit the statement of this method. In this paper we prove that there exist curves of

degree $(4,4)$ of configuration types $\frac{5}{1}4$ and $\frac{9}{1}$ (Corollary 8 in \S 4). For this, it is sufficient

to show the existence of 2-sheeted coverings (for the definition, see [11]) $Y$ of $P^{1}\cross P^{1}$

branched along nonsingular real curves of degree $(4,4)$ whose real parts (see below) are

homeomorphic to $\Sigma_{6}\coprod 5S^{2}$ and $\Sigma_{2}\coprod 9S^{2}$ respectively (see $[S$ , \S 3]), where $\Sigma_{g}$ denotes a

sphere with $g$ handles and $kS^{2}$ denotes the disjoint union of $k$ copies of $S^{2}$ . Notice that

the complex conjugation of $P^{1}\cross P^{1}$ is lifted into two antiholomorphic involutions $T^{+}$ and
$T^{-}$ on Y. In the above statement, we call fixed point sets of these involutions real parts

of Y.

It is well known that every 2-sheeted covering $Y$ of $P^{1}\cross P^{1}$ branched along a non-

singular curve of degree $(4,4)$ is a K3 surface. The topological types of real parts of real
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projective K3 surfaces are investigated in Nikulin [8]. Let $h$ be the homology class of the

preimage in $Y$ of a hyperplane section of $P^{1}\cross P^{1}(\subset P^{3})$ . Then $h$ is primitive (for the defini-

tion, see [8]) in $H_{2}(Y, Z)$ and we have $h^{2}=4$ . Hence the triple $(H_{2}(Y),T_{c^{\pm}},h)$ is a polarized

integral involution (see [8]) with invariants $5_{L}=0,$ $l_{(+)}=3,$ $l_{(-)}=19,$ $n=4,t_{(+)}=1$ and

$t_{(-)}$ (for the notations, see [8]). Since we assume that $RA$ is an M-curve whose components

are all contractible in $RP^{1}\cross RP^{1}$ , we moreover have $a=0$ (see also [8]) for either $T^{+}$

or $T^{-}$ because of a consequence of $[S$ , \S 3 $]$ . Hence, by [8, Theorem 3.10.6], the real part

of $Y$ with respect to $T^{+}$ or $T^{-}$ is homeomorphic to $\Sigma_{g}\coprod kS^{2}$ , where $g=(21-t_{t-)})/2$

and $k=(1+t_{(-)})/2$ . Furthermore, by [8, Theorem 3.4.3], a polarized integral involution

with the above invariants exists if and only if $t_{(-)}=1,9$ or 17. By [8, Theorem 3.10.1],

the isomorphism classes of polarized integral involutions with the above invariants are in

bijective correspondence with the coarse projective equivalence classes (see [8, $\S 3,10^{o}]$ ) of

real projective K3 surfaces for which homology classes $h$ of hyperplane sections (or those

preimages) are primitive and $h^{2}=4$ . Therefore, we see that there exist real projective

K3 surfaces with $h^{2}=4$ ( $h$ : primitive) whose real parts are homeomorphic to $\Sigma_{6}II5S^{2}$

or $\Sigma_{2}II9S^{2}$ . But these K3 surfaces are not necessarily 2-sheeted coverings of $P^{1}\cross P^{1}$

branched along nonsingular real curves ofdegree $(4,4)$ . We must make a closer investigation

of [8, Theorem 3.10.1].

We first prepare a suflicient condition for K3 surfaces (not necessarily algebraic) with

antiholomorphic involutions, which are called real $KS$ surfaces, to be 2-sheeted coverings of
$P^{1}\cross P^{1}$ branched along nonsingular real curves of degree $(4,4)$ (Lemma 2 in \S 2). In [3] it is

proved that for every real K3 surface, there exists an “equivariant”locally universal Kahler

family of its complex structures (Lemma (Kharlamov) in \S 1). For the real projective K3

surfaces (X, t) with $h^{2}=4$ ( $h$ : primitive) whose real parts are homeomorphic to $\Sigma_{6}\coprod 5S^{2}$

or $\Sigma_{2}\coprod 9S^{2}$ stated above, $L_{\varphi};=Ker(1+t^{*})$ are isomorphic to $U\oplus U\oplus(-E_{8})$ and $UeU$

respectively (see [8]), where $U$ and $E_{8}$ are even unimodular lattices with rank$U=2$,

sign$U=0$ , and rank$E_{8}=signE_{8}=8$ . We show that if for a real K3 surface (X, $t$ ), $L_{\varphi}$

has $U\oplus U$ as its sublattice, then there exist real K3 surfaces which satisfy the conditions

of Lemma 2 arbitrarily closely to the surface (X, t) in the equivariant family stated above

(the proof of Theorem 6 in \S 4). Before this, we prepare Lemma 3 and its Corollary 4, which
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are finer versions of Tjurina’s lemma concerning integer vector sequences ([10, Chap.IX,

\S 5]).
The author would like to thank Professors I. Nakamura, M.-H. Saito and Y. Umezu

for their kind and great help to prove Lemma 1, Professor G. Ishikawa for indicating a

gap in the original proof of Theorem 6, and Professors H. Suzuki and S. Izumiya for their

constant encouragement.

1. Real K3 surfaces and equivariant faInilies of their $compl\propto structures$ .
We say a compact connected Kahler surface $X$ is a $KS$ surface if the first Betti number

of $X$ vanishes and there exists a nowhere vanishing holomorphic 2-form $\omega_{X}$ on $X$ . The

following are known ($cf.[10$ , Chap.IX]).

(1) $H^{2}(X, Z)$ is free of rank 22.

(2) The intersection form $H^{2}(X, Z)\cross H^{2}(X, Z)arrow Z$ is isomorphic to $U\oplus U\oplus U\oplus$

$(-E_{8})\oplus(-E_{8})$ .
(3) $\omega_{X}$ A $\omega_{X}=0,$ $\omega_{X}\wedge\overline{\omega}_{X}>0,$ $\dim_{C}H^{0}(X, \Omega^{2})=1$ . We set

$PicX=(\omega_{X})^{\perp}\cap H^{2}(X, Z)=H^{1,1}(X)\cap H^{2}(X, Z)$.

Since $h^{1}(X, O_{X})=$ } $b_{1}(X)=0$ , we can regard $PicX$ as the group of isomorphism classes

of complex line bundles on $X$ . We denote by $Q( , )$ the intersection form of $X$ . We

set $P(X, C)=P(H^{2}(X, C))$ and $K_{20}=\{\lambda\in P(X, C)|Q(\lambda, \lambda)=0\}$ . Then we see that

$H^{2,0}(X)=[\omega_{X}]$ is contained in $K_{20}$ .
(4) There exists an effectively parametrized and locaUy universal family (V, $M,$ $T$) of

complex structures of $X$ , where $M$ is complex 20-dimensional. Here, by a family (V, $M_{T}$ )

of complex structures of $X$ , we mean a $C^{\infty}- fibre$ bundle $\pi$ : $Varrow M$ with the fibre $X$ ,

where $V$ and $M$ are connected complex manifolds, $\pi$ is a holomorphic map onto $M$ .
(5) For every family (V, $M,\pi$ ) of complex structures of a K3 surface $X=\pi^{-1}(m)$ ,

there exists a contractible neighborhood $U$ such that for any $\alpha\in U,$ $V(\alpha)=\pi^{-1}(\alpha)$ are

K3 surfaces and $(\pi^{-1}(U), U,\pi)$ is a $C^{\infty}$ -trivial bundle. Let $i_{\alpha}$ : $V(\alpha)arrow\pi^{-1}(U)$ be the
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inclusion map. Then $i_{\alpha}$ : $H^{2}\{\pi^{-1}(U),$ $Z$ ) $arrow H^{2}(V(\alpha), Z)$ is an isomorphism. We define
$\tau$ : $Uarrow P(X, C)$ by $\tau(\alpha)=i_{m}^{*}oi_{\alpha}^{*-1}(H^{2,0}(V(\alpha)))$ . This is called the period mapping. $\mathbb{R}om$

[ $10$ , Chap.IX, Theorem 2], if (V, $M,$ $\pi$) is effectively parametrized, then $\tau$ is a holomorphic

embedding on a neighbourhood $U’$ of $m$ in $U$ .
Furthermore, Kharlamov [3] shows the following.

