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Introduction

A surface in P2 is called projectively homogeneous (homogeneous in short)
if a subgroup of PG L, acts transitively on this surface. Such surfaces are
classified by S. Lie relying on his group theory when the coefficient field is
C [L]. In this note* we show how to classify such surfaces over the real field
relying on the projective differential geometry of surfaces. A surface in P3
1s locally seen as an immersion of a two-manifold with coordinates (z,y)
into the affine space with coordinates z = (2, - ,2*), which is transversal
to rays through the origin. The coordinates z¢, as functions of (z, y), satisfy

a completely integrable system of linear differential equations of the form

{zm = Lzzytaz,+ bzy+pz
Zyy =mzzy+czz+dzy+qz.

Our method of classification is first to find projective scalar invariants of
this system and then to integrate the corresponding systems using the fact
that such invariants are automatically constant on homogeneous surfaces.
Examination of homogeneity turns out to be easy and we get a table of
such surfaces. A classification of unimodular-affinely homogeneous surfaces
has been given by this method in [G].

In §1 we will review the projective differential geometric treatment of
surfaces and relate it to the above system. In this respect, the Fubini-Pick
invariant denoted by F plays a fundamental role. Surfaces with F' # 0 is
classified in §2. If F = 0, then surfaces are known to be ruled and its
classification is given in §3. In §4 we give some remarks.

*this note is based on [S] with some modification
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§1. Projective differential geometry of surfaces.

Let M be a 2-manifold immersed in a real projective space P3. Such an
immersion has locally a lift to the affine space A* — {0}. Let ¢, be one
of lifts. Then we associate to each point of M a set of four independent
vectors {eg,€1,€2,e3} with eg as the first vector so that this set moves
smoothly on M. Such a set e, that is only locally defined, is called a
projective frame field. Certainly we can assume e is unimodular in the
sense that det(ep,e1,eq,e3) = 1 with respect to a fixed volume form of A%,
The dependence of e on M is denoted by a Pfaff system

| (1.1) | | de = we ie. dey = Zﬁ wleg,
which is our starting setting. The integrability condition is

(1.2) dwf = Z,ng A wf.

Now we restrict freedom of choice of projective frame fields. First, we may
assume w3 = 0 so that the vector space < eg, e, e2 > becomes the tangent
space of the cone over eg(M) with the origin as the vertex. This choice
implies

(1.3) 0 =dwd =w& ANwd =w) AWl

Here we use the summation convention; repeated indices are summed up in
their range and the range for a, f, - -+ is 0 to 3 and the range for ¢, 7, - i
1 to 3. We also use the notation w® for wi. From (1. 3) we see the ex1stence
of symmetric functions &;; so that

(1.4) w! = hiwl.

Put ¢3 = h; jwiwj . Then we can see the conformal class of 5 is independent
of frames chosen (see PROPOSITION 1.1). From now on we assume that this
form is non-degenerate; an immersion or a surface with this assumption is

called non-degenerate. We next take the exterior derivation of (1.4) to get
the identity

(dhij — higw! — hejwf + hij(wg + wd)) Aw? = 0.
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Hence we can put
h,ka = dh;; hzkw thw + h”(wo + w3)
and we get a cubic form

Y3 = h,-jkw'ijk.

DEFINITION. The scalar function
F = RijihpgrhPRIRM, (R9) = (hyy) ™!
is called the Fubini-Pick invariant.

We can see moreover that our consideration can be restricted to the case
| det(h;;)| = 1, which enables us to choose a frame with the condition

(1.5) ’ wd +wd =0.
Then we see

PROPOSITION 1.1. (1) Let e and € be two prq;ectzve frame fields. Then
they are related by a frame change

A0 O
€ = ge where g=1b a 0],
g ¢ v

a being a 2 x 2-matrix, with the property |det a| = |Av| = 1.
(2) The forms 3, @2, w3, @3 and functions F, F are related as

@2 = Al/_ltpg, (,53 = AV—lipg, F = )\—II/F

PROPOSITION 1.2. The coefficients hi;k satisfies the condition
h7h;j = 0.

