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INTRODUCTION »
In this note, we consider the Lz(Rn) well-
vposedness of the Cauchy problem for the following singular

or degenerate partial differential equation

(0.1) 82y - d(t)u = f(t,z) in [-1,11N0) x R®,y
) : } (CP)

where 9; = 5§, 4(t) is a 2m-th order elliptic pseudo-

differential operator which is singular or degenerates at
t =0, and t; is an arbitrary point of [-1,1].

The € or H® well-posedness of (CP) is studied by
various authors. The sufficient conditions are obtained
by Protter [8], Oleinik [7], Ivrii [4], Imai [3], Segala
(9], Tahara [10], Tarama [11] and Yamazaki [13], (see also
the references in [12], [13] and [14]). But their
estimates include some loss of spacial regularities at the
singular or degéneratebpoint t = 0. Thus in order to
obtain a solution u(%,-) in the Sobolev space HZ(R"),
ohe has to take the initial data in a smaller Sobolev
space HS'(Rn) with 8’ > g.

On the other hand, in [12] and [li]‘we proved ‘the

LZ(Rn) well—posednessrwithqut‘loss of regularities, when
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the principal part is a product of a function depending
only on tv and é'noﬁ—negative self-adjoint operator
independent of ¢. The purpose of this note is to give a
sufficient condition under which (CP) has a unique
solution whféh conserves spacial regularity over singular
or degenerate point ¢ = 0.  That is, the solution belongs
to the same Sobolev space HS(Rn) before and after the
singular or degenerate point. This genefalizes the
results of [lg] and [14] to the case where the principal
part ‘cannot be written as a product as in these papers. At
the same time, we employ general functions measuring the
singularity or degeneracy of the principal part, and relax
the.assumﬁtions on the loﬁer order termé imposed in [14].
The proof is based on the energy esﬁimate, which has‘the
samevspgcial_regularipy before and after the singular or
degenerate. point. |

Detail will appear in [15].

§1 Preliminary

In this section, we provide notations, definitions
and some lemmas on pseudo-differential operators.

Let RY denote the interval " (0,»). Let 44 and 9%
be Banach spaces. For an operator 4 from & . to %,
the operator norm of 4 is defined by:‘ﬂdﬂg’%.= sup{lidily:
¥y € 9, IIy"g = 1}, which may be «. Let B(%,%4)_ denote
the space of all bounded operators from 9% to %. Let
AC([-1,1]1;%) denote the set of . d-valued absolutely
continuous functions on the interval [-1,1].

For a multi-index o . = (al,---,an) € N* and



€ = (zyy---,2,), & = (E,---,& ) € R", we put |al =

= agteccte, ol = oagleccant, z-& =z Ey+---+2 K and
<g> = (1g1241)1/2,
For the coordinate variable gz = (w1,~F',zh) € Rn,‘
let dz denote the Lebesgue measure on Rn, and put
dz = (2n) ™dz. We omit the domain of integration if it is
the whole space R™. We put Gx = O/ij,
: J
8% = (8 )a1~~ (8. )™, i=/1T, D. = -i 8/8z_, and
z x4 z, ! ’ z J
J

o o '
a" 1..4 n
DG = (D, ) tee-(D, )™

n
Let ¢ (resp. ¢’) denote the space of rapidly

decreasing functions (resp. tempered distribﬁtions) on R".
For u(z), v(g) € 9, put u(&) = [e7*® Bu(z)dz, the
Fourier transform of wu(z), and ﬁ-l[v] = Ieiz‘&v(ﬁ)gﬁ,
the inverse Fourier transform of wv(g).

The norm of the Sobolev space HS(R™) (s € R) isv
denoted by "'“9’ and the inner product of Lz(Rn) is
denoted by (-,-). We abbreviate H3(R") to - H®, and

Lz(Rn) to Lz, respectively.

DEFINITION 1.1. Let a(&) be a positive

real-valued C”-function on Rg. We say that a
C”-function ¢(z,&) on Rg? is a‘symbol of ciass Sk(x),

if for every non-negative integer . ¢,

I¢|§k% =  max sup[IengQ(m,E)IA(&)'1<€>'R+'“"
' _ la+Bi<d (z,E)
is finite. In particular if 2a(&) = 1, we write

sk(x) = sk ana  1e1lk) = je1 (k).

