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O. Introduction
In the paper [11, webestablished a local existence result and a
comparison result for the following two-phase Stefan problem in one-
dimensional space: Find a function % = u(t,z) on Q(I) = (0,T) x (0,1),
0O <T <o, and a curve = = L(t), O < 1 < {, on [0O,T] such that
Fo(ti) i Q (D),

(0.1) p(u)t - a(uz)m + hi(t,z) = -

Q:(T) = {(t,@); 0O<t<T, 0<z<1L(t)}

: Q_(T) = {(t,x):s O <t <T, L(t) <z < 1},
(0.2) h(t,2) € gtz u(t, @) for a.e. (t,z) € Q(T),
Cult, L(t)) =0 for any t € [0, T],

(0.3) L (8) = - alu (t, L()=)) + alu (t, L(£)+)) for a.e. t € [O,T],

L 1o =1,

[ alu (t,0%) € abg(u(t.O)) for a.e. t € (0,T],
(0.4) )

| - acu(t,1-)) € abf(u(t.z>) for a.e. t € {0,T],
(0.5) u(0,z) = uo(m) for any = € [0, 1],

where p: R » R and a: R » R are continuous increasing functions; g(t,z, *)
is a given set-valued mapping in R for a.e. (t,x) € Q(T): ft(i =0, 1) is
a function on Q(7T); Lo is a number with O < LO < 1 and uo is a function on

t

[0,11; bi(t =0, 1) is a proper l.s.c. convex function on R for each t €

[0, T] and abg denotes its subdifferential in R.

1t should be noticed that (0.4) represents various linear or
nonlinéar boundary conditions, such as Dirichlet, Neumann and Signofinf
type of boundary conditions (cf. [11.

In order to investigate the behavior of the free boundary = = L(t), we’v

*
denote by [O,T ) the maximal interval of existence of solution to the

/ .
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Stefan problem (0.1) ~ (0.5). In Kenmochi (2] or Knabner [3], it was proved
for the Stefan problem with g(i{,x,r) = O that one and only one of the
following cases always happens:

A T = o
(B) T" <=, and L(t) » O as t 1 T
() T <@, and 1(t) » 7 as t *+ T".

But, in our problem, the following case (D) might occur:
*
D T" <o O< infl{i(t); 0<t<T'}<sup{i(t); 0<t<T"} <1 and
timsup luct)| = @,
£ 1 T* L (0, 1)
because the class of functions g({,z, r) includes any locally Lipschitz
continuous function on R and in general equation (0.1) has a solution
which blows up at finite time. Therefore it is quite natural to estimate
the function % by means of the solution v to the following initial-boundary
value problem (IBP)O (resp. (IBP)i) which is formulated by
, _ . _ )
p(v)t a(vm)m h fo (resp. fI) in Q(7),
h(t,xz) € g(t,xz,v(t,x)) . for a.e. (t,x) € Q(T),
a(v (t,04)) € 8bL(v(t,00)  for a.e. t € [0,T),

(resp. v(t,00 =0 for 0 <t < T)

v(t, 1) =0 for 0 <t <T,
(resp. - a(v (t,1-)) € 8bL(v(t, 1)) for a.e. t € T)
v(0,z) = ul(zx) (resp. - u_(z)) for 0 <z < 1.

As is well known, for i = O, 1 the solution of (IBP)i in general blows up
at some finite time. For i =0, 1, let [O.Tgt)) be the maximal interval of

(o) (1)
I SES
main result is stated as follows: One and only one of the following cases

existence of solution to (IBP)i, and put To = min {T . Then our
(a), (b)), (c) always happens:
> T
(a) o'
(b) T" < T, and 1(t) » 0 as t 1 T";

() T < T, and L(t) > 1 as t 1 T*.

1. Statement of results

In general, for a Banach space V, we denote by {1, the norm in V.

v
Throughout this paper, for the sake of simplicity of notations we put
H = LZ(O,I) and X = wj’p(O,I) (c C([0,1])), 2 £ p < =,

Furthermore, for two proper l.s.c. convex functions,b1(°)‘and bz({):on R

2

we mean by Wbi s* bz on R" that
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(ry — rp)(ry — ry)*t 2 0 for any r; € D(db;), 1T} € abi(ri)ﬁ

i
{’ = 1' 29
and for two set-valued functions gl(') and gz(~) on R we mean by

(1.1 [

L. . »*
"91 <" g," that for each # > O there is a positive constant C” such that

+ * +
(r; = ry) ey = vt + Cpl(r) - 1y 12 > 0 for any r, with

(1.2) [ 1 2
lrii < M, r; € gi(ri). i=1, 2.
J - v et t, . .
We denote by SP = SP(p; a: bo. bj. g fo’ fj. U, lo) on [0, T],

0 <T <o, the problem (0.1) ~ (0.5), and say that {u, l} is a solution of
SP on [0, T], if ’
' { u € wj'Z(O.T;H) n LY, T:X) (c C([0,T] x [0,1])),

tew'200,1), 0<1 <1 on [0OT],

and (0.1) ~ (0.5) are satisfied. Also, we say that for O < T’ < =, {u, L}
is a solution of SP on [O,T’), if it is a solution of SP on [O,T] for any
T with O < T < T’ in the above sence.