This condition is called the apolarity condition.

We next take the exterior derivation of (1.5) to get the identity

(w;-) — h,-ng) Aw' =0.

Hence we may put
' 0 S R SN |
wz - h1]w3 _ Lsz .

Without proof we cite a
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PROPOSITION 1.3. Assume the immersion is non-degeneraté. Then there
exists locally a projective frame field with the property |

wg’ = wg +w§ =0, |det(h,'j)| =1, hijL,’j = 0.

Such frames are related by a transformation e — € = ge where components

of g, denoted as in Proposition 1.1, satisty |det a| = |A\v| = 1, b = v ta ki,

and p = v~ chle.

We finally introduce the last invariant v; by

0 t
Wy = —Yiw .

The covariance of the invariants are seen to be as follows:

(1.6) Azl/;bijk = hpqrafagaz
(1.7) A Li; = (Lre — Arkemc™ )af af

- ; L1 |
(1.8) )xzfyj = (vyr + c'Lix — 51/' te Czhigk)a?.

For later use we cite a

THEOREM 1.4. A non-degenerate surface with w3 = 0 is a quadratic sur-
face. A non-degenerate surface is ruled if and only if the invariant F' van-
ishes.

For a precise treatment of the above materials with proofs, refer the notes

[S]. |

§2. Homogeneous surfaces with F' # 0.

2.1 Let us consider homogeneous surfaces whose Fubini-Pick invariant F'
does not vanish. To such a surface we associate a distinguished frame that
will now be constructed. Take a normalized frame with ‘

(2.1) : / wo +wd =0 and h"jL,-J- =0

4
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and satisfying h = (;2), e = =+1; 1.e.
(2.2) Wi =wl, Wi =eWl

The apbci)lari’cy condition is h111 +€ h122 = h112 +€ haaz = 0. By the formula
(1.6), we find a frame with

(23) h111 == >-—€ h122 = -2 and h112 = h222 = 0.

Then, by definition of the cubic form,

(2.4) wi =w', wl=-w' and w)+ew? = —2ew?.

Note here that & = wd — b;w! by a frame change when A =1 and a = I,
in the notation of §1. Hence we can assume

(2.5) wy =wd =0.

Now i1t 1s important to see that there exist only finite frames satisfying
(2.1) to (2.5). Therefore, if the surface is homogeneous and F # 0, then
the coefficients of remaining components of w must be constant. We define
coeflicients as follows:

(2.6) w=aw'+(b—1w?, ewl=—aw'—(b+1)w?,
wp = pw' + qu?, wy = qu' +rw?,
ol bt wlmege der?,

wg = uw! + vw?.

Here we have used the fact that, if we put w? = p;;w’ and h,-ng = qi jwd |
then (p;;) and (g;;) are symmetric matrices in view of (2.5). Assume now
the coeflicients are constant. The integrability condition dw = w A w is

)
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written in terms of these coefficients as follows:

(2.7) dw' =caw' Aw?, dw? =bw! Aw?

(2.8.1) pt+er'=p+ter, ¢ —-qg=3¢ca

(282) p+er’ = ea’ + (b—1)(b—2),p +er= ca’ + (b+1)(b+ 2)
(2.83) ea(p—er)+2(b—1)g=v,cea(p —er')+2(b+1)¢ = —v
(2.8.4) (b— 1)(?' —er')—2a¢g =—u, (b+1)(p—er)—2ag=u

(2.8.5) g(p' —er'y—g'(p—er)=cau+bv.