If k = 0, then we write SO(A) = S(x).
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DEFINITION 1.2. Let a(t,&) be a symbol for each
t € [-1,1]. Let ¢(t,z,€) be a symbol of class Sk(x(t))=
for each ¢t € [-1,1]. Then we say that ¢ belongs to
BSk(A) if e¢(t,z,€) is a symbol of class Sk(l(t)) for

each ¢ and sup lv(t){i?%),t { o If k =0, then

tel"lyl]
we write BSO(A) = BS(xA).

DEFINITION 1.3. Let ¢(z,&) be a symbol. The
pseudo—differential operator with symbol ¢(z,E) (resp.

with Weyl symboi o¢(z,E)) is defined by the formula

il

o(z,0)u(z) = [¢'% Bo(z,8)u(s)dr,

(resp. o¥(z,D )u(z) = [e*(#7¥) 86 ((2+y)/2,8)uly)dvds,)

for u- € ¢.

‘See Hormander [2], for the Weyl symbol calculus of
‘pseudo-differential operators.
We can show the next two lemmas by using Garding’s

inequality.

LEMMA 1.1. For an arbiirary non—negative integers  k
and k' with k < k', there ew;st positive constants C
and {4 for which the fotlowing holds. Let (&) be a

positive reai-valued symboi such that
A(g) € S(x) and a(E), x(&) ~ € S" .

Let o(z,E) = wl(x,z) + wz(z,ﬁ) be a symbol in Sk, such
that

0;(z,8) € S2K(22), Re o (z,8) 2 0, @,(z,8) € s2KT1(12),
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Let o = ¢(z,D,) or q.“(x,,oz). “Then

T R PO P LR T VPNV I T - S

for every u € ¢.

LEMMA 1.2. For arbitrary non—negqtiue integers k
and k' with k < k', there exist positive conétants Cc
and ¢ for‘uhich the following hoids. Let Ai(i) nﬁnd
xo(&) be positive reai-vaiued symbols such that

xg(8) € S(xy)  and  x;(E), ay(k), 2,(8)" 1 €5

kf
Let ¥(z,8) be a symbol such that

v(z,8) € s2K2),  wiz, )1 < 2, (8) %<2k,
and tet ¥ = W(m.Dx) or i“(m,Dm). Then we have

I (Yu, v) Il < %(le(nz)xz(ni)uui + Mxi(bm)xgl(Dx)vui)

R L T U PP P UL PW R LRI PPLIE LS

x (n11<nm)xz(nw)uu§_1/2 +'nxl(oﬁ)xgl(ox>uu§_1,2),

for every u, v € ¥.

§2. Result
Let d(t)“ be a 2m-th order pseudo~differéntial

operator in R" represented by the Weyl symbol

4(t) = a“(t‘z D.) = a¥ (t,z,D.) + g aﬁ(i:m D_)
] 9 w zm H 9 @€ j:O j 9 ) T 1
where ) -
aj € SJ (j = 0,1,"‘,1!,21!), D.’E = (_iye:zl)‘",-iemn)-
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We put the following assumption on Aopt
(A2m) For every (t,z,E) € [-1,11N{0} x Rg x R%,
azm(t,z,ﬁ) is real-valued, and the function: 4

2

t - azn(t,x,ﬁ) is an S°®-valued Cz—class function on

[-1,11\{0} satisfying the following:

8, on(tia k) € s*,

azh(tamaﬁ) 3 n(t)<€>2m,'

K (2m) K o (me1) -k
'ataZn(t)'t + |9t8$ja2u(t)|{ < ”a,{t n(t),

for every ¢t € [-1,11N{0}; & = 0,1,-+-, 4 = 1,2,---,n,

and k = 0,1,2, where #M is a positive constant, and

a,d ,
n 1is an integrable even function on (-1,1) such that

- _1pt : C
(n) urln(t) < ¢ 71 n(s)ds < Moa(t)  for 0 <t <1,
. n : 0 n ‘

with some positive constant Mn.

We easily see that if n 1is absolutely continuous on
(0,1) and if there are constants Cl’ Cé and & such
that C1 <1 and

1

(n)’ - C1 < n(t) n (E)t < 02 for a.e. t on (0,8),

then n is integrable and satisfies (n}.

We put H*(}) = {u; A(Dx)u e H*(R™)}, for a real
number k and a C -function a(&). Next, we define
positive C”-function ¢g(t(&)) by (4.1) and (4.5) in

section 4, and put

nk =

t

HR/ 24 (g (x(2)) M/ 2)x g7/ 2% (g(c(x)) 2) it ¢ = 0.



