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THE CONFIGURATIONS OF THE M-CURVES OF DEGREE (4,4)
IN RP! x B,P1 AND PERIODS OF REAL K3 SURFACES

Dedicated to Professor Haruo Suzuki on his 60th birthday

SACHIKO MATSUOKA F& [§] & - (LK 32)

Abstract. For M-curves of degree (4,4) in RP! x RP! whose components are
all contractible, it is known that three configuration types are possible. We
prové that all these configuration types are realized by some M-curves of degree
(4,4) by means of the existence of locally universal families of real K3 surfaces

and the local surjectivity of period mappings defined ovér those families.

0. Introduction.

We consider the zero set RA of a real homégeneous polynomial F (# 0) of degree
(d,7)in RP! x RP!, where d and r are integers (> 1). We assume that the zero set A of F
in CP! x CP! is nonsingular. (In what follows, we write P! x P! for CP! x CP!.) Then
A is a connected complex 1-dimensional manifold. But R A is a possibly disconnected
real 1-dimeﬁsional manifold (a disjoint union of finitely many copies of S*) or the empty
set. It is known that the number of the connected componglts of RA does‘not exceed
(d = 1)(r — 1) + 1 (see [5]). We remark that the number (d — 1)(» — 1) is the genus of
the nonsmgula.r curve A. We say RA is an M-curve of degree (d ) if it has preclsely
(d - 1)(7' -1)+1 connected components

In this paper we make clear the “configurations”of the M-curves of degree (4,4) in
RP! x RP!, where we consider only the curves whose components (embedded S') are
all contractible in RP! x RP!. We define the méaning of the “configurations”as follows.
Tn our cases, each cdinponent of B_A,‘ which is called an oval, divides RP! x RP! into
two connecte;d components. One of those is homeomorphic to an open disk and called the
interior of the ov?.l. The other is called the ezterior of that. As a consequence of [5], every

‘ M-curvve;of degreé (4,4) lies in one of the following three cases.
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(1) Each of certain 9 ovals lies in the exteriors of the others, and the interior of one
of those contains one oval. (No’tatio‘n:‘ 18) |

(2) Each of certain 5 ovals lies in the exteriors of the others, and the interior of one
of those contains 5 ovals. Each of the latter 5 ovals lies in the exteriors of the others.
(Notation: 24)

(3) An oval contains 9 ovals in its interior and each of the 9 ovals lies in the exteriors

of the others. (Notation: 2)

Og O

@) 000

@QO OOO% 00 O
00 OO0 000
1 :, %

We call the above three cases the configurations of types %8, %4, and % respectively.
Wé can easily construct curves of degree (4,4) of configuration type %8 by the “Harnack’s
method”, which is well known in the studies of Hilbert’s 16th problem (see [2]). Here
we omit the statement of this method. In this paper we prove that there exist curves of
degree (4,4) of configuration types 34 and 2 (Corollary 8 in §4). For this, it is sufficient
to show the existence of 2-sheeted coverings (for the definition, see [11]) Y of P! x P!
branched along nonsingular real curves of degree (4,4) whose real parts (see below) are
homeomorphic to g [[55% and B, [[9S5? respectively (see [5, §3]), where &, denotes a
sphere with g handles and kS? denotes the disjoint union of k copies of S2. Notice that
the complex conjugation of P! x P! is lifted into two antiholomorphic involutions 7' and
T~ on Y. In the above statement, we call fixed point sets of these involutions real parts
of Y. ’ _

It is well known that every 2-sheeted covering Y of P! x P! branched along a non-
singular curve of degree (4,4) is a K3 surface. The topological types of real parts of real



prbjectivé K3 surfaces are .investig"at?ed in Nikulin [8]. Let h be the homology class of the
preimage in Y of a hyperplane section of P! x P}(C P®). Then h is primitive (for the defini-
tion, see [8]) in H,(Y,Z) and we have h? = 4. Hence the triple (H,(Y), T, k) is a polarized
intégral involution (see [8]) with invariants §; = 0,14y =3,y =19,n =4,4(;) =1 and
t(_) (for the notations, see [8]). Since we assume that R A is an M-curve whose components
are all contractible in RP! x RP!, we moreover have a = 0 (see also [8]) for either 7*
or T~ because of a consequence of [5, §3]. Hence, by [8, Theorem 3.10.6], the real part
of Y with respect to T or T~ is homeomorphic to T, [] kS?, where g = (21 — £(_))/2
and k = (1 +t(~))/2. Furthermore, by [8, Theorem 3.4.3], a polarized integral involution
with the above invariants exists if and only if {_y = 1,9 or 17. By [8, Theorem 3.10.1],
the isomorphism classes of polarized integral involutions with the above invariants are in
bijective correspondence with the coarse projective equivalence classes (see [8, §3,10°]) of
real projective K3 surfaces for which homology classes h of hyperplane sections (or those
preimages) are primitive and h? = 4. Therefore, we see that there exist real projective
K3 surfaces with h? = 4 (h: primitive) whose real parts are homeomorphic to Te[]55?2
or X3 J[95%. But these K3 surfaces are not necessarily 2-sheeted coverings of P! x P!
branched along nonsingular real curves of degree (4,4). We must make a closer investigation

of [8, Theorem 3.10.1].