We begin with the precise assumptions (al) ~ (a6) on p, a, g,
fi (i =0, 1), bi(i =0, -1, uo and Lo under which Stefan problem
(0.1) ~ (0.5) is discussed. i

(al) p: R - R is a bi~-Lipschitz continuous and increasing function

with p(0) = 0; denote by C, a Lipschitz constant of ¢ and o1,

(a2) a: R » R is a continuous function such that
aolrlp <air)r < ajlrlp for any r € R,

a,(r - r)P 1 s acr) - a(r’) tor any r, r' € R with r > r*,
where a, and a, are positive constants.

(a3) We assume that for a.e. (t,z) € R, x (0,1) the mapping r =
g(t,z,r) is a set-valued mapping in R such that g(t,z,r) is a
non-empty closed interval in R for any r € R, O € g(t,z,0) and
g(t,z,r) is u.s.c. with respect to r € R, Mofeover suppose that
for each M > O, g has the following properties (i) ~ (iii):

(1) r» g(t,z, 1) + Cyr is monotone in r with Irl < M for a positive
constant CM depending only on M, that is,
(ry + Cyry — 15 - Cyry) (r, - ry) 2 Q if Iril < M and r; €gltz,r),
i=1, 2.

(i) Irl < g, y(t»x) for v’ € g(t,z,v), T with Ir|l < M and a.e.
(t,xz) € R+ x‘(O,I), where go’” is a non-negative function in

L2

Loc([O,m);H);

3
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(i11) for any A with O < 2 < 1/Cy and r with |r| < H,

[1 + ag(toz )] Ir is measurable in (&, z) € (0,=) x (0, 1),

- 2 : . ,b .
(a4)» ,fo’ fI € LLOO([O' ) sH) n Lloc([o'm)’L (O,])){

f,20, f, <0 a.e. on (0,®) x (0,1,

(ab) For i = O, ! and each t € [0, =) bibis a proper l.s.c. convex
function on R which,satisfies the following condition (*) for

given functions o, € wloc([o' ®)), o, € w ([O ®) )

(%) For any O < 8 <t < w®and r € D(bi) = {r € R; bi(r)'< o}

2) such that

there exists r” € D(b
lr" - r| < Ia-(t) - o ()| (1 + |rl + lbs(r)ljlp)

b (r') - b (1) < la,(t) - a, (s)|(z + Irlp + lb (rm ).
Furthermore, we suppose that

ebt(r) € (==,0] for any 7 < 0 and t € [0.=),
and ’ )
abﬁ(r) c [0,=) for any r > O and t € [0, ).

o -
(a6) 0 < LO < 7, uo € X, uo(i) € D(bi)’ i =0, 1, and

=‘0 stuo‘év [O.;&], u, <0 on !Lq;lff,

REMARK 1,1. (ef. [(1]) Under the assumptions (al) ~ (ab), there is a
positive constant T° such that (IBP)O (reSp.:(IBP)I) has a unique solution
1,2 '

von [O,T"] and v € W (O, T":H) n LY(0, T ;X) ¢ C([0,T"] XFIO.I]).

THEOREM t.1. Under the assumptions (al) ~ (ab6), denote by [O,T*).
0<T1" < o, the marimal interval of existence of solution {u, L} to SP.
Then, one and only one of the following cases (a), (b), (e) aluays happens:

* .

(a) T ; To’ o |

(b) T < T and 1(t) 0 as t tT;
(e) T < T, and L(t) » 1 as t t T,

" ‘where T = min {T(O), T(I)} and for i = 0, 1, [O.T(t)) i8 the maztmal

interval of emtstence of soLutton to (IBP)

2. Known results ,
We begin with a local existence result for SP.
THEOREM 2.1, (ef. (1]) Suppose that (al) ~ (ab) hold. Moreover, for

A
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T > 0, we assume that
1f | v

° 2oty 1L

Hugl o, < M-I,
L (0, 1)

nlal lal < K
2 o wI,Z ! wI.I

(0, T: H) !

