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Almost coinciding families and gaps in P(w®)
BRAFAR MX#HK ( Shizuo Kamo )

1. Introduction. In [DSV], Dow, Simon and Vaughan introduced
the notion of almost coinciding families and showed the following
Proposition 1~3.

Proposition 1 [DSY, Theorem 2.41. ~ If d = a>1,then there exists a

nontrivial almost coinciding family indexed by Yo

Proposition 2 [DSY, Theorem 3.13]. The proper forcing axiom (PFA)

implies that every almost coinciding family indexed by Y is

trivisal.

Proposition 8 [DSY, Theorem 4.1, Lemma 4.2, 4.31]. If there exists

a nontrivial almost coinciding family indexed by aﬁ), then there
exists an unfilled (b,b)-gap in F(w). So, in Kunen’s model of
"ZFC + Martin’s Axiom + 2% = 0, + 7 untilled (c,c)-gap”, there

doesn’t exist a nontrivial almost coinciding family indexed by “ .

In this paper, we shall show

Theorem 1. Let P be the poset { p ; I xC a)z(l'xl<a)& p:x—=>2) }

adjoining a>2‘Cohen generic reals. Then, in VP, there doesn’t exist

a nontrivial almost coinciding family indexed by “w.

Theorenm 2. Let £ = x~% and Wy < K. " Then, there is a poset

P with the a)l-chain condition such that, in VP,'ZQ’ = K + Martin’s

Axiom + Junfilled (x, k)-gap + there doesn’t exist a nontrivial



almost coinciding family indexed by (")a).

Since, in Theorem 1, = p "b = Wy %a)z ”', the dssunption

d = @4 in Proposition | can’t be replaced by b = @ .

Question. Is ” ZF’C +d > 0yt there is a nontrivial almost

G.) "

coinciding family indexed by (N} consistent?

2. Definitions and the proof of Theorem 1. Let @ be the set of
natural numbers and “© the set of all functions on a)
V¥ x (+++ x +++ ) means that { x ; not +-+ x +-- } is finite.
Define the pseudo-ordering < on %@ by
f<g iff Yon<o (f(n)<gh)).
Let F be a subset of “w. F is said to be bounded, if there exists
a g E %% such that %V f € F ( f<g ). F is called a dominating

family if, for any g € “w, there exists f € F such that g<T{.
The cardinals b and d are defined by

b = min { 1F1 ; F is not bounded },

d = min { 'F1 ; F is a dominating family }.

For 1 € %, Ly denotes the set { (n,n1) Ewxw ; n = f(n) }.

Define the quasi-ordering and the equivalence relation ~ by

X XY ift XNY is finite,

X ~ Y iff XAY is finite.
Let &y, B be subsets of FP(w). H1B means that ANB ~ ¢, for
any AEdy, BERB. dy<<B means that A C¥ B, for any AEdy, BEB.

d& and B can be separated, if there is an X such that dy<< {X} and
B8 1L {X}. A Kk -sequence € Xala<lc> of subsets of w is called

. X ,
‘& K -tower,if Xac XB' for any a<fB<k. A Kk -sequence

(g Yyu) ta<k)> is called a (k,k)-gap, if < X la<k) end



< Ya|a</c> are towers and { Xy 5 @<k yL{ Y, s a<x }.
A (r,k)-gap <X, Y,) tae<ke)> is unfilled, if {-Xa;. a<kx } and
{ Ya ;7 a<k '} can’t be separated. " Finally, an indexed set
< ¢fk| fEF > is called an almost coinciding family indexed by F, if
(i) for any TEF, sbf : Lf - o,
(i1) for any f, 8 € F ( ¢;M (Lynl) ~ ¢ b (LeNL) ).
An almost coinciding family (<Pf I fEF > 1is trivial, if there

exists a ¢ ¢ wX®w > @ such that { ¢f'; fEF } << 0.

To prove Theoreﬁvl, We need the following lemma which is a little
modification of Lemma 4.3 in [DSV] and is easily verified by using
Fact 2.2. which appears below.