We first prepare a sufficient condition for K3 surfaces (not necessa.rily algebraic) with
antiholomorphic involutions, which are called real K3 surfaces, to be 2-sheeted coverings of
P1 x P! branched along nonsingular real curves of degree (4,4) (Lemma 2 in §2). In [3] it is
proved that for every real K3 surface, there exists an “equivariant”locally universal Kahler
family of its complex structures (Lemma (Kharlamov) in §1). For the real projective K3
surfaces (X, ) with h? = 4 (h: primitive) whose real parts are homeomorphic to £ [[ 552
or ¥, []95? stated above, L, := Ker(1 +t*) are isomorphic to U & U & (—Es)‘ andUU
respectively (see [8]), where U and Ej are even unimodular lattices with rankU = 2,
signU = 0, and rankE3g = signEs = 8. We show that if for a real K3 surface (X,t), L,
has U @ U as its sublattice, then there exist real K3 surfaces which satisfy the conditions
of Lemma 2 arbitrarily closely to the surface (X,t) in the equivariant family stated above
(the prdof of Theorem 6 in §4). Before this, we prepare Lemma 3 and its Corollary 4, which
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are finer versions of Tjurina’s lemma concerning integer vector sequences ({10, Chap.IX,
15]). S |

The author would like to thank Professors I. Nakamura, M.-H. Saito and Y. Umezu
for their kind and great help to prove Lemma 1, Professor G. Ishikawa for indicating a
gap in the original proof of Theorem 6, and Professors H. Suzuki and S. Izumiya for their

constant encouragement.

1. Real K3 surfaces and equivariant families of their complex structures.

We say a compact connected Kahler surface X is a K3 surface if the first Betti number
of X vanishes and there exists a nowhere vanishi;lg holomorphic 2-form wx on X. The
following are known (cf.[10, Chap.IX]). 7

(1) H3(X,Z) is free of rank 22.

(2) The intersection form H".'(X, Z) x H*(X,Z) — Z is isomorphic to U & U & Ue
(~Bs) ® (E).

(3) wx Awx =0, wx Awx > 0, dimc H(X,02%) = 1. We set -

PicX = (wx)* N H*(X,Z) = H"Y(X)n H*(X, Z).

Since h'(X, Ox) = 1b;(X) = 0, we can regard PicX as the group of isomorphism classes
of complex line bundles on X. We denote by Q( , ) the intersection form of X. We
set P(X,C) = P(H*(X,C)) and K3 = {A € P(X,C)|Q(A,A) = 0}. Then we see that
H*%(X) = [wx] is contained in K. |

(4) There exists an effectively parametrized and locally universal family (V, M, =) of
complex structures of X, where M is complex 20-dimensional. Here, by a family (V, M, x)
of complex structures of X, we mean a C*-fibre bundle = : V — M with the fibre X,
where V and M are connected complex manifolds, x is a holomorphic map onto M.
~ (5) For every family (V, M, ) of complex structures of a K3 surface X = 1r"’1(m),
- there exists a contractible neighborhood U such that for any a € U, V(a) = #~}(a) are
K3 surfaces and (x~1(U), U, =) is a C*-trivial bundle. Let i, : V(a) — x~1(U) be the
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inclusion map. Then i, : H*(x"(U),Z) — H?*(V(a),Z) is an isomorphism. We define
T:U — P(X,C) by 7(a) = i},0i5 ' (H*°(V())). This is called the period mapping. From
.[10, Chap.IX, Theorem 2], if (V, M, x) is effectively parametrized, then 7 is a holomorphic
embedding on a neighbourhood U’ of m in U.

Furthermore, Kharlamov [3] shows the following.

LEMMA (KHARLAMOV [3]). Let (X,t) be a real K3 surface, namely, X is a K3 surface
and t is an antiholomorphic involution on it. Then there exist a locally universal family
(V, M, %) of complex structures of X and antiholomorphic involutions ty on V and t3; on
M which satisfy the following conditions.

(i) Each fibre V(a) is a K3 surface and V(m) = X.

(ii) M is contractible, and (V, M, =) is a C*-trivial bundle.

(iii) T (see (5) above) is a holomorphic embedding on M and (M) is a neighborhood
of r(m) in K.

(iv)tv|y =t, woty =tyom Toty = I* o, where — is the natural complex

conjugation on P(X,C).

Remark. We can restrict ty on V(a) for any a € Fix ta. We set to = tv|y(,). Then
(V(a),ts) are real K3 surfaces.

2. A sufficient condition for real K3 surfaces to be 2-sheeted coverings of

P1xP! branched along real curves of degree (4,4).

We prepare the following lemmas in order to catch 2-sheeted coverings (in the sense
of 11, §1]) of P! x P! branched along (real) curves in the family of (real) K3 surfaces

given in §1.

LeEMMA 1. Let X be a K3 surface with rank PicX = 2. If there exist primitive elements

c1 and ¢; in PicX such that ¢;2 = c;2 = 0 and ¢y - ¢ = 2, then X can be a 2-sheeted
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branched covering of P! x P!, and the branch locus is a nonsingular curve of degree (4,4).

