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Abstract
We prove that the lexicographically first maximal connected sub-
graph problem for a graph property $\pi$ is $\Delta_{2}^{p}$-complete if $\pi$ is heredi-
tary, determined by the blocks, and nontrivial on connected graphs.

1. Introduction

The class $\Delta_{2}^{p}$ consists of problems solvable in polynomial time using oracles in NP. Recently
some $\Delta_{2}^{p}$-complete problems have been reported [6, 13, 14, 17]. $h[13]$ we have shown that
the lexicographically first maximal induced path problem is $\Delta_{2}^{p}$-complete. This paper
gives a very general theorem that derives a new series of $\Delta_{2}^{p}$-complete problems related to
lexicographically first maximaI subgraph problems.

For a given hereditary property $\pi$ on graphs, we consider the problem of finding the
lexicographically first maximal (abbreviated to lfm) subset $U$ of vertices of a graph $G=$

(V, $E$ ) such that $U$ induces a connected subgraph satisfying $\pi$ , where we assume that $V$ is
linearly ordered as $V=\{1, \ldots,n\}$ . Problems of this kincl have been extensively studied in
[1, 2, 5, 8, 9, 10, 11, 12, 13, 15, 16]. In particular, without the connectedness restriction, the
P-completeness of the lfm subgraph problem for any nontrivial polynomial time testable
hereditary property is proved in [11] as an analogue of the results in Lewis and Yannakakis
[7], Yannakakis [19], Yannakakis [20], Asano and Hirata [3], Watanabe et al. [18]. However,
since the connectedness is not necessarily inherited by subgraphs, a new analysis is required.

Some of the lfm connected subgraph problems for hereditary properties are polynomial
time solvable. For example, the lfm clique problem is obviously in P. We prove a general
theorem asserting that the lfm connected subgraph problem for a graph property $\pi$ is
$\triangle_{2}^{p}$-complete if $\pi$ is hereditary, determined by blocks, and nontrivial on connected graphs.
Hence the connectedness makes the problem drastically harder.

2. $\triangle_{2}^{p}$-Completeness Theorem

For any graph property $\pi$ , the lexicographically first maximal subgraph satisfying $\pi$ is
computed by the following greedy algorithm:
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21. $b$

begin
$Uarrow\emptyset$ ;
for $j=1$ to $n$ do

if $U\cup\{j\}$ can be extended to subgraph of $G$ satisfying $\pi$

then $Uarrow U\cup\{j\}$

end

It is clear from the algorithm that the lfm subgraph problem for $\pi$ is in $\Delta_{2}^{p}$ if $\pi$ is
polynomial time testable. We consider the following decision problem:

Definition 2.1.

LFMCSP $(\pi)$ (the lfm connected subgraph problem for $\pi$ )

Instance: A graph $G=(V, E)$ and a vertex $v\in V$ , where $V=\{1, \ldots, n\}$ .
Question: Let $U$ be the lfm subset of $V$ whose induced subgraph, denoted $\langle U\rangle$ , is a

connected subgraph satisfying $\pi$ . Then $v\in U$?

Papadimitriou [14] defined the deterministic satisfiability problem and showed that it
is $\Delta_{2}^{p}$-complete. We use this problem as a basis of reduction. The problem is described as
follows:

Definition 2.2. Let $x_{1},$ $\ldots$ , $x_{k-1}$ be $k-1$ variables and $Y_{1},$
$\ldots$

$Y_{k}$ be $k$ sets of vari-
ables. A boolean formula $F_{0}(x_{1}, \ldots, x_{k-1}, Y_{1}, \ldots, Y_{k})$ in conjunctive normal form is said to
be deterministic if $F_{0}$ consists of the following clauses:

1. Either $(y)$ or $(\overline{y})$ is a clause of $F_{0}$ for each $y$ in $Y_{1}\cup Y_{k}$ .

2. For each $i=1,$ $\ldots,$
$k-1$ and each $y$ in $Y_{i+1}$ , there are sets $C_{y}^{i}$ and $D_{y}^{i}$ of conjunctions

of literals from $Y_{i}\cup\{x_{i}\}$ with the following properties:

(a) Exactly one of the conjunctions in $C_{y}^{i}\cup D_{y}^{i}$ is true for any truth assignment (this
can be checked in polynomial time).