In particular, if n(¢) = 1¢1¢ (x > -1), then K equals

0
HM/Z—?+K(Rn

H"ﬂ/Z"’Y"’K(Rn)’ Wh_ere Yy = ma/(2a+4)o

) %

We put the assumptions on the lower order terms:

(Aj) For each 3§ = 0,1,---,m, the function
t - aj(t,w,ﬁ) is an Sj—valued‘continuous function on

[-1,1]{0} and for every ¢ = 0,1,---, it satisfies
{d) '

where ”aj ) is a poéitive cbnstant, and nj is a

nonnegative‘integrable function on (-1,1) such that

| vy _ t

(ng) ess sup 181170/ ™)y () ”/(zn)f n.(s)ds < =
-1<t<1 - o7

for 4 = 0,1,---,m-1,m, and furthermore,

(nm%)  n()V 20 () e LY(-1,1),

4Now we state our result.

THEOREM. Assume the above conditions (Aj) for
Jj = 0,1,---,n,2n}“Let K be an arbitrary real number.
Let f € Ll(—l,l;Hn+K(Rn)) be a function satisfying (f) or
(£)";
(£) 7€ ClI-1,11N{0};H™/2¥ % (r™)),
(£)’ £ e cli-1,11n0);87 /2t gR)),
Then fo; every (ug u;) € ng;m, (CP) has a un;que‘

solution u in the following sense,

(1) (u(t), 8,u(t)) € 5™ sor every -1t <1,

LY
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(ii) u € AC([-1,11;8%(R")) \
’ 2 X -y .
"% cd ([-1,11n{0}; n'3/2-d)méx pnyy
j:
(iii)  8,u € AC([-1,11;873B/2¥K(gn)),

(iv) (0.1) holds in Hk—m/z(Rn) for every t e [-1,1]N{0},
(v) (0.2) hotds.

REMARK 2.1. 1In the proof, we essentially use the
estimates of only a finite number of seminorms of symbols.

Hence it suffices to assume (Aj) (4 = 0,1,---,m,2m) for

some integer ¢ depending only on n and =.

The above theorem asserts that the solutionk4u and
its time derivative stu, which start before the singular
or degenerate point ¢ = 0, belong to the same Sobolev
spaces Hn+K(Rn) and HK(Rn), respectively, after 't = 0.
Hence the spacial regularity of solution is conserved over

the degenerate point. Furthermore note that the sum of

the regularity of each space of ni is the same, since
H-m/2+K(Rn) and. H_M/2+K(§(t(€))1/2) -are the dual space-.

of Hm/2+K(Rn) and HM/2+K(§(t(g))‘1/2), respectively in
H¥. Thus the sum of the spacial regularity of the solution.
and that of its time derivative 'is conserved for all ¢,

Next we mention the necessity of (Am), a condition on

the lower brdef terms..’Assume that = = i, and'n(t)‘= fz.
n(t) = t2; Then (nl) and (nl*) are satisfied if and only
if t_lnl(t) is integrable. We cannot relax this

1

condition to t—lnl(t) < Ct - (C > 0), that is,

nl(t) < . In fact even for a simple case n = 1,



‘ 2,2
az(tgzgnz) = —t 83:

and ‘al(t,m,Dx) is a positive constant
(and thus ny is a positive constant), we see from
Chi Min-You [1] or Ivrii and Petkov [5] that we cannot
determine ng, the space to which the solution belongs,
only from the principal part Ao {1] gave the
expression of the unique solution of (CP) with
ag = f:= uy = 0 and ay = 4N + 1, where N is a non-
negative integer), and thié exprgssion tells that the
regularity loss at ¢ = 0 tends to infinity as N becomes
infinity. [g] obtained the necessary condition of the
well-posedness of (CP) in a general form, and it follows
from their result that the regularity loss of the mappihg
from f to u, a solution of (CP) with Ug = Uy = o,
tends to infinity as aq (= a constant) becomes infinity.
EXAMPLE. We give some examples of the function n

which satisfies the condition of the theorem;

(2.1) n(t) = 1£1%(1-1ogit1)® (¢ > -1, B € R),
(2.2) n(t) = 1£1%{1sin(log(2-1og1¢1)) I+ T=ToaTzT)

(x > -1, (ax+l)B > 1),
(2.3) n(t) = {(1-loglt!)*Isin(log(2-1loglitl))|

+ y(1-loglt| )2~ 1,8 (e, B €R, v > 181).