ProoF: We choose an element b such that b and ¢; generate the free Z-module PicX.
Then c; = me; + nb for some integers m and n. Since 2 = ¢; - ¢; = n(e; + b), we have
n = +1 or +2. We show that D? > 0 for any irreducible curve D on the surface X. In
case n = +1, we have PicX = Z(c1,cz). Let D be an irreducible curve on X and [D] be
the linearly equivalence class of the divisor D. Then [D] = kcy + lc, for some integers k
and I, and we have D? = 4kl. Since D? > —2, we have D? > 0. In case n = +2, since ¢,
is primitive, we see that m is odd. Since (2b)2 = (c3 Fmc;)? = —4m, we have b? = —m.
Let D be an irreducible curve on X. Then we have [D] = ke, + Ib for some integers k and
l. Since D? = k%cy? + 2klcy - b+ 126 = +2kl — I?>m and D? is even, we see that [ is even.
Hence [D] is contained in Z(c;,c;). Therefore we see that D? > 0 as in the case n = £1.
Now let F; (i = 1,2) be a complex line bundle whose first Chern class is ¢;. By the
Riemann-Roch theorem, h°(F;) +h%(—F;) > 2. Since F; is not trivial, we may assume that
h°(—F;) = 0 and h°(F;) > 2 replacing c; by —c; if necessary. We will verify that ¢; -c; = 2
later on. Let C; be the divisor of a global holomorphic section of F; on X. We show that
the complete linear system |C;| has no fixed components. If I" is the fixed part of |C;|, and
D is an irreducible component of I, then we choose an effective divisor ¥ such that I'+ F
is a member of |C;|. We may assume that all irreducible components of E are distinct from
D. In our cases, since D? > 0, we have dim|D| > 1 by the Riemann-Roch theorem. Hence
D is movable. This contradicts the assumption that I’ is the fixed part. Hence |C;| has no
fixed components. Therefore, by [8, Proposition 1 ii)], each element of |C| can be written
as E; + --- + E, with E; € |C]|, Ci being nonsingular elliptic. (For |C;|, we have the
same results.) Hence we have C; ~ kC; (linearly equivalent). Since [C}] € Z(c1,c2), we
have [C]] = scy + tc; for some integers s and ¢. Then, since ¢; = k(scy + tc3), we see that
k = 1. Hence we have C; ~ C]. Thus we may consider C; and C; to be nonsingular elliptic
curves. Hence we have C; - C; = 2. We set C = () + C;. The complete linear system
|C| also has no fixed components. Hence, by [6, Proposition 1 i)}, |C| has no base points
and contains an irreducible nonsingular curve C'. Since C'* = 4 (> 0), the surface X is

algebraic by [4, Theorem 3.3]. Thus we see that there exist elliptic curves C; and C; on
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the algebraic K3 surface X such that C; - C; = 2. Then the system |C;| (¢ = 1,2) defines
a morphism ®|¢;| : X — P, We can define a holomorphic mapping & : X — P! x P! by
the formula ®(z) = (®c,|(2), ®|c,|(2)) for any z € X. Since ¥|¢,| and P|¢,| are surjective
and C; -Ca = 2, we see that ® is surjective. Let § : P1 x P! — P® be the Segre embedding.
This embedding gives a biholomorphic mapping onto a nonsingular quadric Q in P3. Then
the composition S0 ® : X — P3 is nothing but a morphism ®|¢| defined by the system
|C|. From the well known formula C? = deg®|¢|-degQ, we see that the morphism ¢ is
of degree 2. Moreover, for any irreducible curve D, the image ‘I’|Cl(D) is an irreducible
curve. In fact, if ®|¢|(D) is a point P, then ‘}I-E/}I(H) «D = 0 for a hyperplane section H
of @ which does not meet the point P. Since QI"Cll(H)z = C? = 4, we have D? < 0 by the
Hodge index theorem. But D? > 0 on our surface X. This is a contradiction. We also see
that for any point P in @, the preimage <I'|"Gll(P) consists of finitely many points. Let B
be the ramification divisor (see, for example, [1, p.668]) of the finite surjective mapping
Qo)+ X - Q. We use the same notation B for the support of the divisor B. We set
A = ®¢|(B). Then A also defines a divisor. By the definition of the ramification divisor,
®|c| is locally biholomorphic on X \ B, and in our case, all the points in B are branch
points in the sense of [11, Definition 1.3]. Let Kx (resp. Kg) be the canonical divisor of
X (resp. Q). Then we have (see, for example, [7, Lemma (6.20)])

Kyx ~ @rcl(KQ) + B.

Since we know that Kx ~ 0 and Kq = (—2)(pt x P1+ P! x pt) identifying Q with P! x P!
via the Segre embedding S, we have

B ~ 23*(pt x P + P! x pt).

Hence, in particular, B # ¢. Recall that the morphism ®¢ ‘is of degree 2. Thus we
obtain a 2-sheeted branched covering & : X — P! x P! with branch locus A in the sense
of [11, §1]. Hence the branch locus 4 is nonsingular. Moreover, from the proof of [11,
Theorem 1.2], we have [B] = *F for a line bundle F over P! x P! with F®? = [4]. Since
Pic(P! x P1) = Z([pt x P1], [P! x pt]), we have F = k[pt x P']+1[P! x pt] for some integers
k and l. Since B ~ 2®*(pt x P! + P! x pt), we have k = = 2 by considering intersection
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numbers. Hence .we have

A~ 4(pt x P! + P! x pt).