(b) $F$ contains clauses $(\alphaarrow y)$ and $(\betaarrow\overline{y})$ for each $\alpha\in C_{y}^{i}$ and each $\beta\in D_{y}^{i}$ .

Definition 2.3.

Deterministic Satisfiability (DSAT)
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Instance: A deterministic formula

$F_{0}(x_{1}, \ldots, x_{k-1}, Y_{1}, \ldots, Y_{k})$ and $k-1$ formulas in 3-conjunctive normal form $F_{1}(Y_{1}, Z_{1})$ ,
... , $F_{k-1}(Y_{k-1}, Z_{k-1})$ , where $\{x_{1}, \ldots, x_{k-1}\},$ $Y_{1},$

$\ldots,$
$Y_{k},$ $Z_{1},$

$\ldots,$
$Z_{k-1}$ are mutually disjoint

sets of variables.
Question: Decide whether there is a truth assignment $\hat{x}_{1},$

$\ldots,\hat{x}_{k-1},\hat{Y}_{1},$ $\ldots,\hat{Y}_{k}$ satisfying 1
and 2.

1. $F_{0}(\hat{x}_{1}, \ldots,\hat{x}_{k-1},\hat{Y}_{1}, \ldots,\hat{Y}_{k})=1$ .

2. $F_{1}(\hat{Y}:, Z_{i})$ is $satisfiable\Leftrightarrow\hat{x}_{i}=1$ for $i=1,$ $\ldots,$
$k-1$ .

Lemma 2.1 [14]. DSAT is $\triangle_{2}^{p}$ -complete.

Remark 2.1. For an instance $(F_{0}, \ldots, F_{k-1})$ of DSAT, we may assume that clauses in $F_{0}$

are of conjunctive normal form. For example, clause $(\alphaarrow y)$ can be written in the form
of disjunction of literals since $\alpha$ is a conjunction of literals.

Lemma 2.2. Let $F_{i}(Y_{i}, Z_{i})$ be a formula in 3-conjun$ctiven$ormal form. Then there $is$ a
formula $F’(Y_{i}, Z_{i}’)$ in 3-conjuncti $ve$ normal form satisfying the following $con$dition$s$ :

(i) Each clause in $F’(Y_{i}, Z_{i}’)con$ tain$s$ at most on$e$ literal from Y.

(ii) For an$y$ truth assignment $\hat{Y}_{i},$ $F(\hat{Y}_{i}, Z_{i})$ is satisfia$ble$ if an $d$ only if $F’(\hat{Y}_{i}, Z_{i}’)$ is
satisfia$ble$.

Proof. We just give an idea of construction. For a clause $(y_{1}+y_{2}+y_{3})$ with $y_{1},$ $y_{2},$ $y_{3}\in Y_{l}$ ,
we replace it by $(y_{1}+\overline{u})(y_{2}+\overline{v})(y_{3}+u+v)$ using new variables $u,$ $v$ which shall be put
into $Z_{i}’.\square$

A graph property $\pi$ is said to be hereditary on induced subgraphs if, whenever a graph
$G$ satisfies $\pi$ , all vertex-induced subgraphs of $G$ also satisfy $\pi$ . We say that $\pi$ is nontrivial
if $\pi$ is satisfied by infinitely many graphs and there is a graph violating $\pi$ . We say that $\pi$

is determined by the blocks [18] if for any graphs $G_{1}$ and $G_{2}$ satisfying $\pi$ the graph formed
by identifying a vertex of $G_{1}$ and a vertex of $G_{2}$ also satisfies $\pi$ .

A block is a connected graph with at least two vertices which contains no cutpoint. We
use the following result (see [4]).

Lemma 2.3. Let $G$ be a block with at le$ast$ three vertices an $d$ le$tv$ be a vertex of $G$ .
Then there is an edge $\{u, v\}$ such that the graph obtained by deleting vertices $u$ and $v$

together with adja$cente$dges is connected.
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(a) (b)

Fig. 1.

Our main result is the following theorem.