LEMMA (KHARLAMOV [3]). Let (X, t) be a real $KS$ surface, namely, $X$ is a $KS$ surface

and $t$ is an antiholomorphic involu tion on it. Then there exist a locally universal family

(V, $M,$ $\pi$) of complex structures $ofX$ and antiholomorphic involutions $t_{V}$ on $V$ and $t_{M}$ on
$M$ which satisfy th$e$ following $con$ditions.

(i) Each fibre $V(\alpha)$ is a $KS$ surface an$dV(m)=X$ .
$(\ddot{n})M$ is $c$ontracti$ble$, and (V, $M,\pi$ ) is $a$ $C^{\infty}$ -trivial bun$dle$.
(iii) $\tau$ (see (5) above) is a holomorphic embedding on $M$ and $\tau(M)$ is a neighborhood

$of\tau(m)$ in $K_{20}$ .
(iv) $t_{Y}|_{X}=t,$ $\pi\circ t_{\gamma}=t_{M}\circ\pi,$ $\tau ot_{M}=\overline{t^{*}o\tau}$ , where –is th$e$ natural complex

conjugation on $P(X, C)$ .

$Re$mark. We can restrict $t_{V}$ on $V(\alpha)$ for any $\alpha\in Fixt_{Af}$ . We set $t_{\alpha}=t_{V}|_{\Upsilon(\alpha)}$ . Then
$(V(\alpha), t_{a})$ are real K3 surfaces.

2. A sufficient condition for real K3 surfaces to be 2-sheeted coverings of
$P^{1}\cross P^{1}$ branched along real curves of degree $(4,4)$ .

We prepare the following lemmas in order to catch 2-sheeted coverings (in the sense

of [11, \S 1]) of $P^{1}\cross P^{1}$ branched along (real) curves in the family of (real) K3 surfaces

given in \S 1.

LEMMA 1. Let $X$ be a $KS$ surface with ran$kPicX=2$ . If there exist primitive elements

$c_{1}$ an$dc_{2}$ in $PicX$ such that $c_{1^{2}}=c_{2^{2}}=0$ and $c_{1}\cdot c_{Z}=2$ , then $X$ can $be$ a 2-shee$ted$

5



102

branched covering $ofP^{1}\cross P^{1}$ , and the branch locus is a nonsingular cnrve ofdegree $(4,4)$ .

PROOF: We choose an element $b$ such that $b$ and $c_{1}$ generate the free Z-module $PicX$ .
Then $c_{2}=mc_{1}+nb$ for some integers $m$ and $n$ . Since $2=c_{1}$. $\cdot c_{2}=n(c_{1}\cdot b)$ , we have

$n=\pm 1or\pm 2$ . We show that $D^{2}\geq 0$ for any irreducible curve $D$ on the surface $X$ . In

case $n=\pm 1$ , we have $PicX=Z(c_{1},c_{2})$ . Let $D$ be an irreducible cur$ve$ on $X$ and $[D]$ be

the linearly equivalence class of the divisor $D$ . Then $[D]=kc_{1}+lc_{2}$ for some integers $k$

and $l$ , and we have $D^{2}=4kl$ . Since $D^{2}\geq-2$ , we have $D^{2}\geq 0$ . In case $n=\pm 2$ , since $c_{2}$

is primitive, we see that $m$ is odd. Since $(2b)^{2}=(\pm c_{2}\mp mc_{1})^{2}=-4m$ , we have $b^{2}=-m$ .
Let $D$ be an irreducible curve on $X$ . Then we have $[D]=kc_{1}+lb$ for some integers $k$ and
$l$ . Since $D^{2}=k^{2}c_{1^{2}}+2klc_{1}\cdot b+l^{2}b^{2}=\pm 2kl-l^{2}m$ and $D^{2}$ is even, we see that $l$ is even.

Hence $[D]$ is contained in $Z(c_{1}, c_{2})$ . Therefore we see that $D^{2}\geq 0$ as in the case $n=\pm 1$ .
Now let $F:(i=1,2)$ be a complex line bundle whose first Chern class is $c_{\dot{\tau}}$ . By the

Riemann-Roch theorem, $h^{0}(F:)+h^{0}(-F_{i})\geq 2$ . Since $F_{i}$ is not trivial, we may assume that

$h^{0}(-F_{i})=0$ and $h^{0}(p_{:})\geq 2$ replacing $c_{i}by-c$: if necessary. We will verify that $c_{1}\cdot c_{2}=2$

later on. Let $C$: be the divisor of a global holomorphic section of $F_{i}$ on $X$. We show that

the complete linear system $|C_{i}|$ has no fixed components. If $\Gamma$ is the fixed part of $|c_{:}|$ , and

$D$ is an irreducible component of $\Gamma$, then we choose an effective divisor $E$ such that $\Gamma+E$

is a member of $|C_{i}|$ . We may assume that all irreducible components of $E$ are distinct from

$D$ . In our cases, since $D^{2}\geq 0$ , we have $\dim|D|\geq 1$ by the Riemann-Roch theorem. Hence

$D$ is movable. This contradicts the assumption that $\Gamma$ is the fixed part. Hence $|C_{i}|$ has no

fixed components. Therefore, by [6, Proposition 1 il)], each element of $|C_{1}|$ can be written

as $E_{1}+\cdots+E_{h}$ with $E_{i}\in|C_{1}’|,$ $C_{1}’$ being nonsingular elliptic. (For $|C_{2}|$ , we have the

same results.) Hence we have $C_{1}\sim kC_{1}^{\iota}$ (linearly equivalent). Since $[C_{1}’]\in Z(c_{1},c_{2})$ , we

have $[C\text{\’{i}}]=c_{1}+tc_{2}$ for some integers $s$ and $t$ . Then, since $c_{1}=k(sc_{1}+tc_{2})$ , we see that

$k=1$ . Hence we have $C_{1}\sim C_{1}’$ . Thus we may consider $C_{1}$ and $C_{2}$ to be nonsingular elliptic

curves. Hence we have $C_{1}\cdot C_{2}=2$ . We set $C=C_{1}+C_{2}$ . The complete linear system

$|C|$ also has no fixed components. Hence, by [6, Proposition 1 $i)$], $|C|$ has no base points

and contains an irreducible nonsingular curve $C’$ . Since $C^{\prime 2}=4(>0)$ , the surface $X$ is

algebraic by [4, Theorem 3.3]. Thus we see that there exist eUiptic curves $C_{1}$ and $C_{2}$ on
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the algebraic K3 surface $X$ such that $C_{1}\cdot C_{2}=2$ . Then the system $|C_{i}|$ ($=1, 2) defines

a morphism $\Phi_{|C:|}$ : $Xarrow P^{1}$ . We can define a holomorphic mapping 1 : $Xarrow P^{1}\cross P^{1}$ by

the formula $\Phi(ae)=(\Phi_{|C_{1}|}(x),\Phi_{|C_{2}|}(x))$ for any $x\in X$. Since $\Phi_{|C_{1}|}$ and $\Phi_{|C_{2}|}$ are surjective

and $C_{1}\cdot C_{2}=2$ , we see that $\Phi$ is surjective. Let $S:P^{1}\cross P^{1}arrow P^{3}$ be the Segre embedding.