Lemma 2.1. Let Fc S c “». Suppose that <1t ESD s

a nontrivial almost coinciding family indexed by S and that F is an

unbounded subset of wa) which consists strictly increasing functions.
Then, ¢, 1 f € F > is nontrivial.

Fact 2.2.(well-known/clear) Suppose that F ia an unbounded subset

of % vhich consists strictly increasing functions. Then, it holds
that, for any infinite subset A of w, ‘

VIE % 3 €F 3% €A (L <))

Let Q be the poset { ¢ : In <w( g :n = @& ) )} and P the poset
{p:AxCo,CIxt <& p:x=>2)].

Lemma 2.3. Suppose that S is an unbounded subset of % which
consists strictly increasing functions and (sb'f 1 f € S ) is a

nontrivial almost coinciding family indexed by S. Let & be the
canonical generic real on_ Q. Then, in>;VQ_XP, (et f €S >

can not be extended to an almost coinciding family indexed by SwW({g}.
Proof. To get a contradiction, suppose that ’ '



(1) (4,p)E Q@xP & ¢ : QxP-nanme,
(2) “_Q')(P ¢’ :‘LS - ©,

(3 @)= gy p VI ESVTx € Lynl, ( $(x) = ¢,(x) ).
Because Qx P satisfies the col—chain condition, there exists an

A Ccoz such that
Il Sw & p €EPMA & ¢ isa QxPP A-name.
By using (3), for each f € S, take en n;, < @ and (ag,pg) in
QxPMA such that
(4)  doway) C np, & (apipy) = (ayp),
(8)  (ag,pp) =gy p VX € LpNnl N(gx o) ( ¢(x) = ¢,(x) ).

Since 1QxPF Al =@ and S is unbounded in wco, there exist an

n’ < o, (q¢',p’) € QxPFA and a subset F of S such that

(6) F is unbounded in “w,

(7 VfEF(nf=n’ & qf=q’ & pf=p’ ).
By (8) and Lemma 2.1,
(8) <¢‘f I'f € F > is nontrivial.
Claim 1. V¥x € Lf N Lh\(n’xco) ( ¢f(x) = ¢h(x) )

, for any f, h € F.
Proof of Claim 1. Let f, h € F and x =(m,k) € Lfﬁ Lh and

n’ = m. Take ¢” € Q such that
q” = ¢ & m € dom(q”) & q"(m) > k.
Then, since (q”,p’) =" x € LgﬁLf\(n’xco) ”, it holds that

(a7,p") = ¢ (x) = ¢ ,(x).
Similary, (a”,p’) = ¢ (x) = ¢,(x). Hence, ¢.(x) = ¢, (x). QED.
By Claim 1, it holds that
| T = U{ ¢fl‘(Lf\(n’x(0)) ; £ € F} is a function.
So, <¢, 1 f € F > is trivial. This contradicts (8). O

Proof ofiTheoren 1. To get a contradiction, suppose that
- p K ¢ sbf 1 f € o > is a nontrivial almost coinciding

fanily indexed by o ”,



‘Since. I=," b= @, 7, we can take an A C®, and » P} A-name S

such that 1Al = ® 4 ‘and l!“—Pi” S' is an unbounded svubset of %
consisting increasing functions & 1SI = ®, . Since P satisfies
the col-c‘hain condition, there exists a B Co, such that

ACB & 1B S0, & < $, 11 €S> isa P} Bnare.
Since Iy > § is unbounded and consists of increasing functions ”,
by Lenma 2.1,

I=p ”~<</:f tf € § > is nontrivial ",
From this and the fact that the formula ”x is nontrivial” is II s
it holds that,

o) g .”_(<l’f I £ € § > 1is nontrivial ”

Since P} (a)z\\B) is isomorphic to P, by replacing a ground model
V to VPrB, we can assume that S and (sbf I f € S > are sets in V.

Since ro(P) is isomorphic to ro(Q)(P), by Lemma 2.3, in VP,
((/)f I f € S D> can’t be extended to an almost coinciding family

indexed by %. But this contradicts the fact that, in V',

(sbf 1 1 E o > is an almost coinciding family. Od

8. The proof of Theorem 2.

Lenma 3.1. The following (a), (hb) and‘(b’) are equivalent.
(a) There exists a nontrivial almost coinciding family indexed by

Y .