Theorem 2.4. Let $\pi$ be a here$di$ tary property satisfying the following condition$s$ :

(i) $\pi$ is determined by the blocks.

(ii) $\pi$ is nontrivial on connected graphs.

Then LFMCSP$(\pi)$ is $\Delta_{2}^{p}$ -complete.

Proof. Let $G_{\pi}$ be a connected graph with minimum number of vertices which violates $\pi$ .
Since $\pi$ is nontrivial on connected graphs and hereditary, the complete graph $K_{2}$ satisfies
$\pi$ . Therefore $G_{\pi}$ is a block with at least three vertices since $\pi$ is determined by the blocks.
We denote $G_{\pi}$ as Fig. l(a), where bold lines represent edges adjacent to vertices $u,$ $v,$ $w$ ,
respectively. We put labels $a,$ $b,$ $c$ to specify the correspondence with $u,$ $v,$ $w$ . By Lemma 2.3
we can assume that three vertices $u,$ $v,$ $w$ are chosen so that the graph remains connected
after deletion of $v,$ $w$ . Fig. l(b) shows a graph obtained by adding a new vertex $v’$ and
edges in the same way as $v$ . We use such abbreviation in the following construction.

Before getting into the reduction, we start with the following lemma which gives a
basic construction in the reduction.

Lemma 2.5. For a formula $F(x_{1}, \ldots, x_{n})=c_{1}c_{2}\cdots c_{m}$ in conjuncti$ve$ normal form with
variables $x_{1},$

$\ldots,$
$x_{n}$ , we can $con$stru $ct$ a graph $G_{F}$ with specified vertices $h_{1},$ $h_{0}$ and an order

on vertices such that $F$ is satisfiable (resp. not satisfia$ble$) if and on$ly$ if $h_{1}\in U$ (resp.
$h_{0}\in U)$, where $U$ is the $lfmsu$ bset of vertices of $G_{F}$ which induces a connected subgraph
satisfying $\pi$ .

Proof. For variable $x_{i}$ , we construct the variable graph $G[x_{i}]$ in Fig. 2(a) using $G_{\pi}$ , where
$s_{i}=|$ { $c_{j}|c_{j}$ contains $x_{i}$ } $|$ and $t_{:}=|$ { $c_{j}|c_{j}$ contains $\overline{x}_{i}$ } $|$ . When $s_{i}=0$ (resp. $t_{i}=0$), we do
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not put edge $\{f_{i}, d_{i+1}\}$ . We call vertices in gray circles which are copies of $G_{0}$ gray vertices.
Let $V(x_{i})$ (resp. $V(\overline{x}_{i})$ ) be the set of vertices $x_{i}^{k},$ $k=1,$

$\ldots,$
$t_{i}$ (resp. $\overline{x}^{k},$ $k=1,$

$\ldots,$
$s_{i}$ ). Let

$S$ be the set of black and gray vertices of $G[x_{i}]$ and let $\tilde{S}$ be any maximal set containing $S$

whose induced subgraph is connected and satisfies $\pi$ . Then it can be easily checked that
$\tilde{S}$ is either $S\cup V(x_{i})\cup\{x_{i}\}$ or $S\cup V(\overline{x}_{i})\cup\{\overline{x}_{i}\}$ .

For simplicity we deal with clauses with three literals but the argument below can
be extended to the general case by a slight modification. The clause graph $H[c_{j}]$ for
$c_{j}=(\alpha_{j}+\beta_{j}+\gamma_{j})$ is shown in Fig. 2(b). Let $V(c_{j})$ be the set of three vertices labeled
with literals $\alpha_{j},$

$\beta_{j},\gamma_{j}$ . These vertices shall be connected to vertices in variable graphs
corresponding to the literals. Again let $C$ be the set of black and gray vertices of $H[c_{j}]$ and
$\tilde{C}$ be any maximal set containing $C$ whose induced subgraph is connected and satisfies $\pi$ .
Then exactly one of $\alpha,$

$\beta,$
$\gamma$ can be put into $\tilde{C}$ .

We also use the graph $R$ in Fig. 2(c) called the root graph. We call vertex $d_{0}$ the root.