This embedding gives a biholomorphic mapping onto a nonsingular quadric $Q$ in $P^{3}$ . Then

the composition $So\Phi$ : $Xarrow P^{S}$ is nothing but a morphism $\Phi_{|C|}$ defined by the system

$|C|$ . From the well known formula $C^{2}=\deg\Phi_{|C|}\cdot\deg Q$ , we see that the morphism $\Phi_{|C|}$ is

of degree 2. Moreover, for any irreducible curve $D$ , the image $\Phi_{|C|}(D)$ is an irreducible

curve. In fact, if $\Phi_{|C|}(D)$ is a point $P$, then $\Phi_{|C|}^{-1}(H)\cdot D=0$ for a hyperplane section $H$

of $Q$ which does not meet the point $P$. Since $\Phi_{|C|}^{-1}(H)^{2}=C^{2}=4$, we have $D^{2}<0$ by the

Hodge index theorem. But $D^{2}\geq 0$ on our surface $X$. This is a contradiction. We also see

that for any point $P$ in $Q$ , the preimage $\Phi_{|C|}^{-1}(P)$ consists of finitely many points. Let $B$

be the ramification divisor (see, for example, [1, p.668]) of the finite surjective mapping

$\Phi_{|C|}$ : $Xarrow Q$ . We use the same notation $B$ for the support of the divisor $B$ . We set

$A=\Phi_{|C|}(B)$ . Then $A$ also defines a divisor. By the definition of the ramification divisor,

$\Phi_{|C|}$ is locally biholomorphic on $X\backslash B$ , and in our case, all the points in $B$ are branch

points in the sense of [11, Definition 1.3]. Let $K_{X}$ (resp. $K_{Q}$ ) be the canonical divisor of

$X$ (resp. $Q$). Then we have (see, for example, [7, Lemma (6.20)])

$K_{X}\sim\Phi_{|C|}^{*}(K_{Q})+B$ .

Since we know that $K_{X}\sim 0$ and $K_{Q}=(-2)(pt\cross P^{1}+P^{1}\cross pt)$ identifying $Q$ with $P^{1}\cross P^{1}$

via the Segre embedding $S$, we have

$B\sim 2\Phi^{*}(pt\cross P^{1}+P^{1}\cross pt)$.

Hence, in particular, $B\neq\phi$ . Recall that the morphism $\Phi_{|C|}$ is of degr$ee2$ . Thus we

obtain a 2-sheeted branched covering $\Phi$ : $Xarrow P^{1}\cross P^{1}$ with branch locus $A$ in the sense

of [11, \S 1]. Hence the branch locus $A$ is nonsingular. Moreover, &om the proof of [11,

Theorem 1.2], we have $[B]=\Phi^{*}F$ for a line bundle $F$ over $P^{1}\cross P^{1}$ with $F^{\Phi 2}=[A]$ . Since
$Pic(P^{1}\cross P^{1})=Z([pt\cross P^{1}], [P^{1}\cross pt])$ , we have $F=k[pt\cross P^{1}]+l[P^{1}\cross pt]$ for some integers
$k$ and $l$ . Since $B\sim 2\Phi^{*}(p\ell\cross P^{1}+P^{1}\cross pt)$ , we have $k=l=2$ by considering intersection
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numbers. Hence.we have
$A\sim 4(pt\cross P^{1}+P^{1}\cross pt)$.

Thus $A$ is a nonsingular curve of degree $(4,4)$ . Q. E. D.

Remark. In the above lemma, for every irreducible curve $D$ on the algebraic K3 surface
$X$ , we see that $D^{2}$ is divisible by 4. Hence, if $D^{2}>0$ , then $D^{2}\geq 4$ , namely $p_{a}(D)\geq 3$ .
Moreover, for the irreducible curve C’ $(\sim C)$ , we know that $p_{a}(C’)=3$ . Hence the surface
$X$ belongs to the class $\pi=3$ (see [10, Chap.VIII, p.188] or [9, \S 1, p.46]). Hence, by [10,

Chap.VIII, Theorem 2], $\Phi_{|C|}$ is a birational morphism onto a quartic surface in $P^{3}$ , or a

morphism of degree 2 onto a quadric in $P^{3}$ . We see that our surface $X$ lies in the latter

case.

LEMMA 2. Let (X, t) be a reai! $KS$ surface $su$ch that $X$ satisfies the conditions ofLemma 1.

Ifmoreover, $c_{1}$ and $c_{2}$ are contained in $Ker(1+t^{*})$ , then there exists a holomorphic $m$apping
$\Phi$ which makes $X$ a 2-sheet$ed$ branched covering of $P^{1}\cross P^{1}$ and satisfies conj $0\Phi=\Phi ot$ .
Hence th $e$ branch locus is a nonsingular curve defin$ed$ by a real homogeneous polynomial

of degree $(4,4)$ .

PROOF: In the proof of Lemma 1, we define $\Phi=(\Phi_{|C_{1}|}, \Phi_{|C_{2}|})$ . Let $s_{1}$ and $\ell_{2}$ form a

basis for the space $H^{0}(X, O(C_{1}))$ . Let $\xi_{0}$ and $\xi_{1}$ be holomorphic functions on $X$ such that

$\xi_{1}(x)s_{1}(x)=\xi_{0}(x)s_{2}(x)$ for any $x(\in X)$ . Then $\Phi_{|C_{1}|}$ is defined to be $[\xi_{0} : \xi_{1}]$ . We show

that conj $0\Phi_{|C_{1}|}=\Phi_{|C_{1}|}ot$ if we choose an appropriate basis for $H^{0}(X, O(C_{1}))$ .
We define the line bundle $F_{1}$ to be $[C_{1}]$ . By the assumption, we see the first Chern

class $c_{1}(F_{1})$ is contain$ed$ in $Ker(1+t^{*})$ . Hence we have $c_{1}(F_{1})=c_{1}(\ell\overline{F_{1}})$ , where $\overline{F_{1}}$

is the conjugate bundle of $F_{1}$ . Since $H^{1}(X, O_{X})=0$ , the line bundle $F_{1}$ and $t^{*}\overline{F_{1}}$ are

isomorphic. We denote by $E_{1}$ and $pr_{1}$ the total space and the projection of $F_{1}$ . Let

$\{U_{\lambda}\}_{\lambda\in A}$ be an open covering of $X,$ $\varphi x$ : $pr_{1}^{-1}(U_{\lambda})arrow U_{\lambda}\cross C$ be trivializations, and

$g_{\lambda\mu}$ : $U_{\lambda}\cap U_{\mu}arrow C^{*}$ be transition functions. We may assume that there exists an involution
$\sigma$ on A such that $U_{\sigma(\lambda)}=t(U_{\lambda})$ . Then the transition functions of the line bundle $\ell*\overline{p_{1}}$ are

$\overline{g_{\sigma(\lambda)\sigma(\mu)}ot}$ : $U_{\lambda}\cap U_{\mu}arrow C^{*}$ . Since $F_{1}$ and $t^{*}\overline{F_{1}}$ are isomorphic, there exists a collection of
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functions $f_{\lambda}(\in O^{\cdot}(U_{\lambda}))$ such that

(1) $g_{\lambda\mu}(x)= \frac{f_{\lambda}(x)}{f_{\mu}(ae)}\overline{g_{\sigma(\lambda)\sigma(\mu)}(t(x))}$ for any 2 $(\in U_{\lambda}\cap U_{\mu})$ ,

where we may consider that

(2) $f_{\sigma(\lambda)}=\overline{f_{\lambda}ot}-1$

Then we can define an antiholomorphic involution $T_{1}$ on $E_{1}$ such that $topr_{1}=pr_{1}oT_{1}$ and

the restrictions $(T_{1})_{x}$ : $pr_{1}^{-1}(x)arrow pr_{1}^{-1}(t(x))$ are antilinear as follows. (It turns out that

the line bundle $F_{1}$ is a “real vector bundle ”.) We define $T_{1}$ on $pr_{1}^{-1}(U_{\lambda})$ by the following

formula.

$\varphi_{\sigma(\lambda)}oT_{1}o\varphi_{\lambda}^{-1}(x, c)=(t(x),\overline{f_{\lambda}(ae)^{-1}c})$

By the equality (1), $T_{1}$ is well defined over $E_{1}$ , and by (2), we see that $T_{1}$ is an involution.

We now define an antilinear involution $\theta_{1}$ : $H^{0}(X, O(F_{1}))arrow H^{0}(X, O(F_{L}))$ by $\theta_{1}(\ell)=$

$T_{1}o\ell ot$ , and choose $s_{1}$ and $s_{2}$ stat $ed$ above in Fix $\theta_{1}$ . Then we see that $\Phi_{|C_{1}|}=$

$[\overline{\xi_{0}ot} : \overline{\xi_{1}ot}]$ . Hence conj $0\Phi_{|C_{1}|}=\Phi_{|C_{1}|}ot$ . We have the same result$s$ for $|C_{2}|$ . Thus we

have conj $0\Phi=\Phi ot$ . It follows that conj$(A)=A$, wher$e$ $A$ is the branch locus. Q. E. D.