(b) There exist a dominating family F C “ and an indexed set
< (ApsBp) 1 f € F > such that
(b.1) V1 € F ( (Af,Bf) is a partition of Le ),

(b.2) { Ay fEF } and ¢ B i f € F} can’t be separated,

(b.3) Vi, 8 € F(if f<g then A,C A, & B,C*B,)



(b’) . For any dominating family F C az), there exists an indexed set

< (ApBp) 1 f € F > which satisfy (b.1)~(b.3).

Pfoof; It is easy to see that (b) and (b’) are equivalent to the
following (c¢) and (¢’),respectively. ‘

(c) There exists a dominating family S % and a nontrivial
almost coinciding family (sbf I f € S > such that, for every

tf € 8, ¢.f : Lf - 2.
(c’) For any dominating family S C az), there exists a nontrivial
almost coinciding family (‘/)f i f € S > such that, for every

tes, ¢ g - Ly > 2. ?

Also, it is easy to see that (c) and (c’) are equivalent.
So, it suffices to show that (c¢) and (a) are equivalent. The
implication from (c) to (a) is clear. To show from (a) to (c), let

< ¢.f 1 1 € ©o > be a nontrivial almost coinciding family indexed

by “w. For each finite sequence s =< a; | i<n) !n=-> o,

X ..
s” denotes the finite sequence

<0,1,+--,1,0,1,+- ,0,1,°--,1,0>.

| -1
For each g ! 0o - w, ¢ : Lg < @ and n < W,let S¢ n denotes
{¢(n,i) 1 i <g(n) >. For eachf : @ = @, define f” ! @ = @

and urf-’: Lfa - 2 by

X

f7(n) = the length of (s¢,f DA

u

Wf*,_

the unique . ¢ : Lf~ = 2 such that, for any n < o,
¥ _ ’ '
(S(pf,n) = S(I),n.

Then, it is easy to see that { f~ ; f € “ } is-a dominating

subset of “w and (’I"f- 1 f € Qo > is a nontrivial almost

coinciding family indexed by ‘{ £, f € % 3. a

The next lemma is due to Kunen(see [B, p.931 Theorem 4.2]).
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Lenma’ 3.2. - Let T is an unfilled (aml,a)lﬁ-gap,;then there is a
poset ‘P with the a)l‘chafn"cbndition such that, [Pl = @y anq in

VP, T remains unfilled for any generic extension preservins @ -

In fact, any finite product of any such posets satisfy the a)l-

chain condition (see Appendix A). So, we get

Lemma 3.3. There is a poset Q@ such that
(1) Q satisfies the a>1—chain condition,
® ‘
(2) 1 = 2 4,
(8) for any unfilled (a)l,a>1)-gap T,

w—a > T remains unfilled for any generic extension preserving

@9

The next lemma follows from Lemma 3.3 and the standard forcing
arguments.

Lenma 3.4. Let ©< K, K koo g and § < k. Suppose that
&F = < Ay! a<k), B = £ Bfl E<§ > are sequences of subsets of

P(w) such that & and B are towers and & L B
Then, there exist a poset Q and Q-names f, B such that
(8) Q0 satisfies the @ -chain condition & 101 = k,

(10) = ” 2% = ¢ + Martin’s Axiom ”,

(1) "t € % ” & - ”"h <t”, foranyh € %0,
(12) - " H1{B} & B << {B} 7,

(13) whenever X C® and dy Ll{X}, - "B Z‘* X ”,
(14) if T is an unfilled (a)l,a)])—gap,‘then; in VQ. T remains

unfilled for any generic extension preserving @ 4 >,

(Outline of a proof) Let Q; be the poset as in Lemma 3.3. Since

IQllé Kk and Ql satisfies the;a)lfchain condition, it holds that
’ Q
W-Ql” Kk = k% " So, inV 1, take a poset Q, such that @,



satisfies the wl-:chain condition and (10)~(13) except that

Q%0
u—Q » Martin’s Axiom ”. Then, in V , take a poset 03 such that
2 )

Q3 satisfies the'wl-chain condition and ’“—0 » g o= x Kk g

»

Martin’s Axiom (Such a poset exists under the assumption that

k = k%> @ . (see e.g., [B2, Remark after Lemma 3.5, p.16]1))
Then, the poset Q = 01*02*03 is as required. a
To prove Theorem 2, assume that x = lc<'c and Wy <K. By

replacing the ground model to a certain generic extension, we may
assume that there exists a &£ -tower & = < Aala<lc> in P(w).