The graph $G_{F}$ is constructed as follows: We connect graphs $R,$ $G[x_{1}],$
$\ldots,$

$G[x_{n}]$ by
identifying $d_{i}$ for each $i=1,$ $\ldots,$ $n-1$ . We denote the resulting graph by $T_{F}$ and call it the
trunk graph. Consider clause $c_{j}=(\alpha_{j}+\beta_{j}+\gamma J)$ . Let the occurrence of literal $\alpha_{j}$ (resp. $\beta_{j}$ ,
$\gamma j)$ in $c_{j}$ be the $k_{1}$ -th (resp. $k_{2^{-}}th,$ $k_{3^{-}}th$ ) occurrence of $\alpha_{j}$ (resp. $\beta_{j},$

$\gamma j$ ) counted from $c_{1}$

to $c_{m}$ . Then we put edges $\{\alpha_{j^{1}}^{k}, \alpha_{j}\},$ $\{\beta_{j}^{k_{2}}, \beta_{j}\},$ $\{\gamma_{j^{k_{3}}},\gamma_{j}\}$ , where $\alpha_{j^{1}}^{k},$ $\beta_{j}^{k_{2}},$ $\gamma_{j^{3}}^{k}$ are vertices in
variable graphs and $\alpha_{j},$

$\beta_{j},$
$\gamma_{j}$ are vertices in $V(c_{j})$ . The clause graphs $H[c_{1}],$

$\ldots,$
$H[c_{m}]$ are

connected to $T_{F}$ in this way.

Finally we put edges $\{h_{0}, v\}$ for all black vertices $v$ except the root. Fig. 3 illustrates
the whole construction of graph $G_{F}$ focussed on $G[x_{p}]$ and $H[c_{j}]$ , where $c_{j}=(x_{p}+x_{q}+\overline{x}_{r})$ .

The vertices are ordered so that the following relations hold:

$B<h_{1}<h_{0}<x_{1}<\overline{x}_{1}<V(x_{1})<V(\overline{x}_{1})$

$<\cdots<x_{n}<\overline{x}_{n}<V(x_{n})<V(\overline{x}_{n})$

$<V(c_{1})<\cdots<V(c_{m})$ ,

where $B$ is the set of black and gray vertices.

Then it is clear from the definition of $G_{F}$ that $B\subset U$ since $h_{0}$ is connected to all black
vertices and $\pi$ is determined by the blocks. It should be noticed that either $h_{1}\in U$ or
$h_{0}\in U$ since $G_{\pi}$ violates $\pi$ . If $h_{1}\in U$ , then $h_{0}\not\in U$ , and therefore { $U\rangle$ can have no edge
with $h_{0}$ as an endpoint. For each variable $x_{i}$ , either $V(x_{i})U\{x_{i}\}\subset U$ or $V(\overline{x}_{i})\cup\{\overline{x}_{i}\}\subset U$ .
Since for each clause $c_{j},$

$U$ contains vertices in $H[c_{j}]$ , one of the vertices in $V(c_{j})$ must be
in $U$ and joined to a vertex in $U$ which belongs to a variable graph. It is now obvious that
$F$ is satisfied by the truth assignment defined by $\hat{x}_{i}=1$ (if $x_{i}\in U$), $\hat{x}_{i}=0$ (if $x_{i}\not\in U$).
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(b)

(a) (c)

Fig. 2.

Conversely, it can also be seen that $h_{1}\in U$ if $F$ is satisfiable. Hence $F$ is satisfiable (resp.
not satisfiable) if and only if $h_{1}\in U$ (resp. $h_{0}\in U$) $.\square$

Proof continued. We shall give a reduction from DSAT. Let $F_{0}(x_{1}, \ldots, x_{k-1}, Y_{1}, \ldots, Y_{k})$ be
a deterministic formula and let $F_{1}(Y_{1}, Z_{1}),$

$\ldots,$
$F_{k-1}(Y_{k-1}, Z_{k-1})$ be formulas in 3-conjunctive

normal form. We construct a graph $G(F_{0}, \ldots, F_{k-1})$ and an order on it as follows.