©, 1) 0, T)

| <K, and 6§ <1l <171 - 6§,
W2, 2 o~ "o 0
where Kj, K2.~M and 80 are positive constantis. Then there exists a
positive number T1 with TI < T depending only on KI' KZ' M and 60 such that
SP has a unique solution {u, l} on [O,TI] and & /2 < L(t) < 1 - 8,/2

on [O.le.

Next we recall a comparison result for solutions to SP.
THEOREM 2.2. (ef. [4]) Let p and a be functions satisfying (al) and

(a2), respectively, and consider the Stefan problem SP = SP(p; a; bg. k?:
gi £, f,i u, 1,) and SP = SP(o; a; bL, Bi: g: 7, F,i u, 1), where the
set of data {bo, b?. g £ fpou, 1,1 as well as -
{Bg. b?.yﬁ. £y ?1. u, 1,} satisfies (a3) ~ (a6). Further suppose that
bt < B! on R for ¢ = 0, 1 and each t 2 0,
gtz ) <™ Gtz ) for a.e. (t.z) € (Oe) x (0, 1),

"~ and v
fo < fo' f1 < fj a.e. on (O,»=) x (0,1).

Let {u, L} and {u, U} be solutions of SP and SP on [0, T"], O < T’ < = ,
respectively. Then, we have for any 098 < t<T

[[pcuct)) - pact)) ]| / +(uet) - et
Lo, 1) | .
2.1 < {lipcucs)) - p(ﬁ(s))]+| / + [l(g) - i(s)]+} X
Lo, 1)
Cexplcc (t - s + fElis ol s 00 Jdt},
P L%¢0, 1) L7c0, 1)

where M is any constant with lul < ¥ amd |ul < M on [0, T"] x [0,1] and C =
nazx {C;. Cyr EM} with constant C; in condition (1.2) and constants C,, EM

in condition (a3)-(i) corresponding to the data of SP, SP, respectively.

3. Some lemmas
In this section we study the properties of solutions to the initial-
boundary value problem CPO(L. b ;g f P, ) formulated below:

p(u)t - a(um)m + h = fo in Q (T,
h(t,x) € g(t,z,u(t,x)) for a.e. (t.z2) € Q (T),

atu (t,04) e ebg(u(t.O))  for a.e. t € [0, T],
c
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u(t,x) =0 for (t,z) € QZ(T).

u{0, ). = uo(z) for O <z < 1, »
where £ = L(t) is a given curve in C([0,T]) such that O < L(t) < / and u
is a given datum in X.

[¢]

. LEMMA 3.1. Assume (al) ~ (ab5) hold, and u, € X, uo(O) € D(bg) and
uo(z) 20 o0on [0,L(0)], uo(O) =0 on [1L€0),11].

g £y uy wn w20, T o L0 TN,

Let u be a solution of CPO(L: bo

Then
u =20 on Q:(T).

LEMMA 3.2. Let p and a be functtons satisfying (al) and (a2),
respectively, and consider the initial-boundary value problems CPO =

Lot . =5 - 7.5t =0 F .o
CPO(L. bo‘ g; fo’ uo) and CPO = CPO(L. bo. g; fo' uo). where the set of
t = st = 3 = ,
data {1, bo’ g, fo, uo} as well as {1, bo' g, fo' uo} satisfies the same

assumptions as in Lemma 3.1. Further suppose that for O < T < =,
t1<1 on (0T],
»*

bg < Eg on R for any t € (0,T],

g(t,z,-) <" g(t,z, ) for a.e. (t,@ € (0,T) x (0,1),
and

u, < U, on [0, 1].

Let u and ¥ be solutions of CP, and CP, on [0,T] in wi* 200, T:0) n

L”¢0,T:X), respectively. Then,
u<uon [0,T] x [0,1].

The above lemmas can be proved in a way similar to that of Kenmochi
[3; Lemmas 3.3 and 3.41, so we omit their proofs.

In proving Theorem 1.1, we need another initial-boundary value
problem CPI(l: b;: g; fj; uo) formulated below:
- + = -
p(u)t a(uz)x h f, in QL(T),

h(t,z) € g(t,z,u(t,z)) for a.e. (t,x) € o;(r>,

ult,z) =0 for (t.2) € Q) (I),
~ a(u (t,1-)) € 8bt(u(t, 1)) for a.e. t € [0,T],
u(0,x) = uo(m) for O sz < 1, 7
where = = 1(t) is a given curve in C([0O,TJ) such that O < L(t) < I and u

is a given initial datum in X.

LEMMA 3.1'. Assume (al) ~ (a5) hold, and u, € X, u (1) € D(b?) and

6
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Uy < 0 on [1(0), 1], ug = O on [0,1(0)].
Let u be a solution of CP,(L; bl: i £y uy in w20, T:m) 0 L7 T;%).
Then

u<0onQ(D.