Thus A is a nonsingular curve of degree (4,4). Q. E. D.

Remark. In the above lemma, for everj irreducible curve D on the algebraic K3 surface
X, we see that D? is divisible by 4. Hence, if D? > 0, then D? > 4, namely ?.(D) > 3.
Moreover, for the irreducible curve C' (~ C), we know that p,(C') = 3. Hence the surface
X belongs to the class = = 3 (see [10, Chap.VIII, p.188] or [9, §1, p.46]). Hence, by [10,
Chap.VIII, Theorem 2], || is a birational morphism onto & quartic surface in P*, or a
morphism of degree 2 onto a quadric in P3. We see that our surface X lies in the latter

case.

LeEMMA 2. Let (X,t) be a real K3 surface such that X satisfies the conditions of Lemma 1.
If moreover, ¢; and c; are contained in Ker(1+t*), then there exists a holomorphic mapping
& which makes X a 2-sheeted branched covering of P! x P! and satisfies conjo® = ®ot.

Hence the branch locus is a nonsingular curve defined by a real homogeneous polynomial

of degree (4,4).

PRrOOF: In the proof of Lemma 1, we define & = (®¢,|, ®|c,|). Let s, and s; form a
basis for the space H%(X, O(C})). Let & and ¢; be holomorphic functions on X such that
§1(2)s1(2) = £o(z)s2(z) for any z (€ X). Then ®|¢,| is defined to be [§p : £1]. We show
that conj o ®¢,| = B¢, o t if we choose an appropriate basis for H*(X, O(Cy)).

We define the line bundle F; to be [C;]. By the assumption, we see the first Chern
class c;(Fy) is contained in Ker(1 + t*). Hence we have ¢;(Fy) = ¢,(t*F;), where F}
is the conjugate bundle of Fy. Since H'(X,Ox) = 0, the line bundle F; and ¢*F, are
isomorphic. We denote by F; and pr, the total space and the projection of Fj. Let
{Ux}xea be an open covering of X, ¢y : pri (Us) — Ux x C be trivializations, and
grp : UaNU, — C* be transition functions. We may assume that there exists an involution
o on A such that U,(n) =#(Us). Then the transition functions of the line bundle t*F, are

9e(N)o(w) 0t : UxNU, — C*. Since F; and t*F; are isomorphic, there exists a collection of
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functions f5 (€ O*(U,)) such that

(1) ' aulz) = %ﬁ_:_;_ga“)a(“)(t(z)) for any 2 (€ U NU,),

where we may consider that

s 1
(2) fa(k) = faot .
Then we can define an antiholomorphic involution T; on E; such that topr; = pr,0T; and
the restrictions (T1), : pri*(z) — pry'(t(z)) are antilinear as follows. (It turns out that
the line bundle F; is a “real vector bundle ”.) We define 77 on pr; 1(U ») by the following

formula.

Pory 0 T1 0 93 (2, ¢) = (t(z), fr(z)"1c)

By the equality (1), T is well defined over E;, and by (2), we see that T is an involution.
We now define an antilinear involution 6, : H*(X, O(F;)) — H%(X, O(Fy1)) by 01(s) =
Ti o sot, and choose 81 and 8, stated above in Fix 6;. Then we see that ®ic,| =

[foot: & ot]. Hence conjo ®|¢,| = P|¢,| ot. We have the same results for |C;|. Thus we
have conj o ® = ® ot. It follows that conj(A) = A, where A is the branch locus. Q. E. D.

3. A lemma concerning integer vector sequences.

LEmMA 3. For any integer sequence aj(n) with aj(n) — oo, any positive real number

o, any real numbers z3 and z4, there exist a subsequence a;(n) of a)j(n) and an integer

vector sequence (1(n),B2(n),Bs(n), Bs(n)) which satisfy the following five conditions.
(1) Bif2 +PsPa = 1

(2) Hmn—-»oo g’?" =23
(3) lim o0 24

B
(4) 51 and B, are odd.
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(5) im,, _, » é
ay

ProoF: We first prove in the case z4 is a rational number. The rational number z4 can

be expanded into a finite simple continued fraction as follows.

1

24 =ay + 1
az + i
ag + +
- a1+ —
a,
In the above, a; is an integer, and aj,...,a, are positive integers. We define (ug,vo),

.+« s(%r, v, ) inductively as follows.

(uo0,0) = (—1,-1)
( \ { (v;j—1,4j-1) if a; is even or (uj_1,v;-1) = (—1,1)
u;,v;) =

(vj-1, —uj_1) otherwise

In the case r > 2, we define b; (2 < i < ») as follows.