For each $i=1,$ $\ldots,$
$k-1$ , we first construct a graph G$F_{j}$ in the following way: We denote

by $\tilde{F}_{i}(Z_{i})$ be a formula obtained from $F_{i}(Y_{i}, Z_{i})$ by deleting all occurrences of literals from
$Y_{i}$ . Let $Y_{i}=\{y_{i1}, \ldots, y_{in}.\}$ . For each $y_{ip}$ in $Y_{i}$ we use the variable graph $G[y_{ip}]$ , where the
occurrences of literals $y_{ip}$ and $\overline{y}_{ip}$ are counted for $F_{0}$ and $F_{i}$ . We connect these variable
graphs $G[y_{i1}],$

$\ldots,$
$G[y_{in;}]$ and the trunk graph $T_{\overline{F}_{i}}$ consecutively as shown in Fig. 4. We

denote by $h_{0}^{i},$ $h_{1}^{i}$ the vertices corresponding to $h_{0},$ $h_{1}$ in the construction in Lemma 2.5,
respectively. We put an edge between $h_{0}^{i}$ and each black vertex in the trunk graph $T_{\overline{F}_{i}}$

except the root. By Lemma 2.2 we can assume that each clause in $F_{i}(Y_{i}, Z_{i})$ contains at
most one literal from $Y_{i}$ . Let $c_{j}^{i}$ be a clause in $F_{i}(Y_{i}, Z_{i})$ . If $c_{j}^{i}$ contains only literals from $Z_{i}$ ,
the clause graph $H[c;]$ is connected to the trunk graph $T_{\overline{F}_{j}(Z;)}$ and we put edges between
$h_{0}^{i}$ and black vertices in $H[c_{j}^{i}]$ in the same way as Lemma 2.5. If $c_{j}^{i}$ contains a literal from
$Y_{i}$ , let $c_{j}^{i}=(\alpha_{j}^{i}+\beta_{j}^{i}+\gamma_{j}^{i})$ , where $\alpha_{j}^{i}$ is a literal from $Y_{i}$ and $\beta_{j}^{i},$ $\gamma_{j}^{i}$ are literals from $Z_{i}$ . For
such clause, we use the graph $\tilde{H}[c_{j}^{i}]$ shown in Fig. 5 instead of $H[c_{j}^{i}]$ . Vertices $\beta_{j}^{i}$ and $\gamma_{j}^{i}$

are connected to the trunk graph in the same way and we put edges $\{h_{0}^{i}, \beta_{j}^{i}\},$ $\{h_{0}^{i},\gamma_{j}^{i}\}$ . For
literal $\alpha_{j}^{i}$ , let $\alpha_{j}^{i}=y_{ip}$ for simplicity. Then we connect $\tilde{H}[c_{j}^{i}]$ to some vertex in $V(y_{ip})$ of
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Fig. 3.

Fig. 4.
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22 $i$

Fig. 5.

the variable graph $G[y_{ip}]$ as shown in Fig. 5. We denote by $\hat{G}_{\overline{F}_{1}\cdot(Z;)}$ the part consisting of
the trunk graph and the clause graphs for $\tilde{F}_{i}(Z_{i})$ . Finally we add two vertices $x_{i}$ and $\overline{x}_{i}$

which are connected to $h_{1}^{i}$ and $h_{0}^{i}$ , respectively. This is the end of the construction of $\tilde{G}_{F_{j}}$ .

Let $B_{i}$ be the set of all black and gray vertices of $\tilde{G}_{F_{1}}$ . Let $\hat{Y}_{:}$ be a truth assignment
for variables in $Y_{i}$ . Then if $\hat{y}_{ip}=1$ , then let $\hat{V}(y_{ip})=V(y:_{P})$ else $\hat{V}(y_{1p})=V(\overline{y}_{ip})$ . Let
$B_{i}( \hat{Y}_{i})=B_{i}\cup\bigcup_{p^{1}=1}^{n}\hat{V}(y_{ip})$ . Assume that the order on white vertices on variable graphs for
$Z_{i}$ and clause graphs follows Lemma 2.5. In Fig. 5, it should be noticed that if $y_{i^{k}p}\in B_{i}(\hat{Y}_{i})$

then the black and gray vertices in $\tilde{H}[c_{j}^{i}]$ are connected to $G[y_{ip}]$ and none of $\beta_{j}^{i},$ $\gamma_{j}^{i}$ can be
selected. Then it can be seen that

Fact. $F(\hat{Y}:, Z_{i})$ is satisfiable if and only if the lfm set containing $B_{i}(\hat{Y}_{i})$ whose induced
subgraph is connected and satisfies $\pi$ contains $h_{1}^{i}$ .
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Fig. 6.