In order to solve this system (2.8) put 2t = p'+er’ =p+er,2k =p—er
and p' — er’ = 2k’. Then from (2.8.2), 2t = €a® and k — k' = —3b. From
- (2.8.3), ea(k+k' +3)+b(g+4¢’') = 0 and from (2.8.4), a(q+¢')—b(k+k'—3) =
0. Hence 6ab+(a?+eb?)(g+¢') = 0. Assume herea # 0 and b # 0. Then
a’+¢eb? # 0. Combining with (2.8.1), we have 2g = —3¢ a—6ab/(a’+¢ b?),
2¢' = 3ca — 6ab/(a® + €b?), 2k = —3b + 3(eb? — a?)/(a® + € b?), 2k =
3b + 3(eb® — a?)/(a® + €b®): and consequently, v = —6ab(ea® + b* —
1)/(a® + €b?) and u = 3(a® — e b%)(ea® + b2 — 1)/(a® + € b?). Now (2.8.5)
shows (30 — ea®)(ea® + b — 4) = 0. So we have two cases 3b*> = a’
or ea? = 4 — b2. However the first case is reduced to the case where
a = 0. This is seen by the transformation rule (1.6) taking A = 1 and
a= ( CO.SB sm9) for § = 2r/3. Note that this transformation keeps

—sinf cosé ‘
the condition (2.3). Therefore it is enough to consider € a® + b* = 4 when
a# 0and b# 0. When one of a and b is zero, the computation is easier
and thus we have the following list of solutions:
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[1] - [2] [3]
a a# 0 0 0
b a®+eb? =4e b# 0 0
1 3 1 3
2 _Zp4 lpe 21—
p 5~ 50t 5(1—b) P
q —%sa—%eab 0 q
7T 3 5., 3
ET '§+'§b—zb —-2-(1—b) —p
1 3 1 3 :
! hl Z B2 el
P 2+.2b+4b 2(1+b) D
3 3
!
~ —ca— —cab
q 26a 4£a 0 q
7 3,5 3
N S 2 2 _
er 5 2b 4b 2(1—}-b) p
1, 2
u 9(1—-2—b ) 3(1 —b%) 2p
v ———g-sab 0 —2q

2.2 The surface corresponding to each solution is obtained by solving a
Pfaffian equation de = we. We first carry out the integration for the case
[2]. Since dw! = 0 and dw? = bw! Aw?, there is a local coordinate system
(z,y) so that w! = dz and w? = eb?dy. Let z = ey. Then deg = wle; +w?esy
shows e; = z; and ey = zye"bz. Since de; = z;,dz + z5ydy = wie, and

7
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“dea = (e7%2y),dz + (e7%%2,),dy = weq, we have
Zpp = %(1 —b)z+ 2z, +e3
zzy = (b— 1)z
—2bz 3
Zyy€ = §€(b — 1)z —e(b+ 1)z, + €es.
Hence, putting z = e®~1%w and cancelling e, we have

Wey = 0
(2.9) Y

Wrp — 56_2bzwyy = (4 — bw,.

It 1s easy to integrate this system and to obtain solutions:

1,y, 40z ﬁ_*_ € c—2bz
Yo 2 T (b + 4) ’
€

y2 8
{1ay)$> —2_+646 }‘7
y? €
{17y368z7 '_é_+§$682}7

when |b| # 4, b = 4 and b = —4 respectively. Then the corresponding
surfaces are respectively ~

1° Z=Y"+eX* k#0,1,2

20 Z=Y24eeX

3° Z=Y?>+eXlog X,
(X,Y, Z) being certain affine coordinates. ‘These are all homogeneous.
2.3 The case [3] is similarly treated. Since dw! = dw? = 0, we may put
w! = dz and w? = dy. The system for z = eg is 2z, — €zyy = 2pz + 22,

and z;y = q z — zy. Introducing a new variable w by z = e”*w and writing
(z,y) for (3z, 2y), we have

210 [pememmputon

Wey =qw,

8
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where p and g are new constants. This system is equivalent to the system
considered by Wilczynski in [W] when ¢ = —1. We follow his argument
with a little modification.

First assume ¢ = 0. Then the surface is a translation surface w = f(z) +
9(y), where f and g are determined by f., — 2f, — pf = €9y, +pg = const.