1
b =a; + 1
ai41 + 1
a3+2 +' +
) a1+ —
Qay
Remark that every b; is positive. We set o/ = E—;—g_x—l;—' In the case » = 1, we set
g X +++ X b,
a' = a. Now we choose and fix a subsequence a;(n) of aj(n) such that ca(n) — 0.
n
Let B;(n) be the closest integer to a;(n)a’. Since a;(n) — oo, we have lim-ﬁ—l- = o' and
g )
ay
By = Proa — 00. We set fy(n) = Pu(n) or Buln) + 1, where we take B1(n) to be
2n a1 2n 2n 2n

odd (resp. even) if v, = —1 (zesp. 1). We have B1(n) — co. We set z5 = (—1)"z3. In
the case (u,,v,) = (1,—1), let 85 be the closest integer to §;2's that is relatively prime
to B1. Since B; is odd, B; and 283; are relatively prime, and hence, there exist iniegers u
dnd v such that uf8; + 2v8s = 1 and |u| < |2Bs|, |v| < |B1]- We set B2 = u and B = 2v.

In the case (u,,v,) = (—1,1), let B3 be as above. Then there exist integers u and v such

10
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that u8; + vBs = 1 and |u| < |Bs|, |v] < |B1|- We set B2 = u and By = v. In the case
" (%y,v) = (=1,—1), let B3 be the closest integer to Byz4 that is relatively prime to 24;.
Then there exist integers  and v such that 2u8; + v8s = 1 and |u| < |Bs], |v| < [2B4]-
We set 8; = 2u and B4 = v. The case (u,,v,) = (1,1) cannot occur. It follows that B,
is odd (resp. even) if u, = —1 (resp. 1). In all the cases, we have 8;0; + BsfBs = 1,

B and 2

limg,— o = = 2§, an | < 2. We see that [i- are also bounded. We define a new

sequence P(n) = (pl(n),pz(n),pa(nm(n)) tobe

(—134(@) + 2nB1(n), —Bs(n), 2nPB3(n) + P2(n), ﬂl("))-

Then we have p1p; +psps = 1, lim®2 = zg and imZ: = 0. Since |ﬁ1——| <1, hm—‘l =a,
p1 n 231
and —L oo, we have limZL = o'. Remark that the parity of (p1,p2,ps,ps) corresponds

i

to (ﬂhﬂmﬁz,ﬂﬂ

We now assume that a new sequence B(n) = (B1, 82, Bs, B4) satisfies the conditions (1),
(2), (3) and (5) in the statement of Lemma 3 for a positive real number a, real numbers
z3 and :ﬁ.;, and a sequence a;(n) with ay(n) — co. Let k be an arbitrary integer with

k —z4 > 0. We define a new sequence I (8(n)) = (q1, 492, ¢s, gs) to be

(=Ba(n) + kB1(n), ~Bs(n), kBs(n) + B2(n), B1(n))-

Then we see that ¢1q2 + g3qs = 1 and im®E = z3. Hence the properties (1) and (2) are

a1
preserved by the transformation I. On the other hand, we see that

. qa
lim — =
g k-2

and

im & = a(k — 24) (> 0).
a1

We next define a new sequence J(8(n)) to be (8,,82,—Bs,—B4)- Then the properties (1)
and (5) are preserved by the transformation J. But for the properties (2) and (3), the
limit values are multiplied by (—1).

The sequence P(n) has the properties (1), (2) (for 25 = 23), (3) (for z4 = 0) and
(5). In the case » > 2 we can transform P(n) by Ia, Then I,,(P(n)) has the prop—

erties (3) (for z4 = -—) and (5) (for @ = da'a, = 2 (> 0)). Next we
b2 Xoeee X br—l . ]

11
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can transform J o I, (P(n)) by I,,_,. Then I,,_, 0 J o I .(P(n)) has the properties

(8) (for z4 = —-————-—) and (5) (for « = a'a,(a,-1 + —-—) = 2 (> 0)).
b, X +oe X by_g
a,_1+ ;—
Thus we obtain the sequence (71,72,73,74) ==Jol,,0oJo0:-0Jol, ,0Jo0l, ,

J o I, (P(n)). In the case r = 1, we set (71,72,73,72) = P(n). Then we have (1)
7172 + 7372 = 1 (2) limg% = —z3 (3) hm:y: = a; — 24 (5) limgl: = a. Finally we set
(81:82,03,84) = (71,2193 + ¥2,—73, —74 + a171). Then this sequence satisfies the condi-
tions (1), (2), (3) and (5) of Lemma 3. Frorﬁ the definition of (%,,v,), we observe that
the condition (4) is also satisfied. Thus Lemma 3 is proved in the case z4 is a rational
numbet.‘ To complete the proof of the lemma, let 24 be an arbitrary real number. Let
{z4(n)} (»n =1,2,3...) be a rational number sequence which converges to z4 satisfying

|za(n) — 24| < o From the results above, there exist sequences (B15,82n,8sn,B4n) such

that (1) ﬁlnﬂhl +ﬁ3nﬂ;n =1 (z)ﬁmm—-)oo %1;%:_; =23 (3)hmm—’oo Z_::{_:—; = 24(11.) (4)ﬁ1n

and P4, are odd. (5)lim,,— 00 ﬂ-ﬂ(g-n)—) = a. Remark that the subsequence a;(m) of a}(m)
aj\m

does not depen(d czn )n We choose a natural number sequence m(1) < 11(1(2() )<) m(3) < -+

Ban(m(n) L Bam) Ly ) 1
such thet g, GG ~ %21 < 20 g () ~ 24! < 5 204 o Gy — 1 < 5
We set (ﬂ1(n),ﬂz(n),ﬂa(n),ﬁ4(n)) = (Br(m(n)), ﬂz(m(n)),ﬂs(m(")) Ba(m(n))). It is suf-

ficient that we define a;(n) to be aj(m(n)) newly. This completes the proof of Lemma
3.