By using Lemma 3.4, we can construct a k —-stage finite support

iteration Pa’ Qa‘ and Pa-names fa’ Ba(for a <k ) such that
p

, in V %,

97) Q, satisfies the @ ;-chain condition & 10,1 = «,

(10°) < Bflfﬁa) is a tower & Jyl{ Bf; E<a },

(11’) for any X C@, it & L{X}, then o ” Baz* X ”,
Q

(12*) Qa forces ” 2% = k + Martin’s Axiom ”,

(13’) @
(147) it T 1is an unfilled ((ol,wl)-gap. then 0@

» (1)) ” @,
« forces faE 0w & g<fa , for any ¢ € o,
p forces that
» T remains unfilled for any generic extension preserving @ ”.,
Set P = dir lim ( Pala<lc ). It is’ easy to see that P

satisfies the requirement in Theorem 2 except that

II—P ” there doesn’t exist a nontrivial almost coinciding family
indexed by o . ‘

To show this by a contradiction, assume that pOE P forces the

existence of a nontrivial almost coinciding family indexed by wa).

Then, by Lemma 3.1, there exist P-names ((Xa,Ya) la<k ) such that

(1) w ” (xa'Ya) is a partition of Lfa ",

(1) = " X, Cc*Xg & Y ,C¥ Vg * if a<B<x,



(1n Py - S X<k 3, { Y, o<k } can’t be separated ”.

Set §={ &<k ; lind & cfd = w; & X,, Y, are Qg -names,
for any a@<d }. Since P satisfies the @ ;-chain condition, § is
unbounded in k£ and @ -closed. By (14°),

Po "_6” < (Xa,Ya)l a<8 ) is filled ”, for any § € 8.
By this and the fact that P satisfies the col-chain condition, it
holds that, for any § € S, there is a B <J such that
(x) HPB-name C(pg-g” { Xyia<dj<<{C} & { Y sa<d}L{C} " ).

So, we can define the function z# from S to « by
"7 (8 ) = the least B<d such that (x) holds.
For each & € S, take arP”(a)-name C6 such that
Po IF & G Xa;a<6}<< {06} & { Ya;a<6}_L{Ca} ”.

Since w: S = Kk 1is regressible, there exist a stationary set §’ < §
and B < k such that '

Py € Pﬂ & #n(8) =B, for any § € §’.
Claim. Let 6, n € S8 and PB<8<n. Then, it holds that
Pgl-g” Cé Nxw) = C, N(nxw), for some n < ® ",
Proof of Claim. To get a contradiction, let & ,7 €S’ and py=p,
such that
B<d<n & p g Vn<o(Clg\(xw) # Cn\(nxw) ).
Take 2 Pﬁ-name g such that '
e e > 0" & b " LNCgAC,) is infinite ”
Since Ig,;” g<fpg ", it holds that |
Pri-gay” prﬁ(C6ACn) is infinite ”.
But this contradicts that

Py I+ Lfﬂ HCS‘V XB~ L ﬁCn - QED. of Clainm.

fg
Take & €S’ such that B < &. By Claim, since $’ is cofinal in %,
it holds that | B

ng‘I}— CS separates { X‘d sa<k} and Ya ;<K }.

But, this contradicts (17). a
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Appendix A. Ve start some definitions. Let T =
(ay.by) ta < @ >> bean (0 ,w )-gap. For each @ < @,

set b’a =ba\aa. Define the poset PT by
Pr={(GGuw;In<w (sin=>2) & vCw; &lul <o

U a. NU b’ < don(s) },
aEu o aEu @
(s,u) = (t,v) iff tCs & vCu & WVk € dom(s\t)

[(k € U a = s(k) =1)

aEy @
& (k € U b’a=>s(k)=0)].
a v

For each a¢ < ®q, set p, = (d,.{a}). Define the poset QT by

Gp={uC o lui<o & {p,3@€u} is an antichain of Py }

u = v iff v C u.