Since the characteristic equations are (p — 1)? = p+ 1 and p* = —ep,
we must consider five cases separately: p < -1, p = =1, =1 < p < 0,
p=0and p>0. Let p < —1and e = —1. Then the solutions are
{e*cos Az, e*sin Az, cos py, sinpuy} where A2 = —p — 1 and u? = —p.
This yields the surface (Y2 + Z%)/(1 + X?) = exp(k tan™! X) for X =
tanAz, Y = e Fcospy/cosAz and Z = e Fsinpy/cosiz. k = —2/A.

When ¢ = 1, solutions are {e® cos Az, e*sin Az, €Y, e7#*¥}, which yields
(Y? + Z?)/X = exp(k tan™! Z/Y) where k = 2/\. This is equivalent to
YZ/(1 + X?) = exp(ktan™'X) by a projective transformation. So both
are together written as

k40

X2 _ 2
4° tan™! Z = k log (——6—}:—)

14 22

by a trivial change of coordinates. Remaining four cases are similarly inte-
grated and we have

5° eZ =X?+eY? (p=-1)

6° Z'°‘=X2—Y2 k> 2whene = land2 > k£ > 1 whene =
-1 (-1<p<0) | |

7 Z=Y’-¢logX (p=0)

8° Z¥ = X24+Y? k> 2whene=—-1and2 > k > 1 whene =
1 (p>0).

These are all homogeneous; for example, the surface 4° has two sets of
rotations when ¢ = —1 and spiral motions in z and translations in y when
e =1 ‘

.

We next consider the case ¢ # 0. The system has e**t%¥ as a solution
where a? — €b? = p 4 2a and ab = ¢; hence

a*—2a® —pa’-eg®=0.

9
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Types of solutions of this algebraic equations are divided into six cases:
@) (r,r,yrys), (i) (r,r, 0, @), (iii) (r,r,s,), (iv) (a,a,B,8), (v) (r,s,0,a)

and (vi) (r,s,t,u) where r,s,t,u are different reals and o, 8 are non-real

different complex numbers. Other combinations do not occur because of

g # 0. The case (i) occurfs only when p = —9/8, ¢ = 3v/3/16 and £ = 1.

The solutions are {1,3z — /3y, 83y + (3z — v/3y)?, e~*~v¥}. However

this yields a surface equivalent to 7°; so excluded. The solutions of (ii) are

{er= % | (rz — by)em*tby e~ z=by cos(Az — %y) , e~ \e—by sin(Az — —f\-y)}

where b = g/r and A2 = a — 1 > 0. This represents

9o Z+log(X2+Y2):ktan‘1-§—, E>0 (e=-—1).

For the case (iii) it is seen that we may put r = 1 — A%, s = A — \?
and t = —X\ — A2, when |A\| # 1. Since solutions are {e™>% (rz — by)
ezt | esrtiy etz +1v} (b =r/q), the surface is

10° Z:ﬁngX—/\%_llogY,(e:lwhenAz>1;6:—1When
A<, \

In the case (iv) the independent solutions over C are

- q ) 1
(oo (a2 iN)o + L), ep(1 = o in)o+ Ty )}

for some parameters A and g (a is a function of A and p). Taking real
solutions we see

X24+Yv?

1T 72 =k tan™! % 4+ £ tan™! Z,

11° log

k and £ being real pé:rameters determined by A and p. In the case (v)
solutions are {exp((a i)z + —f£~vy), exp(rz + Ly), exp(sz + 1y)}; r and
s are functions of a and A. The corresponding surface is

Y ¢
12° log Z = k tan™! — + = log(X? +Y?).
, X 2
The last case (vi) yields
13°  Z =X

We here do not try to determine exact ranges of k£ and £ in 11°, 12° and

10
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13°. For non-degeneracy it is necessary to assume k£ # 0 and £ # 1 for
12° and ké(k +£— 1) # 0 for 13°. Above surfaces are also homogeneous.