COROLLARY 4. For any integer sequence o (n) with aj(n) — oo, any positive real number
a, any real numbers z3 and z4, there exist a subsequence a;(n) of aj(n) and an integer

vector sequence (B1(n),B2(n),Bs(n),Bs(n)) which satisfy the following five conditions.

(1)B1B2 + PsPs = 2
(2lima oo 22 = 24

B
(3)kima o0 % = 24
(4) B1 and Bs are relatively prime, and so are 3; and B4.
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PROOF: There exists a sequence (01, B2, 8s,P4) which satisfies the conditions (1), (3), (4),

g—”-, = %i. Then, from (1) and (4), B and
1
28 are relatively prime, and so are 28, and f;. Thus the new sequence (81, 20,, 203, 8s)

(5) in Lemma 3 and the condition that lim,

is a required one. Q. E. D.

Remark. Lemma 3 is a finer version of [10, Chap.IX, §5, Lemma] for # = 2, and

Corollary 4 is for = = 3.

4. The main theorem.
Let (X,t) be a real K3 surface. We set L, = Ker(1 +¢*), and L¥ = Ker(1 —¢*) in
H?*(X,Z). Remark that Fix #* = ((L* ® R) @ i(L, ® R))/R* in P(X,C).

ProrosITION 5. If L, has U @U as its sublattice, then there exists a pair {c1(n)}, {cg(n)}
of sequences which consist of primitive elements of UoU and satisfy the conditions that
Q(c1(n), c1(n)) = Q(c2(n), c2(n)) = 0, Q(c1(n), c2(n)) = 2, the sequence of the subspaces
L, := {A € P(X,0C)|Q(Aci(n)) = Q(A,c2(n)) = 0} of codimension 2 converges to a
. subspace L := {A € P(X,C)|Q(),&1) = Q(A,&2) = 0} of codimension 2, where £, and &,
are elements of (U & U) ® R, and L intersects Ky tra.nsvérse]y at H*%(X) in P(X,C).

Hence the sequence of the subspaces L, N (Fix t*) of real codiménsion 2 converges to
the subspace L ﬂ (Fix t*) of real codimension 2, and L N (Fix t*) intersects K39 N (Fix t*)
transversely at H2%(X) in Fix t*.

Proor: For our sublattice of L, which is isomorphic to U @ U, we use the same notation
U@U. Since UdU is unimodular, we have H3(X,Z) = (UaoU)®(UdU)"L. Let e1,€e3,€3, €4
form a basis for U @ U and represent the intersection form @ by the matrix

01

10
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‘We set s = rankL, and let eg,...,e, form a basis for L, N (U ® U)L. Then ey,...,e,
form a basis for L,. Remark that (L, ® Q) & (L¥ ® Q) = H*(X,Q), L, = (L*)" and
LY = (L‘;,)"L in H%(X,Z). Let €,41,...,e22 form a basis for L¥. Then ey,...,e32 form a
basis for H%(X, Q). Since H*%(X) = t*(H>%(X)), we can take wx so that wy = t*wyx.
Then we have wy = (Z?f__ﬂ_l Aje;) +i(35; - Aje;) for some real numbers A; (1 < j < 22).
We set wy = E;i,+1 Ajej and w_ = ) i, Aje;. Since wx Awx = 0 and wx ATx >0
(recall §1), we have w;? = w_? > 0. Moreover, we set w. = Y :_. Aje;. Then w_? =
2(A1A2+AgAe) +w' . Remark that w, € LY®R, U®U C Ly, where sign(UaU) = (2,2),
and o' € (L, N (U ® U)1) ® R. Since sign(H%(X,Z),Q) = (3,19), we have W' 2 <.
Therefore we obtain A1 A2 + AgAg > 0.

We may assume that Ay # 0 replacing (e, ez, €3, €4) by (es, €4, €1, €2) if necessary. We
set

A
z3 = f‘, 2e = A1z3 + Asy, ys = (1+ 23%)(A2zs + As),
4

§1 = ez — z3es, €3 = zsza(l+23%)er — z3yses — yaes + za(1+ z3”)es.