3. A lemma concerning integer vector sequences.

LEMMA 3. For any integer sequence $\alpha_{1}’(n)$ with $\alpha_{1}’(n)arrow\infty$ , any positive $reaIn$umber
$\alpha$ , any $reaI$ numbers $x_{3}$ an $dx_{4}$ , there exis$t$ a subseq$uen$ce $\alpha_{1}(n)$ of $\alpha_{1}’(n)$ an $d$ an integer

vector sequence $(\beta_{1}(n),\beta_{2}(n),\beta_{3}(n),\beta_{4}(n))$ which satisfy the foIlowing five conditions.

(1) $\beta_{1}\beta_{2}+\beta_{3}\beta_{4}=I$

(2) $\lim_{narrow\infty}\frac{\beta_{3}}{\beta_{1}}=x_{3}$

$(S) \lim_{narrow\infty}\frac{\beta_{4}}{\beta_{1}}=x_{4}$

(4) $\beta_{1}$ and $\beta_{4}$ are odd.
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(5) $\lim_{narrow\infty}\frac{\beta_{1}}{\alpha_{1}}=\alpha$

PROOF: We first prove in the case $x_{4}$ is a rational number. The rational number $x_{4}$ can

be expanded into a finite simple continued baction as follows.

$x_{4}=a_{1}+ \frac{1}{a_{2}+\frac{1}{a_{3}+...+\frac{1}{a,-1+\frac{1}{a,}}}}$

In the above, $a_{1}$ is an integer, and $a_{2},$ $\ldots,$
$a$. are positive integers. We define $(u_{0}, v_{0})$ ,

$(u,, v_{l})$ inductively as follows.

$(u_{0},v_{0})=(-1, -1)$

$(u_{j},v_{j})=\{(v_{j-1}, u_{j-1})ifaiseven(v^{j-1},-u_{j-1})ot^{j}herwise$

or $(u_{j-1},v_{j-1})=(-1,1)$

In the case $r\geq 2$ , we define $b_{i}(2\leq i\leq r)$ as follows.

$b_{i}=a:+ \frac{1}{a:+1+\frac{1}{a:+2+..+\frac{1}{a,-1+\frac{1}{a}}}}$

Remark that every $b_{:}$ is positive. We set $\alpha’=\frac{\alpha}{b_{2}\cross\cdots\cross b}$ In the case $r=1$ , we set

$\alpha’=\alpha$ . Now we choose and fix a subsequence $\alpha_{1}(n)$ of $\alpha_{1}’(n)$ such that $\frac{\alpha_{1}(n)}{n}arrow\infty$ .

Let $\tilde{\beta}_{1}(n)$ be the closest integer to $\alpha_{1}(n)\alpha’$ . Since $\alpha_{1}(n)arrow\infty$, we have $\lim\frac{\tilde{\beta}_{1}}{\alpha_{1}}=\alpha’$ and

$\frac{\tilde{\beta}_{1}}{2n}=\frac{\tilde{\beta}_{1}}{\alpha_{1}}\frac{\alpha_{1}}{2n}arrow\infty$ . We set $\beta_{1}(n)=[\frac{\tilde{\beta}_{1}(n)}{2n}]$ or $[ \frac{\tilde{\beta}_{1}(n)}{2n}]+1$ , where we take $\beta_{1}(n)$ to be

odd (resp. even) if $v_{f}=-1$ (resp. 1). We have $\beta_{1}(n)arrow\infty$ . We set $x_{\}’=(-1)$ X3. In

the case $(u,, v,)=(1, -1)$ , let $\beta_{3}$ be the closest integer to $\beta_{l^{g’}\}$ that is relatively prime

to $\beta_{1}$ . Since $\beta_{1}$ is odd, $\beta_{1}$ and $2\beta_{3}$ are relatively prime, and hence, there exist integers $u$

and $v$ such that $u\beta_{1}+2v\beta_{S}=1$ and $|u|<|2\beta_{3}|,$ $|v|<|\beta_{1}|$ . We set $\beta_{2}=u$ and $\beta_{4}=2v$ .
In the case $(u,, v,)=(-1,1)$ , let $\beta_{3}$ be as above. Then there exist integers $u$ and $v$ such
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that $u\beta_{1}+v\beta_{3}=1$ and $|u|<|\beta_{3}|,$ $|v|<|\beta_{1}|$ . We set $\beta_{2}=u$ and $\beta_{4}=v$ . In the case

$(u,, v,)=(-1, -1)$ , let $\beta_{S}$ be the closest integer to $\beta_{1}ae_{S}’$ that is relatively prime to $2\beta_{1}$ .
Then there exist integers $\tau\iota$ and $v$ such that $2u\beta_{1}+v\beta_{3}=1$ and $|u|<|\beta_{S}|,$ $|v|<|2\beta_{1}|$ .
We set $\beta_{2}=2u$ and $\beta_{4}=v$ . The case $(u,, v_{p})=(1,1)$ cannot occur. It follows that $\beta_{4}$

is odd (resp. even) if $u,$ $=-1$ (resp. 1). In all the cases, we have $\beta_{1}\beta_{2}+\beta_{s}\beta_{4}=1$ ,
$\lim_{narrow\infty}\frac{\beta_{3}}{\beta_{1}}=x_{3}’$ , and $| \frac{\beta_{4}}{\beta_{1}}|<2$ . We see that $\frac{\beta_{2}}{\beta_{1}}$ are also bounded. We define a new

sequence $P(n)=(p_{1}(n),p_{2}(n),p_{3}(n),p_{4}(n))$ to be

$(-\beta_{4}(n)+2n\beta_{1}(n), -\beta_{3}(n),2n\beta_{3}(n)+\beta_{2}(n),\beta_{1}(n))$.

Then we have $p_{1}p_{2}+p_{S}p_{4}=1,$ $\lim\frac{p_{3}}{p_{1}}=x_{S}’$ and $\lim\frac{p_{4}}{p_{1}}=0$ . $Since|\beta_{1}-\frac{\tilde{\beta}_{1}}{2n}|\leq 1,$ $\lim\frac{\tilde{\beta}_{1}}{\alpha_{1}}=\alpha’$ ,

and $\frac{\alpha_{1}}{n}arrow\infty$ , we have $\lim\frac{p_{1}}{\alpha_{1}}=\alpha’$ . Remark that the parity of $(p_{1},p_{2},p_{S},p_{4})$ corresponds

to $(\beta_{4},\beta_{3},\beta_{2},\beta_{1})$ .
We now assume that a new sequence $\beta(n)=(\beta_{1},\beta_{2},\beta_{S},\beta_{4})$ satisfies the conditions (1),

(2), (3) and (5) in the statement of Lemma 3 for a positive real number $\alpha$ , real numbers

$x_{3}$ and $x_{4}$ , and a sequence $\alpha_{1}(n)$ with $\alpha_{1}(n)arrow\infty$ . Let $k$ be an arbitrary integer with

$k-x_{4}>0$ . We define a new sequence $I_{h}(\beta(n))=(q_{1}, q_{2}, q_{3}, q_{4})$ to be

$(-\beta_{4}(n)+k\beta_{1}(n), -\beta_{3}(n),$ $k\beta_{3}(n)+\beta_{2}(n),\beta_{1}(n))$.