2.4 We integrate the final case [1]. Choose coordinates (z,y) such that w! =
e®®?dy and ew? = %e“bxdy —bdz. Put z = e3. Then e; = e_“brzy + iz,
and e; = —$z,;. Hence we have

. ,
UZgy + ~Zzz = (b—1)z; +abuz, + Zab(b +2)z
2 4

' 4 2 6
U Zyy + aﬁu Zzy = ;b—z'(bz — 1)Zz + -b-(b + 2)u Zy -+ 3(1 - bz)Z,

where u = e~ 2%, Referring that e2°%7 is a solution, put z = €2%%%w. Then,
for v = y, we see

(2.11) { buu(’wuu — Wyy) = (b+ L)wy — w,y,

(Wyu — 2wyy) = (b+ Dwy — w,.

The independent solutions are

wy=1, wy=u+(b+1v, wy=u®—2uv—(b+ 1)
wy = u® + (b— Dulv — (b—1Duv? + (1 —b*)v*/3.

The corresponding equation of the surface is

2

(b+1)ws +w?)® = %(H 2) ((b-{— 1w — —?;(b ~ 1wt — (3 — 1)w1w2>

when |b| # 1,2 and called Enriques surface. By a projective change of
coordinates this 1s written ’

140 (Y= X?) = k(Z - 2X3 — XY)?, k # o,% |

The case |b] = 1 is included in 1°. The case |b] = 2 is excluded because
a £ 0. However the case b = 2 is interesting because it yields a surface of

degree 4: 2722 — X?Y? — 42X* — 4Y3 — 18XY Z = 0, which is known to
be a homogeneous developable surface. :

11
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§3. Homogeneous surfaces with F' = 0.

3.1 This section treats the case F' = 0. Since the surface is quadratic
when the cubic form vanishes (THEOREM 1.4), we here consider surfaces
with F' = 0 but with non-vanishing cubic form. Such a surface is ruled.
Since 1t must be of indefinite type, we start with a normalized frame with

h = (1 ! ) . We first see the existence of a frame with the following property:

(3.1) w% :""’21 wg =w1> w% :""’17 w% =0
hi111 = =2, hy12 = hioo = hoge =0,

wg—Bw%:O, L,’j=0 and ’)/220.

In fact, by the identity F' = 2hj11ho22 we may assume hggy = 0 The
identity hy12 = hi2 = 0 follows from the form of A. Consider a frame

change by a transformation g whose components are A\v =1, a = (‘g agl ) ,

by = Ac?, by = Ac! and p = Aclc?. Then h;;; transforms as Mayi1 = hinad.
So there exist A and a so that hy;; = —2; and this condition restricts
frame changes to the case A = a3. Then computation shows &J — 3@] =
w) — 3wl + A(—4c’w! +2c'w?). Thus we can find a frame with wl —3w] = 0.
The identities w? = w! and w] = 0 follow from the form of the cubic form.
Taking exterior derivation of wi = 0, we see 0 = Lyyw® A w?, which shows
Loz = 0. Similarly L1; = 0 is seen by derivation of w? = w!. Also the
exterior derivation of w) — wi = 0 shows 43 = 0. Notice here that frame
changes which keep the condition (3.1) are now restricted to

3

a
o :
(3.2) g(a) = a=l
; i
We put
(3.3) wi = aw' + bw? , W) =wj=po'+ qw’
wg/z w; = rw! + sw?, wh = tw!.

Coeflicients change under g(a) as follows

(34) p=atp, =atq¢, F=atr,

H
R
(7
Sl
Il
R

|

o0
[

12
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The integrability condition dw = w A w induces the following identities

(3.5) dw' = =2h! Aw?,  dw? = daw! AW?,

. r=-2q,q—1=23(by —ay)+6ab, 4bp—6aq =g, —ps,
(3.6) |

6rb—8as =81 —ry, s=1t, 6bt=—ty,

where indices imply the derivation with respect to w! and w?: da = a;w! +

ang.