The graph $G(F_{0}, \ldots, F_{k-1})$ shown in Fig. 6 illustrates the whole graph for $(F_{0}, \ldots, F_{k-1})$ .
It is obtained by modifying the construction in Lemma 2.5. First we construct a trunk
graph using the root graph $R$ and the variable graphs $G[x_{1}],$

$\ldots,$
$G[x_{k-1}]$ . Then for each

$x_{i}$ , the part consisting of $d_{i},$ $x_{i},\overline{x}_{i}$ together with a copy of $G_{0}$ is replaced by $\tilde{G}_{F_{1}}$ . Then
the graphs for clauses in $F_{0}(x_{1}, \ldots, x_{k-1}, Y_{1}, \ldots, Y_{k})$ are connected to the trunk in the same
way as Lemma 2.5 using the variable graphs for $Y_{1},$

$\ldots,$
$Y_{k}$ and modified variable graphs

for $x_{1},$ $\ldots,$ $x_{k-1}$ . Finally we put edges connecting $h_{0}$ and all black vertices on the variable
graphs for $Y_{1},$

$\ldots,$
$Y_{k}$ and the clause graphs for $F_{0}$ .

Let $\tilde{B}$ be the set of all black and gray vertices of $G(F_{0}, \ldots, F_{k-1})$ . We denote by $W(Y_{i})$

(resp. $W(x_{i}),$ $W(F_{i}),$ $C(F_{0})$ ) the set of all white vertices in the variable graphs for $Y_{i}$ (resp.
the variable graph for $x_{i}$ , the graph $\hat{G}_{\overline{F}_{i}\langle Z;)}$ , the clause graphs for $F_{0}$ ). Then the vertices
of $G(F_{0}, \ldots, F_{k-1})$ are ordered as follows:
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$\tilde{B}<h_{1}<h_{0}<W(Y_{1})<W(Y_{k})$

$<W(x_{1})<W(F_{1})<\cdots<W(Y_{k-1})$

$<W(x_{k-1})<W(F_{k-1})<C(F_{0})$ ,

where the orders inside $W(Y_{i}),$ $W(x:),$ $W(F_{i})$ and $C(F_{0})$ follow Lemma 2.5.

We shall show that $(F_{0}, \ldots, F_{k-1})$ is in DSAT if and only if $h_{1}$ is in $\tilde{U}$ , where $\tilde{U}$ is the
lfm subset of vertices such that ( $\tilde{U}$ } is connected and satisfies $\pi$ . It can be seen from the
construction that $\tilde{B}\subset\tilde{U}$ .

If $h_{1}\in\tilde{U}$ , then $h_{0}\not\in\tilde{U}$ . Hence there is no edge connecting $h_{0}$ and a black vertex
in $\langle\tilde{U}\rangle$ . First consider the variable graphs for $Y_{1}$ and $Y_{k}$ . For each $y\in Y_{1}\cup Y_{k}$ , either
$V(y)\subset\tilde{U}$ or $V(\overline{y})\subset\tilde{U}$ . Since for each $y\in Y_{1}\cup Y_{k}$ either $(y)$ or $(\overline{y})$ is a clause in $F_{0}$ and
the corresponding clause graph contains black vertices, it follows that $V(y)\subset\tilde{U}$ (resp.
$V(\overline{y})\subset\tilde{U})$ if and only if $(y)$ (resp. $(\overline{y})$ ) is a clause in $F_{0}$ . Let $\hat{Y}_{1}$ and $\hat{Y}_{k}$ be a truth
assignment defined by $\hat{y}=1$ (resp. $\hat{y}=0$ ) if $(y)$ (resp. $(\overline{y})$ ) is in $F_{0}$ for $y\in Y_{1}\cup Y_{k}$ . From
Fact, we see that $F_{1}(\hat{Y}_{1}, Z_{1})$ is satisfiable if and only if vertex $x_{1}$ is in $\tilde{U}$ . Therefore either
$V(x_{1})\subset\tilde{U}$ or $V(\overline{x}_{1})\subset\tilde{U}$ holds according to the satisfiability of $F_{1}(\hat{Y}_{1}, Z_{1})$ . Let $\hat{x}_{1}=1$ if
$x_{1}\in\tilde{U}$ else $\hat{x}_{1}=0$ .