Then we see that $q_{1}q_{2}+q_{3}q_{4}=1$ and $\lim^{\underline{q_{3}}}=x_{S}$ . Hence the properties (1) and (2) are
$q_{1}$

preserved by the transformation $I_{k}$ . On the other hand, we see that

$\lim\frac{q_{4}}{q_{1}}=\frac{1}{k-ae_{4}}$

and
$q_{1}$

$\lim=\alpha(k-x_{4})(>0)\overline{\alpha_{1}}$

We next define a new sequence $J(\beta(n))$ to be $(\beta_{1},\beta_{2},-\beta_{S},-\beta_{4})$ . Then the properties (1)

and (5) are preserved by the transformation $J$ . But for the properties (2) and (3), the

limit values are multiplied by $(-1)$ .
The $s$equence $P(n)$ has the properties (1), (2) (for $x_{S}=x_{S}’$ ), ($) (for $x_{4}=0$) and

(5). In the case $r\geq 2$ , we can transform $P(n)$ by $I_{a},$
$\cdot$ Then $I_{a},(P(n))$ has the prop-

erties (3) (for $ae_{4}= \frac{1}{a,}$ ) and (5) (for $\alpha=\alpha’a,$ $= \frac{\alpha}{b_{2}\cross\cdots\cross b,-1}(>0)$). Next we

11
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can transform $JoI_{a},(P(n))$ by $I_{a,-1}$ . Then $I_{a,-1}oJoI_{a},(P(n))$ has the properties

(3) (for $x_{4}= \frac{1}{1}$) and (5) (for $\alpha=\alpha’a,(a,-1+\frac{1}{a,})=\frac{\alpha}{b_{2}\cross\cdots\cross b,-2}(>0)$).
$a_{-1}+_{\overline{a}}$

Thus we obtain the sequence $(\gamma_{1}, \gamma_{2},\gamma_{3}, \gamma_{4}):=JoI_{a_{2}}oJo\cdots oJoI_{a,-2}oJoI_{a,-1}o$

$JoI_{a},(P(n))$ . In the case ’ $=1$ , we set $(\gamma_{1}, \gamma_{2},\gamma_{S},\gamma_{4})=P(n)$ . Then we have (1)

$\gamma_{1}\gamma_{2}+\gamma_{3}\gamma_{4}=1(2)\lim\frac{\gamma_{3}}{\gamma_{1}}=-x_{3}(3)\lim\frac{\gamma_{4}}{\gamma_{1}}=a_{1}-x_{4}(5)\lim\frac{\gamma_{1}}{\alpha_{1}}=\alpha$. Finally we set

$(\beta_{1},\beta_{2},\beta_{3},\beta_{4})=(\gamma_{1}, a_{1}\gamma_{3}+\gamma_{2}, -\gamma_{3}, -\gamma_{4}+a_{1}\gamma_{1})$. Then this sequence satisfies the condi-

tion$s(1),$ (2) $,$ (3) and (5) of Lemma 3. From the definition of $(u,,v_{l})$ , we observe that

the condition (4) is also satisfied. Thus Lemma 3 is proved in the case $x_{4}$ is a rational

number. To complet $e$ the proof of the lemma, let $x_{4}$ be an arbitrary real number. Let

$\{x_{4}(n)\}(n=1,2,3\ldots)$ be a rational number sequence which converges to $x_{4}$ satisfying
$|x_{4}(n)-x_{4}|< \frac{1}{n}$ From the results above, there exist sequences $(\beta_{1n},\beta_{2n},\beta_{3n},\beta_{4n})$ such

that (1) $\beta_{1n}\beta_{2n}+\beta_{Sn}\beta_{4^{1}n}=1(2)\lim_{marrow\infty}\frac{\beta_{3n}(m)}{\beta_{1n}(m)}=x_{S}(3)\lim_{marrow\infty}\frac{\beta_{4n}(m)}{\beta_{1,\iota}(m)}=ae_{4}(n)(4)\beta_{1n}$

and $\beta_{4n}$ are odd. (5)$\lim_{marrow\infty}\frac{\beta_{1n}(m)}{\alpha_{1}(m)}=\alpha$ . Remark that the subsequence $\alpha_{1}(m)$ of a/1 $(m)$

does not depend on $n$ . We choose a natural number sequence m(l)<m(2)<m($) $<\cdots$

such that $| \frac{\beta_{3n}(m(n))}{\beta_{1n}(m(n))}-x_{3}|<\frac{1}{n’}|\frac{\beta_{4n}(m(n))}{\beta_{1’\iota}(m(n))}-x_{4}(n)|<\frac{1}{n}$ and I $\frac{\beta_{1n}(m(n))}{\alpha_{1}(m(n))}-\alpha|<\frac{1}{n}$

We set $(\beta_{1}(n),\beta_{2}(n),\beta_{3}(n),\beta_{4}(n))=(\beta_{1}(m(n)),\beta_{2}(m(n)),\beta_{3}(m(n)),\beta_{4}(m(n)))$. It is suf-

ficient that we define $\alpha_{1}(n)$ to be $\alpha_{1}(m(n))$ newly. This completes the proof of Lemma

3.

COROLLARY 4. For any integer sequence $\alpha_{1}’(n)$ with $\alpha_{1}’(n)arrow\infty$ , any positive $reaI$ number

$\alpha$ , any real numbers $x_{S}$ and $x_{4}$ , there exist a subsequence $\alpha_{1}(n)$ of $\alpha_{1}’(n)$ and an integer

vector sequence $(\beta_{1}(n),\beta_{2}(n),\beta_{S}(n),\beta_{4}(n))$ which satisfy the $foJlowing$ five conditions.

(1) $\beta_{1}\beta_{2}+\beta_{3}\beta_{4}=2$

(2)$\lim_{narrow\infty}\frac{\beta_{3}}{\beta_{1}}=x_{S}$

$(S) \lim_{narrow\infty}\frac{\beta_{4}}{\beta_{1}}=x_{4}$

(4) $\beta_{1}$ an$d\beta s$ are relatively prime, an$d$ so are $\beta_{2}$ and $\beta_{4}$ .
(5)$\lim_{narrow\infty}\frac{\beta_{1}}{\alpha_{1}}=\alpha$
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PROOF: There exists a sequence $(\beta_{1},\beta_{2},\beta_{S},\beta_{4})$ which satisfies the conditions (1), (3), (4),

(5) in Lemma 3 and the condition that $\lim_{narrow\infty}\frac{\beta_{S}}{\beta_{1}}=\frac{x_{S}}{2}$ Then, fro$m(1)$ and (4), $\beta_{1}$ and
$2\beta_{S}$ are relatively prime, and so are $2\beta_{2}$ and $\beta_{4}$ . Thus the $new$ sequence $(\beta_{1},2\beta_{2},2\beta_{3},\beta_{4})$

is a required one. Q. E. D.

Remark. Lemma 3 is a finer version of [10, ChapJX, \S 5, Lemma] for $\pi=2$ , and

Corollary 4 is for $\pi=3$ .

4. The main theorem.

Let (X, t) be a real K3 surface. We set $L_{\varphi}=Ker(1+t^{*})$ , and $L^{\varphi}=Ker(1-t^{*})$ in
$H^{2}(X, Z)$ . Remark that Fix $\overline{t\cdot}=((L^{\varphi}\otimes R)\oplus i(L_{\varphi} \copyright R))/R^{*}$ in $P(X, C)$ .

PROPOSITION 5. II $L_{\varphi}$ has $U\oplus U$ as $its$ sublattice, then there exists a pair $\{c_{1}(n)\},$ $\{c_{2}(n)\}$

of sequences which consist ofprimitive elements of $U\oplus U$ and satisfy the conditions that

$Q(c_{1}(n),c_{1}(n))=Q(c_{2}(n), c_{2}(n))=0,$ $Q(c_{1}(n), c_{2}(n))=2$ , the sequence of th $e$ subspaces

$L_{n};=\{\lambda\in P(X, C)|Q(\lambda, c_{1}(n))=Q(\lambda, c_{2}(n))=0\}$ of codimension 2 converges to a

subspace $L:=\{\lambda\in P(X, C)|Q(\lambda,\xi_{1})=Q(\lambda,\xi_{2})=0\}$ of codimension 2, where $\xi_{1}$ and $\xi_{2}$

are elements of $(U\oplus U)\otimes R$ , and $L$ intersects $K_{20}$ transversely at $H^{2,0}(X)$ in $P(X, C)$ .
Hence the sequence of the subspaces $L_{n}\cap(Fixt\urcorner^{*}$ ofreal codimension 2 converges to

th $e$ subspace $L\cap(Fixt^{c}\neg$ of reai codimension 2, and $L\cap(Fix\overline{t^{*}})$ intersects $K_{20}\cap(Fix$ $\neg t^{l}$

transversely at $H^{2,0}(X)$ in Fix $\overline{t*}$.