Concerning problem CP,, the comparison result similar to Lemma 3.2
holds, too.

4. Energy inequaljties
LEMMA 4.1. Under the same assumptions as in Theorem 1.1, if {u, l} is
a golution to SP on [(0,T] and for a positive constant &
8§ < 1(t) <1 -8 on [0,T],
then it holds that for any 0 < g < £ < T
rE 1Pt g

t 2 2 2
(4.1) < C,llu |P_ : Jiclow (o lg + theo)ly + |F (o) ly +
8 1 s, t:LP0, 1)) 3 v A H o A
2 _ 3p-2
lf o lpde + (¢ - 9 lul 1

. L%¢s, t:LPc0, 1))
where I/p + 1/p” = 1 and C5 i8 a pogitive constant depending only on &,
p and a,.
Proof. First, we recall the following inequality in Sobolev spaces:
For any positive number §,

_ p’/(p’+2) 2/(p"+2)
(4.2) vl < Cs, p)(lvl ., lv 1, + vl .
L%¢0, &) LP? (0, s) L4¢0, 8) L? (o, &)

where //p + 1/p° = 1 and C(§, p) is a positive constant depending only on

8 and p. We note here that C(8, p) is chosen so as to be bounded in R, as
long as & varies in any compact subset of (0,») for p = 2 (cf. O. A.
Ladyzenskaja, V. A. Solonnikov, N. N. Ural'ceva [5; Chap. 2, Theorem 2.21).
By virtue of (0.3) and (4.2), it is easy to check that (4.1) holds. q.e.d.

),

Proposition 4.1. Under the same assumptions as in Lemma 4.1, for the
golution {u, 1} to SP on [0,T], it holds that for any 0 < 8 < t < T,

1 t t 1 t 2
fo A(uz(t.z))dm + bo(u(t.O)) + bl(u(t.I)) + ZCp fslp(u)t(t)ly dt

< fé Alu_(s,2))dz + bﬁ(u(s.O)) + b?(u(s.z)) + fg lo; (T) |F (T, u(t))de
+ fg laf (o) | (lacu (x, 04| + Ia(uz(t,1—))|)F(t.u(t))1/pdt
3.t 2 2 2
+Cofg (TR + g0y + 1f,(0) ]y dde
where A(r) = f: a(g)ds,

_ t p t 4 p
F(t,z) = B (b (z(0)) + lez(O)l * By) * B (b (z(1)) + lez(l)l + B

with some positive constantis BI' BZ and B3 determined only by T,

7
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, (o) -
la” | { and b, i =0, 1.

, el
°' 110, 1) 11100, 1)

LEMMA 4.2. Suppose that (al) ~ (ab) hold, and let {u, 1} be a
solution of SP on [0,T]. Then for a sufficiently small § with § > O and
any 0 £ g £ t <T,

E () + 55— 8 ew (v z) | Ydzde + EE‘fsf _s low (v, ) | %dzde
_ 1/p
< E () + fslao(t)|(|a(um(t.0+))| + Ia(uz(t.I ))|)Fo(t) dt
+ ft|a'(t)|F (dt + filacu (v, 8))u(t, 8) - alu(x, 1-8))ult, 1-8) Jdt

+ c3f f5(|f (v, 212 + |h(x x)!z)dzdt + c3ftf5(|f (v o) 1% + |het 2 12 dzde

p's’o p’8’ o
Y. t
where E (t) = fo Au (t,z))dz + fl_aA(uz(t.m))dz + bo(u(t.O)) + b (u(t, 1)),
- t - p t P,
Fo(t) = Bl(bo(u(t,O)) + Bz|u(t.0))|\ + 83) + Bj(b](u(t.I)) + leu(t.l)l +
+ By, :

For precise definitions of Bj. BZ’ B3 and 6, and the proof of

Lemma 4.2, see Kenmochi [2; Section 41].

LEMMA 4.3. Under the same assumptioné as in Proposition 4.1, for any
0<s8s<tx<T and for any sufficiently small & > O we have:

S8 A ct.o)dz + 5 ftf Slocw | 2dadr

(4.3) < Ig-a ACu (s, z))dz + fga(u$(t,1—6))ut(t.I-t)dt
- fta(u (v.8))u_(t, 8)dt + c3ftf"5lh(r.z)|2dmdr
+ c3ftfb("|f (v, z) | 2dzdt + Cgfth(t)lf (v, 2) | dzdz.

Proof. We choose some positive number nofev(O.T] and put

N , u(t, ) for O < t <T and § <z <1 - 6§,
uct, z) = . .
' uo(x) for = u, £t <0Oand 8 <z <7 - 8§.

For any t € [0, T] and u € (O.uol.