Here we note that if n is a function defined by (2.2)

with 0 < a < 1 or by (2.3), thén qo>monotone function

¥(t) satisfies ¥(t) < n(¢) < C¥(¢) on (0,8) for ahy
positive constanté' 8 and €. The function n idefined
by (2.3) oscillates between (1-logiti)(®™1)8 ang.

(1~logltl)a8. When 0 < ¢ < 1, this gives an example of



n{(t) with no positive upper or lower bound in any

neighborhood of the origin.

REMARK 2.2. 'In [lg] and [14], the above problem is
treated when aZm(t,x,Dx) has a special form ¢(%)A,
where A is a non-negative self-adjoint operator J
independent of ¢, and n(t) = 1t1% (¢ > -1). In that
case, we obtained the energy estimate by using the
spectral decomposition of A together with an abstract
theorem shown in these papers. But here we cénnot use the
same method, because a2n(t,w,D$) has different spectral
decomposition at each £, and we use the
pseudo-differential calculus and Garding's inequality
instead, together with the abstract theorem. Besides, we
give é general method to construct &(x(£€)) in né, in

order to treat more general n(t).

§3 Abstract linear evolution equations

In this section, we state a slight modification of a
theorem in [14], adapted to the Cauchy problem (CP). The

statement here is simpler than that in [14].

Let X, Y and Z be Banach spaces with norm uoux,
"."Y and H'Hz respectively. Let {A(t);-1<t<1} be a
family of linear operators in Z, and F(t) be a Z-valued

function on [-1,1] and belongs to Y a.e. £t on (-1,1).
We consider a linear evolution equation in Z

“$U(t) + A(£)U(E) = F(¢) for -1xt <1,
(ACP)



where —to .is an arbitrary number with -1 < to < 1, and

A(t) 1is singular or degenerate at t = 0.

DEFINITION 2.1. Let {W,;-1<t<1} be a family of

Banach spaces in a Banach space Z with norms {II-IIw }.
' 4

We say that "’"w is differentiable with respect to s
=] .

at ¢t 1if the following holds: wt+h equals Wt as a
linear space for sufficiently small {hI with

t+h € [-1,1], and (lizh - Uz, )/h is convergent as
‘ S Wean Wi

h tends to 0, uniformly with respect to « 1in each

bounded subset of W,. The limit above is denoted by
d

ety .
dt' " 'w,

We describe‘the assumptions throughout this section.
Let {Xt;—lstsl} and {Yt;—lstsl}‘ be families of Hilbert
spaceé in Z such that Yt is densely imbedded in Xt
for each i, and that Xt (resp. Yt[ is equivalent to
X v(resp. Y) for each ¢ € [-1,1]\{0}. Let (~,-)Xt

{resp. (‘,-)Y ). denote the inner products, and let M'Hx
t
(resp. -, ) denote the norms of X, (resp. VY,).
Yt, t - t

(S.1) There are constants Ci (¢ = 1,2,3) and
0 € (0,11 such that

. ‘ . ~ 1-6,.,6
-, < cln'uxt < Cyll “Yt and "'"xt < Cs"'“vt iy

for -1 <t < 1.

(s.2) 1If tn tends to ¢ € [-1,1] from the left

and if {y_ € Y, } is a sequence such that
n tn

[4

71
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sup'ﬂynHY < o and y, converges to % in the topology

n n

of Z, then y belongs to Yt and satisfies

Hyuxt < lim sup ly, iy and llyll, < lim sup nynuyt .

. -) O
n-rco tn i n n

(S.3) Let I be a closed interval in (-1,1)\{0},
and let BX (resp. BY) be a bounded set in X (resp. Y).

Then the map g - il g (resp. iy, ) is differentiable,
‘ 8 s

and it satisfies
d ' dy. . . .
sup{glizlly (resp. S=lizlly, ) ; z€B, se€l} < =.
s 8

(S.4) For every € > 0, if h > 0 is sufficiently
small, then there exists a linear operator P € B(XO,X) N

B(Y,YO) satisfying

el , WP < C and  HI-PI

YO’Z ( 8’
where [ is the identity mapping on YO and C 1is a
constant independent of g and h.