PROOF: For our sublattice of $L_{\varphi}$ which is isomorphic to $U\oplus U$, we use the same notation
$U\oplus U$. Since $U\oplus U$ is unimodular, we have $H^{2}(X, Z)=(U\oplus U)\oplus(U\oplus U)^{\perp}$ . Let $e_{1},e_{2},e_{S}$ , $e_{4}$

form a basis for $U\oplus U$ and represent the intersection form $Q$ by the matrix

$(\begin{array}{llll}0 1 1 0 0 1 1 0\end{array})$ .
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We set $s=$ rank$L_{\varphi}$ and let $e_{5},$ $\ldots,e$ . form a basis for $L_{\varphi}\cap(U\oplus U)^{\perp}$ . Then $e_{l},$ $\ldots,e$ ,

form a basis for $L_{\varphi}$ . Remark that $(L_{\varphi}\otimes Q)\oplus(L^{\varphi}\otimes Q$ } $=H^{2}(X, Q),$ $L_{\varphi}=(L^{\varphi})^{\perp}$ and
$L^{\varphi}=(L_{\varphi})^{\perp}$ in $H^{2}(X, Z)$ . Let $e_{\iota+1},$ $\ldots,$ $e_{22}$ form a basis for $L^{\varphi}$ . Then $e_{1},$ $\ldots,e_{22}$ form a

basis for $H^{2}(X, Q)$ . Since $H^{2,0}(X)=\overline{t^{*}}(H^{2,0}(X))$, we can take $\omega_{X}$ so that $\omega_{X}=\overline{t^{c}\omega_{X}}$.
Then we have $\omega_{X}=(\sum_{j=\cdot+1}^{22}\lambda_{j}e_{j})+i(\sum_{j=1}^{l}\lambda_{j}e_{j})$ for some real numbers $\lambda_{j}(1\leq j\leq 22)$ .
We set $\omega+=\sum_{j=\cdot+1}^{22}\lambda_{j}e_{j}$ and $\omega_{-}=\sum_{j=1}\lambda_{j}e_{j}$ . Since $\omega x$ A $\omega x=0$ and $\omega x$ A $\overline{\omega}x>0$

(recall \S 1), we have $\omega+^{2}=\omega_{-}^{2}>0$ . Moreover, we set $\omega_{-}’=\sum_{j=5}^{l}\lambda_{j}e_{j}$ . Then $\omega_{-}^{2}=$

$2(\lambda_{1}\lambda_{2}+\lambda_{S}\lambda_{4})+\omega_{-}^{\prime 2}$ . Remark that $\omega+\in L^{\varphi}\otimes R,$ $U\oplus U\subset L_{\varphi}$ , where sign$(U\oplus U)=(2,2)$ ,

and $\omega_{-}’\in(L_{\varphi}\cap(U\oplus U)^{\perp})\otimes R$ . Since sign$(H^{2}(X, Z),$ $Q$) $=(3,19)$ , we have $\omega_{-}^{\prime 2}\leq 0$ .
Therefore we obtain $\lambda_{1}\lambda_{2}+\lambda_{3}\lambda_{4}>0$ .

We may assume that $\lambda_{4}\neq 0$ replacing $(e_{1},e_{2}, e_{3}, e_{4})$ by $(e_{3},e_{4},e_{1},e_{2})$ if necessary. We

set

$x_{3}= \frac{\lambda_{1}}{\lambda_{4}}$ , $x_{4}=\lambda_{1}x_{S}+\lambda_{4},$ $y_{4}=(1+x_{S^{2}})(\lambda_{2}x_{S}+\lambda_{S})$ ,

$\xi_{1}=e_{2}-x_{S}e_{S}$ , $\xi_{2}=x_{3}x_{4}(1+x_{3^{2}})e_{1}-x_{S}y_{4}e_{2}-y_{4}e_{S}+ae_{4}(1+x_{S^{2}})e_{4}$.

We define $L=\{\lambda\in P(X, C)|Q(\lambda,\xi_{1})=Q(\lambda, \xi_{2})=0\}$ . The subspace $L$ meets $H^{2.0}(X)$

because $Q( \omega_{X}, \xi_{1})=i(\lambda_{1}-\frac{\lambda_{1}}{\lambda_{4}}\lambda_{4})=0$ and $Q(\omega_{X}, \xi_{2})=i(x_{3}x_{4}(1+x_{3^{2}})\lambda_{2}-x_{3}y_{4}\lambda_{1}-y_{4}\lambda_{4}+$

$x_{4}(1+x_{3^{2}})\lambda_{S})=i((1+x_{S^{2}})(\lambda_{2}x_{S}+\lambda_{3})x_{4}+(-\lambda_{1}x_{3}-\lambda_{4})y_{4})=i(y_{4}x_{4}-x_{4}y_{4})=0$ . We show

that $L$ intersects $K_{20}$ at $H^{2,0}(X)$ transversely. We identify $P(X, C)$ with $P^{21}=\{[X_{1}$ :

... : $X_{22}$]} taking a basis $ie_{1},$
$\ldots,$ $ie.,e.e$ . Then $K_{20}$ is identified with the subset

defined by an integral homogeneous polynomial of degree 2 of the form $f(X_{1}, \ldots,X_{22})=$

$-2(X_{1}X_{2}+X_{3}X_{4})+f_{1}(X_{S}, \ldots, X_{22})$ . Hence the tangent spac$e$ of $K_{20}$ at $H^{2,O}(X)$ is

identified with the subspace defined by a real linear form of the form $h(X_{1}, \ldots, X_{22})=$

$\lambda_{2}X_{1}+\lambda_{1}X_{2}+\lambda_{4}X_{S}+\lambda_{S}X_{4}+h_{1}(X_{5}, \ldots, X_{22})$ . Let $H$ denote this space. $L$ intersects $H$

transversely at $H^{2,0}(X)$ in $P^{21}$ . If not, then $H$ contains $L$ . In particular, $(H\cap RP^{\}\cross\{0\})$

$\supset(L\cap RP^{S}\cross\{0\})$ , where

$H\cap RP^{3}\cross\{0\}=\{\lambda_{2}X_{1}+\lambda_{1}X_{2}+\lambda_{4}X_{S}+\lambda_{3}X_{4}=0\}\cross\{0\}$
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and

$L\cap RP^{\}\cross\{0\}$

$=\{X_{1}-x_{S}X_{4}=-\iota_{3}y_{4}X_{1}+x_{3}x_{4}(1+x_{3^{2}})X_{2}+x_{4}(1+x_{S^{2}})X_{S}-y_{4}X_{4}=0\}\cross\{0\}$.
But the following matrix is of rank 3.

$(\begin{array}{lll}\lambda_{2} 1 -Wsy_{4}\lambda_{1} 0 Wx_{S}x_{4}(1+s^{2})\lambda_{4} 0 Wx_{4}(1+s^{2})\lambda_{s} -x_{s} -y_{4}\end{array})$

In fact, the determinant of the following matrix is equal to $\frac{2(\lambda_{1}^{2}+\lambda_{4}^{2})^{2}(\lambda_{1}\lambda_{2}+\lambda_{S}\lambda_{4})\lambda_{1}}{\lambda_{4}^{5}}$

$(\begin{array}{lll}\lambda_{2} 1 -x_{8}y_{4}\lambda_{1} 0 x_{S^{2}}x_{3}x_{4}(1+)\lambda_{3} -x_{3} -y_{4}\end{array})$

Hence, the above matrix is of rank 3 if $\lambda_{1}\neq 0$ . And if $\lambda_{1}=0$ , then the above matrix is as

follows.

$(\begin{array}{lll}\lambda_{2} 1 00 0 0\lambda_{4} 0 \lambda_{4}\lambda_{3} 0 -\lambda_{s}\end{array})$

This matrix is of rank 3 if $\lambda_{1}=0$ . Thus we have a contradiction. Therefore $L$ intersects
$K_{20}$ at $H^{2,0}(X)$ transversely.