1w o ldic o - dc-n o) dede

1}

1,ptpl()
(4.4) uf fa

atuy) (v, @) (i(t,z) - @(t-u 2))dzdr
+ lfth(t)fo(t.z)(ﬁ(t.z) - ﬁ(t—u.x))dwdt
+"fth( yadu) ir.i)(ﬁ(t.m) - ﬁ(rfu.z))dzdt
* ftfl(t)f (t,z) ((t,2) - d(t—p. z))dzde

- lf f’*5 hit, z) (i(t.z) - d(t-n 2))dzde.

Now we estimate the first and third terms of the right hand side of (4.4)

‘ .

in the following manner:



Lrtplo8 acuy o, (e, 2) - @(c- 2))dzdz
+ ﬁfzfg(t)a(uz)m(t.z)(ﬁ(t.x) - d(t-p, z))dzde
= = Lpt =8, 0 y(x, ®) Ci(t, 2) - G (t-u, 2))dzd
no'd Sz ! nE r M, mtf-
+ ﬁfga(uz(t.t(t)~))(ﬁ(t.L(t)) - G(t-u, L0T)))dt
21t i - fi(e- | |
Lrtacuy e 80) e, &) - @ice-w 8))de
+ Letocu (v, 1-8)) e, 1-8) - di(t-un 1-8))d<
nTo T
- ﬁfga(um(t.L(t)+))(ﬁ(t.t(t)) - d(t-u () ) )dz
< Lptpl=8 cacii (z-n, 2)) - Alu_(t. z)))dzdc
wo’'d T s x
1,t,. oo
+ ufol (v)u(t—un, L(T))d
+ ﬁfﬁa(ux(t.l—a))(ﬁ(t.l—é) - d(t-n 1-8))dt

- ﬁfga(uz(r,a))?ﬁ(t.a> - d(t-u 8))dx.
Next, we show that the following inequality holds:
(4.5)  Lliminf - ﬁfﬁa'(r)a(r—u.t(r)>dr > 0.

pn i 0
In fact, by (0.3) and Lemma 3.1 for a.e. Tt € (0, T],
(4.6) timinf ~1" (D d(t—m L(T)) =2 0.

ad 0 ‘

On the other hand,
ﬁll’(t)ﬁ(t*u.L(r))I

= ﬁll’(t)(ﬁ(t‘u.i(t—u)) - At-p 1)) |
(. < /TP o Icteew - teo) Hadg (o) (12P7D

L, 1’
wvhere
L) for t € [0, T],
tet) =
LO for t € [“IJ.O.O),
From Lemma 4.1 we deduce that L’ € LP +2(O.T) and ;
(4.8) i(t(-) - L(e=p)) > L7(C) in LP +2(O.t) as p 1 0.

The inequality (4.2) shows that
lacu () |17P71) ¢ [ (PTF2I/07 o 1)

L™(0, 1)
Accordingly, .
Fhrconicieew - o) Nade-w) |17 P D ge
(o] u T © ;
0, 1)
> rH o PPlacug o) 1 17P7 D ge as u ¢ 0.
z %0, 1)

Combining this with (4.6), (4.7) and Fatou's Lemma, we conclude that (4.5)
holds. Letting # ¢ O in (4.4), we see that for a.e. t € [0, T]

9
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1 _ptrp1-8 242d 1-8
Cpfof6 locw 1“dzde + [3 %Acu_(t, z))dz

1-8 ' ¢ o g
< I3 %A, @)dz + flacu (x, 1-8))u (v, 1-8)dT - [la(u (%, 8))u (<, 8)dx
- fgfg_ah(t,z)ut(t.z)dzdt + féfg(t)fo(t,z)ut(t.x)dzdt

- et 18
* ey F (T DU (T, 2) dadr.
Hence, for any .t € [0,T],
L ptpl-8 2 1-8
26 ols " lerw (| odade + [7PA@ (8 2))da

< fg‘aA(uo'z(z))dz + fga(um(t’I—é))ut(t.I—B)dt - fga(uz(t-é))ut(tré)df

CHS Ay Bt Iptpl(T) 2 3t ,p1-8 2
+ Cpfofa h(t, z)dzdt + Cpfofs Ifo(t.x)l dxdt + Cofofl(t)lfj(t,x)I dzdr.
Thus we have Lemma 4.3 with 8 = O and any t € [O,T]/. By repeating the same
argument as above in the case of initial time 8 € (0,T), we get Lemma 4.3.

q.e.d.

By Lemmas 4.2 and 4.3, clearly Proposition 4.1 is obtained.