3.2 Now assume t # 0. Then by (3.4) we may assume further [¢t| = 1.
So, if the surface is homogeneous, remaining coefficients are assumed to be
constant. Then from (3.6), a = b = ¢ = r = 0. Next assume s =t = 0.
If r # 0, then by a similar reasoning a, b, p and ¢ are constant. But then
b = 0 and following r = 0 by (3.6), which is a contradiction. Thus r = 0. -
When b # 0, we have |b| = 1 and a = p = 0. When b = 0, we have either
a=0and p=0,1,—1or |a|] = 1 and p is arbitrary. Therefore homogeneous
ruled surfaces are among four cases:

4 lt|=1, a=b=gq=r=0

[
[5
6

]
] p=0or +1, a:b#q’:r:s:tzo
] la|=1, b=g=r=s=t=0.

]

[7 bl=1, a=p=b=q=r=5=t=0.

We first examine the case [7]. In this case dw? = 0 by (3.5) and conse-
quently all diagonal forms are closed. Hence there is a frame change g(«)
which transforms the coframe into ‘

0 w!' w? 0
0 w! w?
0 wl!

0 0

Moreover the same reasoning applies to the case [6] when p = 0. Thus the
case 7] is a subcase of [6].. |

13
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3.3 We next integrate the case [5]. Since w! = dz and w? = dy for some
local coordinates (z,y), the associate system of differential equations is

i (rempets pmos

Zyy = 0.

When p = 1, the independent solutions are {e™%, e*, (z + 2y)e*, (z —
2y)e~*} and the surface is

15° Z=XY +X log X.

When p = -1, the independent solutions are {cosz, sinz, zsinz +
2ycosz, zcosz — 2ysinz} and the surface is

16° Z:XY+(1+X2)tan"1X.
When p =0, we get the Cayley surface
17 Z=XY +1X®

3.4 For the case [6] we choose coordinates (z,y) such that w! = dz and
w? = e***dy; see (3.5). The system of differential equations for z = ¢ is

_ . _—4aczx
(3.8) { zze =(p—3)z+4az, +e 2y
Zyy = 0. )
Putting z = €***w, we have w;, = (p+ )w + e7**“w, and wyy = 0.

Hence w = u(z) + yv(z). By a simple change of variables we see

{uu =pu+e‘v
=PV,

pis a new constant. We have four subcases according as p > 0 and p # 1/4,
p=1/4,p<0,orp=0. The space of independent solutions is respectively

in this order {e~**, e**, 2)\+1 e(A 1)z +y er - 2,\6(1 Az 4y e} where

p= A% {e”%” , e%”, -;-ez‘”\—i—yezz , 3;62"+ye 2’”}, {1,z,e"+y,(z—2)e* +
zy} and {cos Az, sin Az, ae®(cos Az + 2Asin Az) + y cos Az, a e*(sin Az —
2 cos Az) + ysin Az} where p = —A? and a = (1 + 4A\?)~!. Therefore the
corresponding surfaces are respectively

14 
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18° Z=XY+X*, k+02
19° Z=XY + X?log X

20° Z=XY + ¥

X+YZ

21° 10g 1—{-—22

=ktan"'Z, k>0.

3.5 For the final case [4], the system is easily seen to be

: 2z =Ppz+z
(3.9) { P y
‘ Zyy =tz t==41.

Assume t = 1. Depending on the value of p we have five subcases: p < —1,
p=-1,-1<p<1, p=1andp> 1. Respective solutions are given in this
order: {e¢”Ycos Az, e YsinAz, e¥ cos uz, e¥sinur} where A2 = 1 — p and
p? = —1-p;{e¥, ze?, e ¥ cosV2z, e ¥sinv/2z};{e”Y cos Az, e ¥ sin Az,
etTty e~HTt¥} where X2 =1 —pand p? =p+1;{e7¥,ze7¥, eVZzty
e~ V22+¥} and {e**7Y, e7r27Y =Y 7BV} where A2 = p — 1 and
u? = p+ 1. Surfaces are listed also in this order '

Y .
22° tan™! Z = k tan™! X k>1

Y
23° Z =tan"1 =
an”™"

Y .
24° tan™! Z = k log — k>0
an og;X, >
25° Z=YeX
Y
o Z=(=) k<1
26 (X), 0<k<

When ¢ = —1, the solutions are {e** cos(& + ¥), e*sin(& +y), e |
cos(\—-% +y), e~ sin(— & +y)} where 2\ = p+4/1 + p2. The resulting
surface 1s

X2 + Y2

20 ey

= k(tan™! %;— —tan™! Z), k> 0.