(A.1) For each t € [-1,1]\{0}, the operator A(t)

is a closed operator in X with domain D(A) = Y, and

" the resolvent set of A(¢t) includes (-w,co) for some

real number CO'
(A.2) (Weak stability condition) There is an
integrable function ®w on (-1,1) which is continuous on

[-1,1]N{0} and satisfies the following inequalities for’

every t € [-1,11N{0}, x, v € Yt with A(t) € Yt
a%umuﬁt sYZRe(A(t)w,x)xt + m(t)uzugt.

a%"yﬂﬁt < 2Re(A(t)y,y)Yt +o(t)znd .

[4
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(A.3) For each fixed ¢ € [-1,1]~{0} and vy € Y,
the map: 8 =» A(s)y 1is continuously differentiable at ¢
in\the topology of X.

(A.4) The norm WA(Z)I is dominated by some
Yt ,Xt

integrablé and continuous function on [-1,1]N\{0}.
(F) - The map ¢ - F(t) 1is Y-strongly continuous

on [-1,1]1\{0}, and the norm |F(¢t)ll, is dominated by
i
some integrable function on (-1,1).

(F)’ The map ¢ -» F(t) is X-strongly continuously

differentiable on [-1,1]1N\{0}, and the norm HF(t)HY is
t

dominated by some integrable function on (-1,1).

From the theorem of Kato [6] for nonsingular
evolution equation and the theorem in [14] for singular

one; the next theorem follows.

THEOREM A. Assume (S.1) ~ (S.4), (A.1) ~ (A.4), and
either (F) or (F)'. Then for every ¥y € Yg» the Cauchy
problem (ACP) has a unique solution '

U e c(I-1,1150)3Y) n cH(I-1,11N{0};%) n c1(1-1,1132)

with sup HU(t)HY < o 4n the following sense:
-1<tg] A

(i) U(t) ey, Jfor every -1 <t <1, and U(ty) = Uy,
(ii) the equation (2.1) hoids in X for every t in

[-1,1]N{0}. Furthermore, U beiongs to AC([-1,11;Z).
84. Sketch of the proof

In the proof, making use of the symbql calculus of

pseudo-differential operators, we construct a family of

- 13 -



t-dependent norms wiﬁh which the abstract theorem given in

section 2 is applicable to the system obtained by

rewriting the original equation.

We first define a smooth approximate function §&(t)

- of n(t)_l/z.

DEFINITION. Let p be a Ffunction in CB(R+) such

that
p(¢) > 0 on (%,2) and p(¢) = 0 on R+\(%,2),
2
I p(t)% = 1.
1/2
Put
1 i
. 7 J' n(g)ds for 0<tx1,
n(t) = {~~ 9
n(l)/t ' for t > 1,
2

[ atars)20(s)as/s) for t > 0,
{ 1/2
g(-t) for i < 0.

Then the function ¢ belongs to C*(RN\N{0}), and satisfies

(4.1) g(¢)

the following estimates;

17, ,.-1/2 1/2

(4.2) Ma n(t) for 0 < t < 1,

< £(t) < Mgn(t)"

1 1/2

(4.3)  #gla(e)7t/2

< g(t) < Mon(t)— for 0 < t < 1,

¢(s) ‘Hog(t) | ,
for s,t € RN{0} with 1/2 <. It/sl < 2,
(4.4) tg’ () < %(1 - %—);(t) < %g(t) for t > 0,
n |
1tke ) (¢)1 < mpe(t) (k= 1,2,--4) sor t >0,

where M, (k = 0,1,2,---) are positive constants.

- 14 -



REMARK 4.1. From (4.4), it follows that §&(t)/¢t is

a strictly decreasing C%-function on RY.

DEFINITION. Put

b(t,z,&) = azh(t’m’g)‘_llzo

Then by assumbtion (A2m) and (4.2), we easily see that
okb(t,2,8) € BST®(t™*¢(2)) (k= 0,1,2),

and

-1/2

‘b(tam’ﬁ) 2 ”a’o

-1 -®»

for every t € R. We put

M, = max {Mifguo, laib(t,w,a)l('”) (k = 0,1)}.

t "g(t),0

Since n is integrable, it follows from the
1

assumption (n) that n(t) < Ct for some positive
constant €. Thus by (4.3),
g(t) = C—ltl/2 for every ¢ > 0,

and therefore ¢(t)/t tends to o és t - 0+. By the

definition of n and (4.1),

.sup §&(t) < e,
t>1

and therefore &(t)/t tends to 0 as ¢ - «, From these
facts and the monotonicity of ¢&(¢)/t (see Remark 4.1),

we can uniquely determine a C”-function t on R? by

g
(4.5) M¥e(c(E))/x(E) = <&>R,

*
where M = 16M§. Since t(&€) is determined only by

<E>, we can define a C”-function t on [0,») by

t(<g>) = v(g). Then from the monotonicity of &(t)/t, it

- 15 -



follows that the function t is monotone decreasing and

;(<€>) = (&) » 0 as <E> - o,

LEMMA 4.1. The function <t 2gatisfies <t € S(t),

and there i8 a positive constant Mt such that

Ht'1<§>'2m < t(E&) < M. for ebery £ € R".