5. Proof of Theorem 1.1
»#
Suppose T < To and either (b) or (c) does not holds. Then, there

would exists a -sequence {tn} with tn t+ 7% (as n » ») and a positive number
80 such that
60 < L(tn) < 1 - 60 for any n.
} »*
For i = O, 1, let v(t) be the solution of (IBP)i on [0,T ]. By the
definition of TO, there is a positive constant M such that for { = O, 7,

J *
™1 <# -1 on 0T x (0 1].
Further it follows from Lemmas 3.1 and 3.2 that

O<ux< v(O) on Q;(T*),
2 cuc<o on Q (1),
Hence ’
(5.1) lul < M - 1 on [0,T") x [0.1].
(i) (i) (i) _ o, o (1) (i) .
Now, let {Vn , Ln } be the solution of SPn = SP(p; a; bo , bI PGy
(i) (i), (i) (i) _ _ -
fo,n' fI,n’ Vo , Lo ) for ¢t =0, 1 and n = 1, 2, , where
0 for r = M (resp. r = 0),
b;O)(r) (resp. b§°)(r)) = {
© othervwise,
0] for r = M (resp. r = - M),
bg])(r) (resp. b;j)(r)) =.[ :
© otherwise,
gn(t.x.r) =g(t + tn,x.r) for (t,zx) € R+ X (0,1) and r € R,

/C
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Ot = £t + tm for (t,z) € R, x (0,1),
f(O)(t.m) =0  for (t,z) € R, x (0, 1),
f(”(t -0  for (t,m) € R, x (0, 1),
f(f;(t,x = F(t+ b, for (t,z) € R, x (0,1),
M - forO<z<1 -3,
V;°)(z) = ' ' 0
| - %;{m - (1 -8}t H  for1-s <z<1,
[ - ﬂ—(z -8) - M for 0 < x < §_,
v (D %0 0 - 0
(x) = : .
- M for 8, <z <1,
Lgo’ =1-5, anda LT =5 .
By Theorem 2.1, there ex1sts T, such that for { = 0, f andn =1, 2, -,

(t) (t)} on [0, T 1 and

8,/2 < L) < Lty <1 -8,/2 for t e (0T,] andn=1,2, .
In this case, on account of (5.1), it follows from the usual:- comparison
result for Stefan problems with Dirichlet boundary conditions that

(1) (0) _ # *

L (t - tn) < L) < Ln (t tn) for any t € [tn.I_) with T }n < Tj
and n =1, 2, **°.

SP;t) has a unique solution {V

Hence
(5.2) O < inf {L(t); 0<t<T'} <sup {L(t); O <t < T*} < 1.
From (5.2), Lemma 3. 1 and Propos:tion 4.1 we obtain that u(T ) € X,

u(r” 1) € D(bT ) (=0, 1, w(T* ) 20 on [0, L(T")] and 2T, ) < 0 on
[L(T ), 1], so that on account of Theorem 2.1, SP(p; a, b o' b;. g; f ) fj.
u(r” ), 1(T*)) has a solution on a certain interval (T, T 1, T” > T
Therefore SP has a solution on /O, 7). This contradicts the definition

of T". Thus the case (b) or (¢) holds true, provided T < TO. q.e.d.

6. Weak compatibility condition for the Stefan data

The purpose of this section is to establish existence and uniqueness
theorems for Stefah problems as well as the behavior for solutions under
weak compatibility conditions for the Stefan data.

In this section, we denote by,SP* = SP*(D: a; bg. b?; g fo' fj:
U, LO) on [0,T], O < T < =, the Stefan problem with (0.3) and (0.5)
replaced by the following (6.1) and (6.2), respectively:

uct, L(t)) =0 for t € (0, TJ],

(6.1) | 1708 = = a(u (t, L(t)-)) + alu (t, L()+)) for a.e. t € [0,T],

1(0) = LO;
(6.2) u0,z) = uo(w) for a.e. T € [0,11.
N
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We say that {u, L} is a solution of SP* on [O.T], if u € C([O,T]:H) n

1,2 ) P , © . ) i
Wloo (0TI n LPO.T:0) n L] ,0¢0: TR, by e, ). e LT, 1) n

LS o((0.TD), i =0, 1, L € CO,TD awWltZe0,11), 0 <1 <1 on (011,
and (0.1), (0.2), (6.1), (0.4) and (6.2) are satisfied. Also, we say that
for O < T" £ o, {u, 1} is a solution of SP* on (O, T"), if it is a solution
of SP" on {0, T] for every O < T < T” in the above sence.
" We suppose'that the weak compatibility conditions on the data b
Lo and uo consist of the following (ab5)' and (a6)':
(a5)' In addition to (ab), suppose that there exist proper l.s.c.
convex functions 50 and 31 such that
bg <" Bo on R and BI <" bg on R for t 2 O,
(a6)' 0 < Lo < 1, u, € L7¢0, 1) and there exists a sequence {uo.n} cX
having the following properties (i) ~ (iii):
(i) For i = O, ! and each n, uo.n(i) € D(bg), U
u < 0 on [LO,I]:

t
o’

t

bl'

0. n > 0 on [O.LO] and

on ,
(ii) there exist functions v£°) and véj) in X such that
(o) T (1) T (o) _ (1), _
v, (0) € D(bo). v, € D(b,), v, (1) = v, (0) = 0, and
(1) (o) .
v, LU, LY on [0, 1];
(iii) uo,n - uo in H.