We now show that there exists a pair $\{c_{1}(n)\},$ $\{c_{2}(n)\}$ of sequences for which the

sequence $\{\lambda\in P(X, C)|Q(\lambda, c_{1}(n))=Q(\lambda, c_{2}(n))=0\}$ converges to the above $L$ and the

properties in the statement of Proposition 5 hold. By Corollary 4 in \S 3, there exists an

integer vector sequence $(\alpha_{1S},\beta_{24}, -\alpha_{24},\beta_{1S})$ such that

(1) $\alpha_{1S}\beta_{24}-\alpha_{24}\beta_{13}=2$ ,

(2) $\lim\frac{-\alpha_{24}}{\alpha_{1S}}=x_{3}$ ,

(3) $\lim=x_{4}\underline{\beta_{1S}}$

$\alpha_{1S}$

(4) $a_{13}and-\alpha_{24}$ are relatively prime, and so are $\beta_{24}$ and $\beta_{1S}$ , and
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(5) $\alpha_{13}arrow\infty$ .
By Lemma 3, replacing the above sequence by an appropriate subsequence if necessary, we

can find an another integer vector sequence $(\alpha_{14},\beta_{2S}, -\alpha_{2S},\beta_{14})$ such that

(1) $\alpha_{14}\beta_{23}-\alpha_{2S}\beta_{14}=1$ ,

$( 2’)\lim\frac{-\alpha_{2S}}{\alpha_{14}}=0$,

(3’) $\lim\frac{\beta_{14}}{\alpha_{14}}=y_{4}$ , and

(4) $\lim\frac{\alpha_{14}}{\alpha_{13}}=\frac{1}{\sqrt{2}}$

We set

$\alpha_{1}=\alpha_{1S}\alpha_{14}$ , $\alpha_{2}=\alpha_{23}\alpha_{24}$ , $\alpha_{S}=-\alpha_{1S}\alpha_{2S}$ , $\alpha_{4}=\alpha_{14}\alpha_{24}$,

$\beta_{1}=\beta_{13}\beta_{14}$ , $\beta_{2}=\beta_{23}\beta_{24}$ , $\beta_{S}=-\beta_{1S}\beta_{23}$ , $\beta_{4}=\beta_{14}\beta_{24}$

Then we have

$\alpha_{1}\alpha_{2}+\alpha_{3}\alpha_{4}=\beta_{1}\beta_{2}+\beta_{3}\beta_{4}=0$

and
$\alpha_{1}\beta_{2}+\alpha_{2}\beta_{1}+\alpha_{S}\beta_{4}+\alpha_{4}\beta_{3}=(\alpha_{13}\beta_{24}-\alpha_{24}\beta_{1S})(\alpha_{14}\beta_{2S}-\alpha_{2S}\beta_{14})=2$ .

From (4) and (1’) above, we see that $\alpha_{1},$ $\alpha_{2},$ $\alpha_{S}$ and $\alpha_{4}$ are relatively prime. So are $\beta_{1},\beta_{2},\beta_{S}$

and $\beta_{4}$ . Hence, if we set $c_{1}=\alpha_{1}e_{2}+\alpha_{2}e_{1}+\alpha_{S}e_{4}+\alpha_{4}e_{3}$ and $c_{2}=\beta_{1}e_{2}+\beta_{2}e_{1}+\beta_{S}e_{4}+\beta_{4}e_{S}$ ,

then $Q(c_{1}(n), c_{1}(n))=Q(c_{2}(n),c_{2}(n))=0,$ $Q(c_{1}(n),c_{2}(n))=2$ , and moreover, $c_{1}(n)$ and

$c_{2}(n)$ are primitive elements in $U\oplus U$ (hence in $H^{2}(X,$ $Z)$ ).

Finally we show that the sequence $L_{n}=\{Q(\lambda, c_{1}(n))=Q(\lambda,c_{2}(n))=0\}$ converges

to $L$ . We first observe that

$\lim\frac{\alpha_{2}}{\alpha_{1}}=\lim\frac{\alpha_{24}}{\alpha_{1S}}\lim\frac{\alpha_{2S}}{\alpha_{14}}=(-x_{3})\cdot 0=0$,

$\lim\frac{\alpha_{S}}{\alpha_{1}}=\lim\frac{-\alpha_{2S}}{\alpha_{14}}=0$ ,
$\lim^{\underline{\alpha_{4}}}=\lim^{\underline{\alpha_{24}}}=-x_{S}$ ,

$\alpha_{1}$ $\alpha_{13}$

$\lim\frac{\beta_{2}}{\beta_{1}}=\lim\frac{\beta_{24}}{\beta_{13}}\lim\frac{\beta_{2S}}{\beta_{14}}=(-x_{3})\cdot 0=0$ ,

$\lim\frac{\beta_{S}}{\beta_{1}}=\lim\frac{-\beta_{2S}}{\beta_{14}}=0$,

and
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$\lim\frac{\beta_{4}}{\beta_{1}}=\lim\frac{\beta_{24}}{\beta_{1S}}=-x_{S}$ .
Hence both $[\alpha_{1} : \alpha_{2} : \alpha_{S} : \alpha_{4}]$ and $|\beta_{1}$ : $\beta_{2}$ : $\beta_{3}$ : $\beta_{4}$] converge to $[1 : 0 : 0 : -x_{S}]$ .

Thus both $\{Q(\lambda,c_{1}(n))=0\}$ and $\{Q(\lambda,c_{2}(n))=0\}$ converge to $\{Q(\lambda,\xi_{1})=0\}$ . In order

to know the limit subspace of $\{L_{n}\}$ , we set

$B_{j}=( \sum_{i=1}^{4}\alpha:^{2})\beta_{j}-(\sum_{i=1}^{4}\alpha:\beta:)\alpha_{j}(j=1,2, \, 4)$ .

Remark that $(B_{1}, B_{2}, B_{S}, B_{4})$ are orthogonal to $(\alpha_{1}, \alpha_{2}, \alpha_{S}, \alpha_{4})$ in $R^{4}$ with respect to the

Euclidean inner product. We set

$\tilde{c}_{2}=B_{1}e_{2}+B_{2}e_{1}+B_{3}e_{4}+B_{4}e_{S}$ .

Then we see $L_{n}=\{Q(\lambda, c_{1}(n))=Q(\lambda,\tilde{c}_{2}(n))=0\}$ . We now consider the limit hyperplane

of the sequence $\{Q(\lambda,\tilde{c}_{2}(n))=0\}$ . Since
$B_{1}=\alpha_{2}(-2\alpha_{2S}\beta_{14}-\alpha_{13}\beta_{24})+\alpha_{3}\alpha_{13}\beta_{1S}-2\alpha_{4}\alpha_{14}\beta_{14}$,
$B_{2}=\alpha_{1}(2\alpha_{23}\beta_{14}+\alpha_{13}\beta_{24})-2\alpha_{3}\alpha_{2S}\beta_{23}+\alpha_{4}\alpha_{24}\beta_{24}$,
$B_{3}=\alpha_{4}(2\alpha_{14}\beta_{23}-\alpha_{13}\beta_{24})-\alpha_{1}\alpha_{13}\beta_{13}-2\alpha_{2}\alpha_{2S}\beta_{23}$

and

$B_{4}=\alpha_{S}(-2\alpha_{14}\beta_{2S}+\alpha_{1S}\beta_{24})+2\alpha_{1}\alpha_{14}\beta_{14}-\alpha_{2}\alpha_{24}\beta_{24}$;

we have

hm $\frac{B_{1}}{\alpha_{1^{2}}}=\sqrt{2}x_{3}y_{4}$ ,

$\lim\frac{B_{2}}{\alpha_{1^{2}}}=-\sqrt{2}x_{3}x_{4}(1+x_{3^{2}})$ ,

$\lim\frac{B_{S}}{\alpha_{1^{2}}}=-\sqrt{2}ae_{4}(1+x_{3^{2}})$

and
$\lim\frac{B_{4}}{\alpha_{1^{2}}}=\sqrt{2}y_{4}$ .