DEFINITION. Let x be a cg(R)-function with

0 < x(¢) £ 1 such that

1 for |t] < 1
x(t) =

0 for |t} =2 2.

We define functions Aq(t,g) and °Ap(t,§) on [-1,1] x R"
and p(¢,&), §(¢,&) and 7(¢,&) on [-1,1]1 x R™® by

lq(tiﬁ)

{e(2) (1-x(t/e (&) )+e(x(&))x(t/x(E))I<e>"™,

xg(t,6)17 0,

Ap(t,ﬁ)

;9(15’3»&)

b(t,z,8) H(1-x(t/x())) + b(x(&),z,8)  x(t/x(E)),

&(t’xiﬁ)

b(t,z,8)(1-x(t/<(€))) + blx(&),z,E)x(t/x(E)),
P(t,2,8) = - 39,b(t,2,8) (1-x(t/x(8))).
LEMMA 4.2. (i) The foliowing estimate&ahbld for

every (t,z,E) in [-1,1] x Rzn;

g%;lb(taé) < B(t,2,8) < (L+Mg)Hpa (£,8),

_ie -



%;*q(t’g) S»&(t,w.ﬁ) s Mblq(t’€))

I7(t,z,8)1 < géﬁ; :

(ii) A, P € BS(Ap) and Xqr 9 € BS(Aq);

o

(iii) x,, B e Bs3®(1) and Aqr 4» 7 € BS(1).

DEFINITION. We. put

gpa(ts k) = Mg[t‘zg(t)<a>f“(1—x(zt/t(5)))
-1 V2 -2 .
+ (k)T {1+e(e(£))%e () 2 Ix(e/2e(8)) + n(E)],

g; = Hgn (0)<e>Ta (t,8)  for 4 = 0,1,--,m,

J
where M is a large positive constant such thét the

following holdi‘
1(8,p-2Fay, ) (2,2,8) | < 3(bgy,)(t,2,8),.
|(8t3+2%)(t,2,§)| < %(&gzm)(tamyg)i

zl(et;)(tvx’g)|+|(B‘aazm)(t)xsg)l < g%ﬁ;QZR(t.w,E)s

l(;aj)(t)z’g)l < g%ﬁg(lpgj)(t’z’ﬁ) (4 = 0,14---,m),
o 1 i = .o
|(qu)(t,wag)l < Eiﬁ;gj(tam’ﬁ) (J,— 0,13  'R )

Then we define a function g by

g(t,g) = 2j=0,1,--~,m,2m9j(t’€)f

We can prove that the function g(t,E&) 1is integrable

with respect to t on (-1,1) and
t .
f 19(8,E)d8 € BS(1).

Then we define a function G(t,E) by

- 17 -
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t n
G(t,g) = exp(-f 1g(s,ﬁ)ds) on [-1,1] x R™.

LEMMA 4.3. JThe function G belongs to BS(1l) and

satisfies
inf G(t,&) > 0.
1
DEFINITION. For a real number «k, put

(ﬁc)(t;$,€)<g>2K’

;K(t’$’€)

;K(t’mig) (&G)(t13)€)<€>?x’

;K(ta$95) (;G)(t’$’§)<€>znx

for (t,z,E) € [-1,11N\{0} x Rg X RZ. Then from the above
Lemmas 4.1 ~ 4.3 together with Lemmas 1.1 and 1.2, we have

positive constants LK and L; for each «k such that

the following inequalities hold,

qu

1 .
zﬁ;((lpc)(t,Dm)<Dx> Ly u)

< (p::(t,x,Dz)u, u) + LK“uﬂg
< L ((A.G)(£,D_)<D >%%u, u)
K p U T ’ ’
L_((x 6)(¢,D0_)<D_>%%v, v)
Zﬂb q e z i
< (@¥(t,2,0 )0, v) + L vl

, : 2k
< LK((AqC)(t,D$)<Dm> v, V),

- 18 -



(¥ (¢,2,D )u, v)
< FEHUU(10) (£2D)us 4] + ((346) (2D, )v, )}

1 2 2
+ ELK(“UHK + "v“K—Zm)’

for every u, v € ¢.