REMARK 6.1. It is easily to see that inequality (2.1) holds true

under the weak compatibility conditions. so that the solution of SP* is
unique.

The next theorem is concerned with the existence of a solution to
»

SP .

THEOREM 6.1. We suppose that the assumptions (al) ~ (a4), (ab)’ and
(a6)” hold. Then, for some positive number T’, sP* has a solution on
{0, T’] such that
v e L7, T) x (0,1)),
t1/2

u, € L2017,

1/p

t' Py e LT, 17 :LP¢0, 1)),

and .
£2/(P°*2) . & P 200 10y,

where 1/p + 1/p” = 1.

In order to prove Theorem 6.1 we need one-phase Stefan problems. We

denote by SP;(o; a; bg: g fO; Uy Lo) on [O0,T] the problem of finding

U = u(t,z) on Q(T) and =z = L(t), O < L(t) < 1 on [O,T] such that

: +
(6.3) p(u)t - a(uz)w + h=f in QL(T)’

12
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(6.4) h(t,z) € g(t,z, u(t, z)) for h.e. (t,z) € Qy(T),
(6.5) uo, ) = u>(z) for a.e. £ € [0,1],
(6.6) au (t,04)) € abt(u(t 0)) for a.e. t € [0,T],
(6.7) u(t,z) = O for any t € (0, T] and L(t) <z < 1
L' (t) = - a(u (t, 1(t)-)) for a.e. t € [0,T],
(6.8) .
10) = 1.

A pair {u, L} is called a solution of SP; on [0, T], if u € C([O, T1:H) n

I 2 p " . 10 1,2
Loc((o TI;H) n L7¢0, T;X) n L ((O.T],X). L €Clo, T n WLOC((O,T]),
7

(+)

by

(u(-,0)) € L" (0, T) n LLoc((O'T]) and (6.3) ~ (6.8) hold.

PROPOSITION 6.1. Suppose that (al) ~ (a4) and (a5)’ hold. Let
0 < Lo < ] and u, € L(0, 1) such that there exists a sequence {uo.n} c X
satisfying the following conditions (i) ~ ({ii):

(i) For each m, u, ,(0) € D(b )y u >0 on [0, L] and

on
Uy n = 0O on (1 .1].

(it) there exists a function vo € X such that vo(O) € D(Bo), vo(l) =0
and 0 < Uy p SV, ON {0,11;

(iii) uo n > u, in H.

Then for a certain positive number T SP has one and only one solution
{fu, L} on [0, T ] such that 1 is non- decreaszng on [0, T ] and
tz/(p'+2’t' e LP"*2c0,1)),
u € L”((o.ri) x (0,1)),

t’/zut € LZ(O.TI;H).
and

1/p

t u, € L7, 1,:LP¢0,1)).

1)

The next proposition is concerned with convergence of solution to SP:.
PROPOSITION 6.2. Let o, a, bl g f, u, and i, be as in
Proposition 6.1. Also, let O < Lo n < 1 and Uy n € H such that for each

'

n=1 2, -+ there exists a sequence {ugm;} c X satisfying the follouwing
conditions (i) ~ (iii):

(4) For each m, u™ (0) € DY), ul™ 20 on (0,1, ] and
(m) _ .
uo’n*OO'ﬂ [LO.TL'I]' _
(ii) there existgs a function v, € X such that vo(O) € D(bo).
v, (1) = 0 and O < u;mi <v, on [0,1] for each m;
(iii) u(m) - ué n in H as m = . '
Further suppose that
Lo,n - Lo and uo,n U, in H as n = o,

13



and that SP) = SP)(p; a; bt g; f; w,, 1) has a solution {u, 1) on an

“interval [0,T], O < T < =. Then, (SP1) = SP)(oi a; bli gi £i wy . 1))
has a solution {un. Ln} on the same interval [0,T]. Moreover,
u, > u in C([0,T1;H) and LP(0,T:X),
and .
Ln - L in CC[O,T]).
The above Propositions 6.1 and 6.2 can be proved in a way similar to
that of Kenmochi [3; Propositions 6.1 and 6.21. '