&

The following theorem is due to Kunen (see [B, p.931 Theorem 4.2]).

Theorem A. Let T be an (a)l.a)l)~gap. Set P = Py and Q = Q.

(a) If T is filled, then P satisfies the countable chain condition.

(b) If T is unfilled, then

(b.1) q W—Q ” P has an uncountable antichain ”, for some ¢ € Q,

(b.2) Q satisfies the countable chain condition.

¥e shall show

Theorem B. Let n < @ and Ti ‘be an unfilled (a)l,a)l)—gap, for

each i < n. Then, the product of (QT li<n) satisfies the countable
. ‘ i ,

chain condition.

Remark. Let T be an unfilled (@, )-gap.. Then, under the

assumption of MA+-1CH, Theorem B is a trivial consequence of Theorem A

, because any poset which satisfies the countable chainvcondition
~also satisfies Knaster’s condition. The next theorem claims that

the assumption of MA+— CH (or some assumption as this) is necessary to

show that QT satisfies Knaster’s condition.

_10_
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Theorem C. There are a poset R and an .R-name X such that
(1) R satisfies the countable chain condition and 1IRI = @,

(2) =5 7 X is an unfilled (aJl,a)l)“gap and Qy doesn’t satisfy

”

Knaster’s condition.

Theorems B, C shall be proved in Appendix B, C (respectively).
The rest of this appendix is
Proof of Lemma 3.3. For each unfilled (a>1,a>1)-gap T, by using
Theorem A (b.1), take a ag = QT such that
a5 = 7 PT has an uncountalbe antichain ”,
and set Qi ={q E Qp 5 9 = qq }.  Set Q@ = the finite support
product of <Q} 1 T is an unfilled‘(a>l,a)l)-gap> . Then, by

theorem B, Q@ 1is as required. O

Appendix B. ¥e first show the following combinatorial lemma.

Lemma B.1. Let n < © and ((aia,bia)l @ < > be an unfilled

(a>l,a>1)-gap, for each i < n. Then, there are a,B8 < @ such that

ag Nbg # ¢ . for all i <n.
To show Lemma B.1, we need the following definition.

Definition. For each g&':(aaia < (ol> and U ¢ o, set

limug&r = N ) aB.
@<o, BEUN\N

Sublennma. Let dy be an a)l—tower and U a cofinal subset of a)i.
Then, it holds that & << { Limydy }.

Proof. Let & = (a(xl a < a)1> be an a>1—tower and U a cofinal

_.11..
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subset of (ol. Set x = limu&. To get a contradiction, assume
that aa\x is infinite, for some a < . Since

¥n EoNx 3 B<w,(n £ U a
1 y €uNB 7

take a B < @ 4 such that

@ <8 & (a0 N (U )= 8.

a
7 EUNB T
Since U is cofinal in @, take a v E UNB. Then, it holds that

(a,N\x) N 8, = ¢ . But, this contradicts that

aac 2, and aa\x is infinite. O

Proof of Lemma B.1. Let n < & end T, = ((aia,bia)l @ <o)

an unfilled (col,col)-gap, for each i < n. Set Seq = U Lo and

i<n
Seq}'< = U ico. . Define U @4 (for s € Seq*) and x_,y, C ®,
i=n 8 s''s
7 < @ (for s € Seq) by induction on length(s) as follows:
Set U¢ = W,

Asumme that s € Seq and Us is defined. Set i = the length of s.

{the definition of Xgr Vg and 'rs>‘

Case 1. Us is not cofinal in @ .

Set xs=ys=¢and 7S=0.

Case 2. otherwvise.