Put

~ | K
PK(tafL’;ﬁ) + LK<E> ’

pK(t,w,ﬁ)

q.(t,z,&) = q (t,z,8) + LK<g>K'2“,

T‘K(tymsg)'

rK‘(t’w’g)
Then from the above estimates, it follows that
(4.6)  L{(x(£,D.)<D_>2%u, u) + (r.(t,D.)<D. >2%v, )}
* H' '\ p' Y'Y x ’ q' 'z T ’
< 3002 (t,2,0)u, u) + (a¥(t,2,D)v, v)}
< (pg(t,z,D )u, u) + (qp(t,z,D,)v, v)

+ ZRe(r:':(t,a:,Dx)u, v)!

< 2{(pY(t,z,D )u, u) + (q (t,z,D )v, v)}

2

K 2k
< H{(Xp(t,Dw)<D$> u, u) + (Aq(tsD$)<Dm> v, U)}1

for every k € R, ¢t € [-1,1] and (u,v)t € Xt,K’ where
M 1is a positive constant independent of t,vx ana Uy V.
From this and the fact that operators pz(t,x,Dw) and
q:(t,m,Dm) are symmetric in L2, we can define a Hilbert
space xt,x c 27x 9 for k € R as the cloéure of 9 x ¢

with respect to the norm "'"X which associates with
t,K

the inner product (-,-)X‘ defined by
t,Kk

- 19 -
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Uy Ug - w . W , v
(( ]a (UZ) )Xt,l( = (px(t"’:’Dw)ulr’uz) + (qK(t’m’Dw)vl’vz)

+ (r:(t’w’om)ul’vz) +«(vlafz(t§z’Dz)u2)’

for every. Uqs Ugy VUyy Vg € 9.

REMARK 4.2, From (4.6) and the definition of lp

and Aq, we have the following equivalences as Banach
spaces,
Xt,K ~ gR/2+k | gm/2+K for ¢t € [-1;11N{0},
Xo,, ~ B2 (g(0)7V2) x g2 (g ()12,

REMARK 4.3, By (4.6) and (iii) of Lemma 4.3, we have

H3m/2+n K o H_Sm/2+K,

K
x H ¢ Xt,x c H
and there are positive constants C_1 and C2 such that

| 2
2 2 : i (u 2 ‘ 2
nunZ + wwndy, o, < Cl"(v)"Xt’K < CohulSy, gy + 11,

for every x € R, t € [-1,1] and (u,v)t € Xt K
VK-

DEFINITION. For evéry k € R, we put

ZK = B* x H—3m/2+k.

We can‘now prove the theorem. For the Banach spaces

in Theorem A, we take

xt-= Xt,x’ ‘Yt = xt,m+x for -1 <x ¢t <1,
X = “f - yim/2)+x x'H-fm/2)+K,
v = nT+K = gl3m/2)+k  glm/2)+ 5 z,.

- 20 -



We note that by Remark 4.3 and definition, we have
Yt c Xt c Z with
MU“Z < 01HUth’s czuuuyt,
for every ¢t € [-1,1] and U € Yt' By Remark 4.2, we
have the following equivalences as Banach spaces.

Y, ~ "g+n for every t € [-1,1],

Xt ~ X and Yt ~Y for every ¢ € [-1,1]1N\{0}.
Take A(t)' and F(t) as
 Ceieny D - ()
A(t) (a(t,a:,Dw) 5] and  F(2) = (,¥4)
We can prove that the assumptions of Theorem A are
satisfied, by using lemmas 1.1 and 1.2 with x{(t,&) being

the function of ¢, Ap(t,ﬁ) and Aq(t,i). Then the

theorem gives the solution U(t) = (éuzfi)) of (ACP) with
t

bounded Yt—norm, and u(t) becomes a solution of (CP). The
condition "bounded Yt—norm" is stronger than the

regularity condition of the solutions in the theorem. - But
the uniqueness part of the theorem is easily proved in the

same way as in the proof of Proposition 3.3 of [lﬁ]. Thus

the theorem is proved.
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