*
Also, we consider another one-phase Stefan problem SPj =

SP;(O; a; b?: g fj: U, Lo) on [0, T] which is the problem of finding
U = ult,z) on Q(T) and £ = L(t), O <l < 1 on [O,T] such that

(6.9) p(u)t - a(um)x + h = f, in QL(T)’
(6.10) h(t,z) € g(t,z,u(t,z)) for a.e. (t,x) € Q, (T,
(6.11) u(0,z) = u,(z) for'a.e. z € [0,1],
(6.12) - a(u (t,1-)) € 8bLcuct, 1))  for a.e. t € [0,T],

(6.13) u(t,z) = 0 for any £t € (O,T] and O < T < Ll(%),

L'(t) = alu,(t,L(t)*))  for a.e. t € [0, T],
(6.14)
L) =1,

We say that {u, 1} is a solution of SP; on [O,T], if u€ C({O, T]1:H) n

1,2 : P : ® , (), . 1
Wi TIH) o LP0,T:%) o L], 0. T1:X), by’ (u-. 1)) € L1c0, 1) n

LS (0. TD, 1€ Clo,TH 0 Wlt2¢(0,T]) and (6.9) ~ (6.14) are satisfied.
Concerning problem SP?. the existence reslt similar to Proposition 6.

and the convergence result similar to Proposition 6.2 hold.

Proof of Theorem 6.1. Let {uo n} c X be a sequence which satisfies

properties in (a6)'. Put (SP*)n = SP*(pi a; bg. b?: g; fo’ fI; Uy LO).
and let {un' Ln} be the solution of (SP )n on [O.Tn), where [O.Tn) is the
maximal interval of existence of the solution. For i = 0, {, let v(i) be
the solution of (IBP)  with v(¥ 0,2 = véi)(m) on [0,T], where T is a
positive number. Then we can choose a positive number ¥ such that

!v(i)l < Mon [(O,T] x [0,1], for i = O, 1, in fact, » Y e w20, 1:1) n
L"¢0,T:X). By Lemmas 3.1 and 3.2,

(0) L (1) P2 ol = e
0 < u, < v on QL(Tn)’ v < u, < O on QL(Tn) for n = 1, 2, .

#
where Tn = min {Tn, T}. Now, choose a constant ¥ > O so that

(6.15) lu | < ¥4  on [o.T;) x [0,1] for m = 1, 2, ---.
Also, put ' '

_ +
z = Uo,

4
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and

VA :—-—- = -
I,n uo.n’ z; Uy»

and denote by {u;. L;}, i = 0, 1, the solution of one-phase Stefan problem

* ~ ~
SPi(o: a; bf: g, fi; Z; o Lo) on [0, T], for some T > O independent of n;
. ’ -

by Proposition 6.2, such a T certainly exists. Moreover, an extensive use

of Theorem 2.2 implies that

b o ot
(6.16) u, <u, <u, on [O.Tn) x [0,1], 1

1
n

~ * ~
where Tn = min {Tn. T}. It follows from Proposition 6.2 again that

o ~
< Ln < Ln on [O.Tn),

kst incaoTh, t=o0, 1,

ul - ut incoT:, i =0, 1,

where {ui. t*} is the solution of SP:(D; a:,bi: g; fi: z, l,) on [0, T],

i = 0, 1. We note here that there are positive constants 3, To such that
$ < L; <1 -8 on [O,TOJ for ¢t = O, 1 and large n,

and by (6.16)

$ < Ln(t) <7 -8 for t € [O.;n) N [O.To] and large n.

6.17)

Hence, just as in the proof of Theorem 1.1, we see that Tn > To for large
n, and by virtue of Proposition 4.1 and Lemma 4.1 {un} is bounded in

w”z(ro - & T i) 0 L™(T) - €T ;X), {L,] is bounded in w"p'+2(rov— eT,)

and {bg.)(un('.i))}, i =0, 1, is bounded in LQ(TO - S.To) for every
0 < g < TO. Using these facts together with (6.16) and (6.17), we can
extract a subsequence of {n}, denoted again by {n}, such that un - % in

. 1.2 . * ® -
C({O, T]:H), weakly in wloe((o'ro]’”) and weakly in LLoc((o’To])‘ Besides,

it is not difficult to see that limit {u, L} is the solution of

*
SP (p; a: bg. b?; fo’ fj: U Lo) on [O.TOJ having the required properties
in the statement of Theorem 6.1. q.e.d.

In the following theorem we give a result on the behaivior of the
solution to SP* with weak compatibility conditions for the Stefan data.

THEOREM 6.2. Under the same assumptions as in Theorem 6.1, one and
only one the cases (a), (b), (c) in the statement of Theorem 1.1 always
happens.

This Theorem is a direct consequence of Theorems 1.1 and 6.1.
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