Set xg = lilus<aiala<co1> . Since { aia ;@< ) << {xgl),
take 8 7 < @, such that
7y < 7T foranyt C s (t#s) & x, N b',)‘,s is infiqite.
Set Vg = xg N bi,r

S

{ the definition of Us— (for k < )

<k>
: - . i
Set US“<k> - { a E US 9 k E aa }-
Set ﬁ=sup{'rt;t€Seq}.

Claim. There are k.i < @ (for j < n) such that

I Vo



5 » Tor each j < n.

. j -
(D kj € b 0 Ve, ek

i-1 o
Proof of Claim. By induction on j < n. Suppose that j < n and

klll (for m'<j) are chosen which satisfy (1). Set t = <k0.'° >

°,kj_1 .
Then, it holds that Ut is cofinal in a)l. So, Ve is infinite.

From this and the fact that Yy - b‘i,r C* bjﬁ, ve can take a kj

t
which satisfies (1). QED of Clain.

Let s = <k0,°-°,k > be as in Clain. Since U is cofinal in

n-1 s
OB take an a € Us such that B < «. Then, for each i < n,

. . ‘ i
since a € U<k0""’ki>’ it holds that k, € a,.
i PO |
So, k, € a M bg , for each i <n. O
Now we are ready to prove Theoem B. The proof is similar to the

proof of Theorem A (b.2) (in [B, p.932]) except we need Lemma B.1.
Let n < @ and T = ((ala.bia)l a < a)1> an unfilled (col.wl)-

gap, for i < n. - Set @ = the product of (QT I i <n). To get a
, i »
contradiction, suppose that (wal a < a)1> is an antichain of Q.

' [ . ‘ -
For each a < ® let L (wa, Wy ). By using A-system

argment, we may assume that there are k(),~-",kn__1 € o \ {0} such that

, for each i < n,

i
(2) 1wyt o= ky,

for each a < @,
(3) if @ < B, then wiaﬁ w,iﬂ; @ . aqd nax(wia) < lin(wiﬂ).

For each-i < n and a < @ (s take By o <O such that

i : i ’ ' i i
af\mi,a C an\mi,a and bf\mi,a C bn\"i.a ,
it &£, n E wla and & < 7. Again without loss of generality, we

may assume that m =m, for all i <'n and all « <‘col. For

i,
each i < n and @ < a)l.set

~18-

13
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c’a = a‘f\n and dia = bif \u , where § = min(wla).
Then, it holds that ’
((cia,dia)l @ < @;? anunfilled (@, ® )-gap, for i <n.

So, by Lemma B.1, there are a, B < @ such that
ciaﬁdiﬁaﬁyﬁ.foralli<n.

So, LI and wg are compatible, a contradiction. a

Appendix C. A poset P is said to satisfy Knaster’s condition if
for any uncountable X ¢ P there is an uncountable Y C: X such that
any two members of Y are compatible. The following facts are well-
known.

(1) If P satisfies Knaster’s condition, then P satisfies the
countable chain condition,

(2) If P satisfies Knaster’s condition and Q satisfies the countable
chain condition, then PxQ satisfies the countable chain condition.
(3) MA + —CH implies the reverse implication of (1).

There are several examples of a poset which satisfies the countalbe
chain condition but does not satisfy Knaster’s condition, under some
set theoretical assumption (see e.g., [¥] section 3). Theorem C
gives another such example.

We turn to a proof of Theorem C.

Lenma C.1. Let R be a poset and X an R-name such that
(c.1) R satisfies the countable chain condition and IRl = 4,
(c.2) VR= " X is an unfilled (@, © )-gap. ”
Suppose that there exists an R-name Y such that, ‘in VR,
(c.3) Y is a poset and satisfies the countalbe chain condition,

(c.4) -y ” X is filled ”.
Then, it holds that, in VR, QY doesn’t satisfy Knaster’s condition.

So, R and X satisfy (1) and (2) in Theorem C.

Proof. set ¥ = VR and WX = WY. By (c.4) and Theorem A (a),
it holds that 4

—14-



15

' W*.t= PX” satisfies the countalbe chain condition.