Hence

$[B_{1} : B_{2} : B_{3} ; B_{4}]$ converges to $[-x_{3}y_{4} : r_{S}x_{4}(1+x_{S^{2}}) : x_{4}(1+x_{\^{2}}) : -y_{4}]$. Namely,

$\{Q(\lambda,\tilde{c}_{2}(n))=0\}$ converges to $\{Q(\lambda, \xi_{2})=0\}$ . Therefore $L_{n}$ converges to $L$ . With

respect to the identification $P(X, C)\simeq P^{21}$ stat$ed$ above, $RP^{21}$ corresponds to Fix $\overline{t\cdot}=$

$(i(L_{\varphi}\otimes R)\oplus(L^{\varphi}\otimes R))/R^{*}$ . Hence the latter assertion of the proposition follows. Q. E.

D.
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We next consider a family (V, $M,\pi$ ) of complex structures of $X$ with antiholomorphic

involutions $t_{V}$ and $t_{M}$ , and the period mapping $\tau$ : $Marrow P(X, C)$ as stated in Kharlamov’s

lemma (recall \S 1).

THEOREM 6. Let (X, t) be a $reaIKS$ surface. $HL_{\varphi}$ has $U\oplus U$ as its sublattice, then there

exist points $\alpha$ in Fix $t_{M}$ for which real $KS$ surfaces $(V(\alpha),t_{\alpha})$ can be 2-sheet$ed$ coverings
$ofP^{l}\cross P^{1}$ (Let $\Phi_{\alpha}$ denote th $e$ covering maps.) branch$ed$ along nonsingular curves defined

by $reaI$ homogeneous polynomials ofdegree $(4,4)$ and satisfy conj $0\Phi_{\alpha}=\Phi_{\alpha}ot_{\alpha}$ arbitrarily

closely to $m$ .

PROOF: We set $(U\oplus U)_{\alpha}=i_{\alpha}^{*}oi_{m}^{*-1}(U\oplus U)$ for any $\alpha$ in $M$ . The isonorphisms $i_{\alpha}^{*}o$

$i_{m}^{*-1}$ : $H^{2}(X, Z)arrow H^{2}(V(\alpha), Z)$ preserve the intersection forms. Let $Q_{\alpha}$ denote the

intersection form on $V(\alpha)$ . RecaU that we set $t_{\alpha}=t_{\gamma}|_{Y(\alpha)}$ for every $\alpha$ in Fix $t_{M}$ . We set

$L_{\alpha}=Ker(1+t_{\alpha}^{*})$ in $H^{2}(V(\alpha), Z)$ . Since $L_{\alpha}=i_{\alpha}^{*}oi_{m}^{*-1}(L_{\varphi})$ , we have $(U\oplus U)_{\alpha}\subset L_{\alpha}$ .
Let $\{L_{n}\}$ be a sequence obtain$ed$ by Proposition 5. Then for a sufficiently large natural

number $N,$ $L_{n}\cap RP^{21}$ intersects $\tau(Fixt_{Af})=K_{20}\cap RP^{21}$ transversely at $H^{2,0}(X)$ in
$RP^{21}=(i(L_{\varphi}\otimes R)\oplus(L^{\varphi}\otimes R))/R^{*}$ (recall the proof of Proposition 5) for any $n\geq N$ .
Hence $L_{\mathfrak{n}}\cap\tau(Fixt_{M})$ is nonempty and real 18 dimensional. We set

$\hat{E}=\{\tau(\alpha)\in\tau(M)|rankPicV(\alpha)\geq 3\}$ .

From the results in [10, Chap.IX, \S 4, p.215], rank $PicV(a)\geq 3$ if and only if $Q(\tau(\alpha),c_{j}^{\alpha})=$

$0$ for elements $c_{j}^{\alpha}(j=1,2,3)$ in $H^{2}(X, Z)$ which are linearly independent over $C$ (hence,

over R). Hence $L_{n}\cap\tau(Fixt_{M})\cap$
ハ

can be covered by countably many real 17 dimensional

submanifolds. Hence $(L_{\mathfrak{n}}\cap\tau(Fixt_{M}))\backslash \hat{E}$ is dense in $L_{n}\cap\ell r(Fixt_{M})$ , and for every
$\tau(\alpha)\in(L_{n}\cap\tau(Fixt_{M}))\backslash \hat{E}$, we have $\alpha\in Fixt_{M}$ and rank Pic$V(\alpha)=2$ . We set $c_{j\alpha}(n)=$

$i_{a}oi_{m^{-1}}^{*}(c_{j}(n))$ for $j(=1,2)$ . Then $Q_{\alpha}(c_{1\alpha}, c_{1\alpha})=Q_{\alpha}(c_{2\alpha},c_{2\alpha})=0$ and $Q_{a}(c_{1\alpha}, c_{2\alpha})=2$ .
Since $Q(i_{m}^{*}oi_{\alpha}^{*-1}(H^{2,0}(V(\alpha))), c_{j})=0$ , we have $Q_{\alpha}(H^{2,0}(V(\alpha))),c_{j\alpha})=0$ , that is, $c_{j\alpha}\in$

Pic$V(\alpha)=(H^{2,0}(V(\alpha))^{\perp})\cap H^{2}(V(\alpha), Z)$. We see that $c_{1\alpha}$ and $c_{2\alpha}$ are primitive elements

in $(U\oplus U)_{\alpha}$ , hence in $H^{2}(V(\alpha), Z)$ . Recall that $(U\oplus U)_{\alpha}\subset L_{\alpha}=Ker(1+t_{\alpha}^{*})$ . Hence

$(V(\alpha), t_{\alpha})$ satisfies the conditions of Lemma 2. Since $(L_{n}\cap\tau(Fixt_{M}))\backslash \hat{E}$ is dense in
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$L_{n}\cap\tau(Fixt_{M})$ and $n(\geq N)$ is an arbitrary number, we can choose such $\alpha\in$ Fix $t_{M}$

arbitrarily closely to $m$ . This completes the proof of Theorem 6.

COROLLARY 7. Let (X, t) be a $reaIKS$ surface. ff $L_{\varphi}$ has $U\oplus U$ as $its$ sublattice, then

there exists a 2-shee$ted$ covering $\Phi$ : $Yarrow P^{1}\cross P^{1}$ branched along a nonsingular $reaI$ curve

of degree $(4,4)$ and an antiholomorphic involution $T$ on $Ysu$ch that conj $0\Phi=\Phi oT$ and

Fix $T$ is diffeomorphic to Fix $t$ .

PROOF: We can consider the restriction $R\pi$ : Fix $t_{\gamma}arrow Fixt_{M}$ of the family (V, $M,\pi$).

Although Fix $t_{Af}$ is possibly disconnected, we may consider that $\alpha$ of Theorem 6 and

$m$ are contained in the same connected component of Fix $t_{M}$ . Since RT is a proper

submersion onto Fix $t_{M},$ $R\pi^{-1}(\alpha)$ is diffeomorphic to $R\pi^{-1}(m)$ , where $R\pi^{-1}(\alpha)=Fixt_{\alpha}$

and $R\pi^{-1}(m)=Fixt$ . It is sufficient to set $Y=V(\alpha)$ and $T=t.$ . Q. E. D.

COROLLARY 8. Three possible configuration types $\frac{1}{1}8,$ $\frac{s}{1}4$ and $\frac{9}{1}$ are all redized by some

$reaI$ curves of degree $(4,4)$ .

PROOF: As stated in \S 0, there exist real projective K3 surfaces (X, t) with $h^{2}=4(h$ :

primitive) whose real parts are homeomorphic to $\Sigma_{10}\coprod S^{2},$ $\Sigma_{6}\coprod 5S^{2}$ and $\Sigma_{2}II9S^{2}$ respec-

tively. Moreover, for such real K3 surfaces, $L_{\varphi}$ are isomorphic to $U\oplus U\oplus(-E_{8})\oplus(-E_{8})$ ,
$U\oplus U\oplus(-E_{8})$ and $U\oplus U$ respectively (see [8]). Hence $L_{\varphi}$ have $U\oplus U$ as sublattices. By

Corollary 7 and [5, \S 3] (recall \S 0), we obtain our required results. Q. E. D.
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