We define L = {A € P(X,C)|Q(A,¢1) = Q(A, &) = 0}. The subspace L meets H2%(X)
because Q(wx,£1) = i(A1— -;—:—A.g) = 0 and Q(wx, &) = i(zsza(1+232) A3 —z3yad; —yaAs+
z4(1+23%)A3) = i((1+23%) (X223 +As)2a+(—A123 — As)ys) = i(yazs — 24ys) = 0. We show
that L intersects K39 at H?°(X) transversely. We identify P(X,C) with P?! = {[X; :
-+ : X35]} taking a basis ies,...,1€,,€,41,...,€22. Then K3q is identified with the subset
defined by an integral homogeneous polynomial of degree 2 of the form f(Xi,...,X33) =
—2(X1 X3 + XsX4) + f1(Xs,...,X22). Hence the tangent space of K39 at H*°(X) is
identified with the subspace defined by a real linear form of the form h(Xy,...,X3;) =
A2 X1+ M X+ As X3+ A3 Xy + hy(Xs,. .., X322). Let H denote this space. L intersects H
transversely at H*%(X )“'in P?, If not, then H contains L. In particular, (H NRP* x {0})
> (LNRP3 x {0}), where ' "

HARP® x {0} = {As X1 + At Xz + AeXs + As X4 = 0} x {0}

14



and
LNRP® x {0} |
= {X1 — 23Xy = —23ys X1 + 2384(1 + zsz)Xz + 24(1 + zsz)Xs — Y Xy = 0} X {0}.
But the following matrix is of rank 3. |
/\2 1 —23Y4
Al 0 2324(1 + 232)
A4 0 24(1 + 232)

‘/\3 —23 —Y4

A2+ 2220
In fact, the determinant of the following matrix is equal to 204" +247) il\sl 2+ Asde)dy .
4
Az 1 —23Ys
A]_ 0 2!324(1 + 332)
A3 —z3 ~Ys

Hence, the above matrix is of rank 3 if A; # 0. And if A1 = 0, then the above matrix is as

follows. N 10
0 0 0
Ag 0 Ay
Az 0 —As

This matrix is of rank 3 if Ay = 0. Thus we have a contradiction. Therefore L intersects
Ky at H*%(X) transversely. ‘

We now show that there exists a pair {ci(n)}, {c2(n)} of sequences for which the
sequence {A € P(X, C)|Q(A,c1(n)) = Q(A, c2(n)) = 0} converges to the above L and the
properties in the statement of Proposition 5 hold. By Corollary 4 in §3, there éxists an
integer vector sequence (a3, 324, —24, B13) such that

(1) a13B24 — 2413 = 2,

(2) lim 'a"::* = 23,
3) lim =2 = 24, |
(8) lim =~ = 24 x

(4) a13 and —ay4 are relatively prime, and so are 854 and ﬁis, and

15
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(5) aus — oo.
By Lemma 3, replacing the above sequence by an appropriate subsequence if necessary, we
can find an another integer vector sequence (a4, 323, —@2s,B14) such that

(1) a14B28 — a23P1s = 1,

(2') lim =22 = o,

14
(3" lim 22 — g, and
14 1
. (14
4 Im — = —.
( ) aig \/i_f

&1 = 13014, Q&2 = (A23Q&24, Q&3 = —A13Q23, A4 = X14%24,

ﬁl = .613;314, ﬂ2 = )823ﬂ24’ ﬁS = *,5131323, ﬂ4 = ﬂ14ﬂ24-

Then we have

aaz + agay = P18 +PsPs =0

and

a1z + azf + asfs + asfls = (a13P24 — 2413 )(14P23 — aasPia) = 2.

From (4) and (1') above, we see that a;, a3, a3 a;nd a4 are relatively prime. So are 81,832,803
and B4. Hence, if we set c; = aje3+aze; +ages +ageg and c3 = Pres +Pze1 + PBses + Pses,
then Q(c1(n),c1(n)) = Q(cz(n),cz(h)) =0, Q(c1(n),c2(n)) =2, and moreover, c1(n) and
c2(n) are primitive elements in U & U (hence in H?(X, Z)).

Finally we show that the sequence L, = {Q(A, c1(n)) = Q(A,c2(n)) = 0} converges
to L. We first observe that |

limg-z-=1im£2—4—1im9—§-=(—zg)-0=0,
oy aig Q14
lim 22 = lim —222 — ¢,
31 aau
hm—i—ﬁmﬁ—-—zs,
B . B B
lim =2 = lim 222 lim =22 = (—24) -0 =10
B By (=2s)-0=0,
lim = =lim —2 =0
B1 B4 !

and

16



~ Hence both [a1 : a3 : a3 : a4] and [By : B3 : Ps : B4] converge to [1: 0 : 0 : —=zs).
Thus both {Q(A,c1(n)) = 0} and {Q(A,c2(n)) = 0} converge to {Q(A,€1) = 0}. In order
to know the limit subspace of {L,}, we set

B; = (Za,z)ﬁ, - (Zatﬂz)% (7=1,2,3,4).

i=1

Remark that (B;, B,, Bs, B,) are orthogonal to (al,az,aa,a.;) in R* with respect to the

Euclidean inner product. We set
¢; = Bies + Bye; + Bgesq + Bses.