15
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As is easily seen by looking at solutions, all surfaces are homogeneous.

§4. Remarks

4.1 Summarizing calculations in previeous sections we have seen that non-
degenerate projectively homogeneous surfaces are projectively congruent to

one of

00

Z=X2+Y?

and surfaces in the list 1° ~ 27°:

10
20
30

40

50

60

70

80

90

10°

11°

12°

130

14°

tan™! Z = k log (

Z=Y*4+eX* k+0,1,2
Z=Y24+¢eeX

Z=Y>4+eXlog X

-2 2
) M

eZ = X2 4eY?2

Z¥=X*-Y? k>2whene=1and2>k>1whene=-1
Z=Y?—¢log X

ZFE=X24+Y?2 k>2whene=-1 and2>k:>1when5=1 '

Z+log(X2+Y2)=ktan“1§-—, E>0

Z = 5 log X — 15 logV

A+1
X24+Y? LY .
log—l—_l—_fi——ktan X——}—EtanZ
o : Y ¢ -
log Z =k tan™" 3 + 7 log(X? +Y7)
Z =X*yt
(Y = X = (2 - 3X° XY k£ 0,

16 .
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15°  Z=XY+XlogX

16° Z=XY+(Q+X*)tan™t X
17 Z=XY +1ix?

18 Z=XY+X*F, k#0,2
19°  Z=XY +X?log X

20° Z=XY +¢¥X

X+YZ

21 log T2

=ktan™'Z, k>0

Y
220 tan™! Z = k tan™! — k
an 'k tan X >1

Y
23° Z =tan"! —
X

‘ Y
24° tan"l'Z =k log —, k
an ogX, >0
25° Z=YeX
Y
26° Z = (=)k 0<k
. (X), <k<l1

Xzi + Y2

Ak k(tan™! % ~tan™! Z), k> 0.

27° log
Remark that the above list does not contain degenemte projectively ho-
mogeneous surfaces such as projective planes and a surface mentioned in

the end of §3.

4.2 In the above list we find some duplications: The surface 6° is included
in 13° when k = £. Similarly 24° = 12°(£ = 0), 26° = 13°(k = —¥{),
27° = 11° (k? = £2) and 17° = 18°(k = 3). These are due to the non-
uniqueness of the frames we have chosen (each surface could have several
but finite number of frames with the required property) and due to that the
exact range of the parameters are not determined. For example the surface
Z = X*Y* is equivalent to Z = X1 *~‘Y! by a transformation (X,Y, Z) —
(1/X,Y/X,Z/X). However to understand surfaces geometrically, those

17
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subcases mentioned above should be excluded from the case written in the
right side of equalities. '

4.3 In [L], Lie has given, other than quadratic surfaces and the Cayley
surface 17°, 11 surfaces with two-dimensional automorphism group over

C. They are denoted by I to VII and I' to IV'. Those are identified with

surfaces considered over C in the above list as follows:
I=14°, II= 1°, ITI= 3°, IV= 20°, V= 19°
VI=18°, VII=2°, I' = 7°, IT' = 15°, III' = 10° + 5°, IV’ = 13°. :

4.4 In the projective study of surfaces we know several notions such as
projective minimality, Demoulin surfaces etc. In regard of these notions we
can examine following facts: The Enriques surface 14° is known to be an
affine sphere and, so, projectively minimal. Surfaces in the classes [5] and
[6] are Demoulin and projectively minimal. We see surfaces in [3] and [4]
are also projectively minimal. Surfaces in [4] are not Demoulin. Surfaces
in [2] are projectively minimal only when |b| = 2, i.e. k = —2 or 2 in 1°.
We omit the details.
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