X

Since a>¥ = a>¥, it holds that
(c.5) ¥ = Py satisfies the countalbe chain condition.
Since

¥ &= Jq€& QX( q n—Qx ? Px has an uncountable antichain ” ),
it holds that ‘
(c.8) ¥ = Qx>(PX doesn’t satisfy the countalbe chain condition.

By (c¢.5) and (c.8),
¥ E QX doesn’t satisfy Knaster’s condition. O

¥e shall construct a poset R and R-names X and Y which satisfy
(c.1)~(c.4). The method for doing this is due to Hechler [H] and
Dordal [D]. Hechler used it for adjoining a tower in a generic
extension and later Dordal generalized it for adjoining an arbitrary

partially order type of P(w)/finite in a generic extension.

Definition (Hechler and Dordal). Let A = (A,<A) be a partial

order type. Define the
poset P(A) by
PCA) = {p; JuCATn<w( tui<w & p :uxn=> 2) },
and for any p, 4 € P(A) such that p : uxn = 2 and ¢ : vXn = 2,
P = ¢ . 4
iff qaC p& Va,bEv VkEIn,n) ( a <y b = p(a,k)=p(b,k))

For each a &€ A, define P(A)-name Ha by

IA

I~ Hac:a> ,

in € H I = {p€P(h) ; p(a,n)=1 }, for eachn < w.

The following lemma is due to P. Dordal ([D, Lemma 5.4, p. 45]).

Lenma C.2. Let A = (A’<A) be a linear order type and B is a sub-

order type of A.
(1) - P(A) satisfies the countalbe chain condition.
(2) If G is Y-generic on P(A), then GrP(B) is V-generic on P(B).

_15_
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(3) If x is a P(A)-name such that - "xC @”, then there exists a
countable subset C of A such that x is a P(C)-nane.

(4) For any a,b € A, a <, b if and only if - "H, X "
(i.e., < Ha' a € A ) is a chain of P(w)/tinite.)

Let Q denote the set of rationals. Set A = 0)<a)l>(2 and B = A
V{0}. Define the linear ordering <g on B by

(¢, @,0) < 0 <p(q,@,1) , for any ¢ € Q and any @ < @,

(a,2,0) <5 (r,8,0) , it a < B or (a

(9, a,1) B (r,B8.,1), it a > B or («

B and q <r1).
B and q < r).

We regard B as the linear order type (B,<B) and A it’s sub-order type.

Set the poset R = P(X). Define R-names a _,b

q'Pq (for a<a>1) by

8, = H(O,a,o) and ba = “’\H(O,a,l)’ for each a < @ -

Set ¥ = VR, In ¥, set X = {(ay byt @ < ©> and take the

a

poset Y such that o= VP(B). Then, by Lemma C.2 (4), it holds that

W= ”Xisen (0,0 ” and W = " X is filled .

So, the next lemma completes a proof of Theorem C. The lemma is
proved by the same way in the proof of Theorem 5.3 in [D]. So, we
omit a proof.

Lenma C.3. = "X is unfilled. ”

References

[B] James E. Baumgartner "Application of proper forcing”, Handbook of
Set-Theoretic Topology, K. Kunen and J. Vaughan, ed.,
North-Holland, Amsterdam, (1984) pp. 913-959.

[B2] James E.Baumgartner "Iterated Forcing”, Survey in Set Theory, A.
R. D. Mathias ed., London Math. Soc. Lecture Note Series 87,
Cambridge University Press.

_16-



17

[D] P. Dordal "Towers in [a)]a? and aﬁ)”,‘pfeprint (1988).

[DSV] Alan Dow, Petr Siwmon, and Jerry E. Vaughan ”"Strong homology and
the proper forcing axiom” (preprint).

[H] S. Hechler ”Short complete nested sequences in BNN\N and small
maxinmal almost-disjoint families”, Genral Topology and Appl.,
vol. 2 (1972), pp. 139-149. '

[W] W.VWeiss “Versions of Martin’s Axiom”, Handbook of Set-Theoretic

Topology, K. Kunen and J. Vaughan, ed., North-Holland, Amsterdan,
(1984) pp. 827-888.

Shizuo kamo: Department of Mathematics, University of Osaka Prefecture
Sakai, 0Osaka, Japan

_17_