Then we see L, = {Q(}, c1(n)) = Q(A,&(n)) = 0}. We now consider the limit hyperplane
of the sequence {Q(A, é2(n)) = 0}. Since

By = az(—2a33P14 — 213P24) + aza1sfis — 2a4a14f14,

Bz = a1(2a23B14 + a13024) — 20323323 + otaa24 334,

B3 = a4(20a14f23 — a13P24) — ara13P1s — 202023033

and
By = ag(—2a14023 + a13024) + 20114014 — a202424;
we have '
. ‘ B, s
m— = V22z3Ys,
%1
lim a—2 = *‘\/—33@4(1 + 23 )’
1
hm— = —\/_24(14-23 )
a;?
and
B
lim — = v2y,
Hence

 [By : By : Bg : By converges to [—z3ys : z324(1 + 23?) : 24(1 + 23?) : —y4). Namely,
{Q(X,é(n)) = 0} converges to {Q(A,&2) = 0}. Therefore L, converges to L. With
respect to the identification P(X, C) ~ P?! stated above, RP?! corresponds to Fix t* =
(L, ® R) ® (L* ® R))/R*. Hence the latter assertion of the proposition follows. Q. E.
D.
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We next consider a family (V, M, x) of complex structures of X with antiholomorphic
involutions ty and tpr, and the period mapping 7 : M — P(X, C) as stated in Kharlamov’s

lemma (recall §1).

THEOREM 6. Let (X,t) be a real K3 surface. If L, has U @ U as its sublattice, then there
exist points a in Fix tpy for which real K3 surfaces (V(a),t,) can be 2-sheeted coverings
of P! x P! (Let ®, denote the covering maps.) branched along nonsingular curves defined
by real homogeneous polynomials of degree (4,4) and satisfy conjo ®, = ®, 01, arbitrarily
closely to m.

ProoF: We set (U@ U), =% 027 (U & U) for any a in M. The isomorphisms i o
-l HY(X,Z) - H 2'(V(oz),Z)‘ preserve the intersection forms. Let @, denote the
intersection form on V(a). Recall that we set £, =ty |y, for every o in Fix tar. We set
L, = Kex(1 +t2) in H*(V(a), Z). Since L, = i% o i (L,), we have (U & U)y C La,.
Let {L,} be a sequence obtained by Proposition 5. Then for a sufficiently large natural
number N, L, N RP?! intersects 7(Fix tar) = Ko N RP?! transversely at H>%(X) in
RP# = (i(L, ® R) ® (L ® R))/R* (recall the proof of Proposition 5) for any n > N.

Hence L, N 7(Fixtpr) is nonempty and real 18 dimensional. We set
E = {r(a) € 7(M)|rank PicV(a) > 3}.

From the results in [10, Chap.IX, §4, p.215], rank PicV(a) > 3 if and only if @(7(a),c§) =
0 for elements cf (j = 1,2,3) in H?(X,Z) which are linearly independent over C (hence,
over R). Hence L, N7(Fix t3r) N E can be covered by countably many real 17 dimensional
submanifolds. Hence (L, N 7(Fix tyr)) \ £ is dense in L, N r(Fix tar), and for every
(@) € (L, N7(Fix tpr)) \ B, we have a €Fix t3r and rank PicV(a) = 2. We set cja(n) =
iy 0ip Ycj(n)) for j (= 1,2). Then Qa(c1arC1a) = Qu(C2a:¢24) = 0 and Qa(c1a,c2a) = 2.
Since Q(i}, o ig {(H*(V(a))),c;) = 0, we have Qu(H>*(V())),cja) = 0, that is, ¢jo €
PicV(a) = (H 2’O(V(o.f))'l') N H*(V(a),Z). We see that c1, and cy3, are primitive elements
in (U @ U)a, hence in H*(V(a), Z). Recall that (U @ U)a C Lo = Ker(1+ ¢%). Hence
(V(a),ts) satisfies the conditions of Lemma 2. Since (L, N 7(Fix ta)) \ E is dense in

18



115

L, N 7(Fix tpr) and n (> N) is an arbitrary number, we can choose such a € Fix t

arbitrarily closely to m. This completes the proof of Theorem 6.

COROLLARY 7. Let (X,t) be a real K3 surface. If L, has U @ U as its sublattice, then
there exists a 2-sheeted covering & : Y — P! x P! branched along a nonsingular real curve
of degree (4,4) and an antiholomorphic involution T on Y such that conjo® = o T and
Fix T is diffeomorphic to Fix t.

ProOOF: We can consider the restriction Rz : Fix ty — Fix tpr of the family (V, M, x).
Although Fix tps is possibly disconnected, we may consider that a of Theorem 6 and
m are contained in the same connected component of Fix ¢py. Since R is a proper
submersion onto Fix t3r, R7~!(a) is diffeomorphic to Rx~!(m), where Rx~!(a) = Fix t,

and Rx~1(m) = Fix . It is sufficient to set Y = V(a) and T =t,. Q. E. D.

COROLLARY 8. Three possible configuration types -}8, %4 and % are all realized by some

real curves of degree (4,4).

PROOF: As stated in §0, there exist real projective K3 surfaces (X,t) with h? =4 (h:
primitive) whose real parts are homeomorphic to 21 [[ 52, X6 [[ 552 and =, I19s 2 respec-
tively. Moreover, for such real K3 surfaces, L, are isomorphic to U @ U @ (—Es) & (—Es),
U U@ (—Es) and U @ U respectively (see [8]). Hence L, have U @ U as sublattices. By
Corollary 7 and [5, §3] (recall §0), we obtain our required results. Q. E. D.
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