Since $F_{0}$ is deterministic, for each $y_{2p}\in Y_{2}$ there are sets $C_{y_{2p}}^{1}$ and $D_{y2p}^{1}$ of conjunctions
of literals from $Y\cup\{x_{1}\}$ satisfying the conditions (a), (b) of Definition 2.2. For the truth
assignment $\hat{Y}_{1},\hat{x}_{1}$ , there is exactly one conjunction $\gamma\in C_{y_{2p}}^{1}\cup D_{v2p}^{1}$ which is true under
this truth assignment. If $\gamma\in C_{y_{2p}}^{1}$ , then $(\gammaarrow y_{2p})$ is in $F_{0}$ . By considering the clause
graphs corresponding to $(\gammaarrow y_{2p})$ , we can see that $V(y_{ip})\subset\tilde{U}$ must hold since otherwise
the connectedness of \langle $\tilde{U}$ } is violated. If $\gamma\in D_{y}^{1_{2p}}$ , then $V(\overline{y}_{ip})\subset\tilde{U}$ must hold. Let $\hat{y}_{2p}=1$

(resp. $\hat{y}_{2p}=0$ ) if $V(y_{ip})\subset\tilde{U}$ (resp. $V(\overline{y}_{ip})\subset\tilde{U}$ ). With this truth assignment we can see
that clauses $(\alphaarrow y_{2p})$ and $(\betaarrow\overline{y}_{2p})$ are satisfied for each $\alpha\in C_{y_{2p}}^{1}$ and each $\beta\in D_{y}^{1_{2p}}$ .
In this way, we define $\hat{Y}_{2}$ . Inductively we define $\hat{x}_{2},\hat{Y}_{3},$ $\ldots,\hat{x}_{k-1}$ . Finally we can see that
the truth assignment given to $Y_{k}$ together with $Y_{1}$ must coincide with the one determined
from $\hat{Y}_{k-1}$ and $\hat{x}_{k-1}$ since the graph { $\tilde{U}\rangle$ is connected. Thus we have shown the conditions
1 and 2 of Definition 2.3 hold. Hence $(F_{0}, \ldots, F_{k-1})$ is in DSAT.

The converse can also be shown by repeating a similar argument. $\square$

Examples of the properties on undirected graphs that satisfy the conditions of Theorem
2.4 are “planar”, “outerplanar”, “bipartite”, “acyclic”, etc. But the property “clique” is
hereditary but not determined by blocks. In this case LFMCSP( clique’) is P-complete
[5].
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3. Conclusion

We have shown a rather general $\triangle_{2}^{p}$-completeness theorem for the lfm connected subgraph
problems. This result does not cover the lfm induced path problem [13]. We believe that
we could expect a more general result which inculde the results in [13]. As a candidate,
we give the following conjecture.

We define the diameter $\delta(\pi)$ by $\sup$ { $\delta(G)|G$ is a connected graph satisfying $\pi$ },
where $\delta(G)$ is the diameter of a graph $G$ . For example, $\delta$ ( clique’ ) $=1$ but $\delta(planar’)=$

$\infty$ . For the former property, LFMCSP $(\pi)$ becomes P-complete [5] but from Theorem 2.4
LFMCSP( planar’) is $\Delta_{2}^{p}$-complete.

Conjecture. If a hereditary property $\pi$ is nontrivial on connected graphs and satisfies
$\delta(\pi)=\infty$ , then LFMCSP $(\pi)$ is $\Delta_{2}^{p}$-complete.

It should be noticed that if a hereditary property $\pi$ is nontrivial on connected graphs
and satisfies $\delta(\pi)=\infty$ then all paths satisfy $\pi$ .
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