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Singular Limit of the Incompressible Ideal Magneto-Fluid Motion
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Depertment of Mathematics, Hokkaido University

1. Introduction. We discﬁss the singular 1imit of the
incompressible ideal magneto-fluid motion with respect to the Alfven
number in the three dimensional torus Ts (i.e., the periodic motion).

In the fluid dynamics there‘appear many systems of non-linear
differential equations involving parameters such as the Mach number
and.the Alfven number etc.. One problem on the singular limit is to
determine the limiting system which has a completely different
property comparing with the original system, as such a parameter
tends to some value.

When the system is hyperbolic, this problem has been studied in
G.Browning - H.-0.Kreiss [2], S.Kiainerman - A.Majda [4], A.Majda [5]
and S.Schochet [6]. In particular, Browning and Kreiss studied the
Alfven limit of the compressible magneto-fluid motion as an example
of their theorems. However, to show this, they needed more
assumptions on the initial data than those in other papers above.

The purpose of this note is to determine the limiting system
for the incompressible magneto-fluid motion under the natural
assumptions on the initial data. The limiting system becomes
essentially the system of fheytwo dimensional motion (see (2.6)).

We state main results in Section 2. In Section 3, we show the

uniform estimates with respect to the Alfven number, which are



obtained by the energy method. The convergence of the solutions is
generally proved in Section 4. Especially, Lemma 4.3 is employed to
determine the limiting system. The proof of our theorem is finally

completed in Section 5.

2. The statement of results. We consider the system of the
incompressible ideal magneto-fluid motion involving a large parameter
o,

(2.1.a) (8t+(v“,v))va+Vp“+a2H“xrotH“=o

(2.1.b)  (8,+ (%, v))H* (4%, 9)p%=0 in [0,T%1xT°

(2.1.¢) dive®=diva®=0

(2.1.0) v*(0)=v%, #%(0)=#Y on T°.

Here the fluid velocity va=v“(t,x)=(vg,va.vg), the magnetic field
Ha=Ha(t,$)=(H§,Hg,Hg) and the pressure pa=pa(t,x) are unknowns
depending on «. The reciprocal of o is the Alfven number which is
in proportion to Ivml/lel, where lvml,lel are typical mean values
of these quantities.

Let 823 be an integer and assume that the initial data (2.1.d)

satisfy

ol
0

where H#0 a constant vector, and there exist Veétor fields

o 5. -1 o L0 8,3
(2.2.a) HO—H+a K., (vO.KO)eHO(T ),

(vg,Kg)EHg(Ts) and a constant A,>0 such that

0
(z.2.5)  (W5.kD > 5.y  in BN(TY), as a » =,
-1 7 x 7 o
(2.2.¢) axts el (B, 9)o%0,_ +al (B, MK _ < 4.

Throughout this note, HT(T3) denotes the Sobolev space of the Lz—type
with inner product (~,-)r and norm “‘"r and H§(T3) denotes the

solenoidal subspace of HT(T3). The function space Hr(TS) is
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identified with a space of functions in Hr((-n,n)s) with periodic
boundary conditions and an element of Hr(T3) has a Fourier

development f(x)= 3 f e such that > (1+|n|2)rlf |2< ©,
n n

(n) (n)
We note that (2.2.b) and (2.2.c) imply that (ﬁ,v)vg=(ﬁ,V)K3=O,

which are the compatibility condition of the limiting system, and

there exists a constant A,>0 such that

1
(2.3)  Nvgl+IKJN < A, .
It is known that, under the assumption (2.2.a), for fixed «,
there exists a local in time (Ta>0 depends on o) unique classical
solution of (2.1.a)-(2.1.d) (for example, see [1],[3]). The
solution belongs to the following function space
(v®, 1%-myec(10,7%1:85(T%))nct (10, 718571 (T°)),
vp%ec([0,7%1:8571(T%)).
Here, for a Banach space X and a constant I>0, Ck([O,T];X) denotes a
set of all k-times continuously differentiable functions on a time

interval [0,T] with values in X, and this set becomes a Banach space

with norm

k.
WFl, = sup Snalsctyn,.
X.T tero, 11 j=0 ¢t X

Setting K¥=a(#%-H), we can write (2.1.a)-(2.1.d) in the form
(2.4.8)  (8,+ (0%, v)v*+K¥xrotk®+v(p*+all - K*) -0 (H,9) K*=0
(2.4.5)  (8,+ (%, v))K*-(K*, v)v*-a(H,v)v%=0 in [0,T%]xT3
(2.4.c) dive®=divk%®=0

(2.4.d) v*(0)=pF, K*(0)=k on T,

The aim of this note is to prove the following
Theorem 2.1. Assume that (2.2.a)-(2.2.c) hold. Then there
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erxist a constant T*>O, independent of o, and vecter fields

(v™, k") ec(l0,7,1:E5(T°))nct (10,1, 1:8571(T))
such that

%K% 5 (07.K")  weak® in L™([0,T,1:8%(T), as « » =,
and (v",K”) is a unique solution of the following system
(2.5.a) (8,+(v",9))0 +K xrotk +vq =0
(2.5.b)  (8,+(v7,9))K - (K", v)v"=0 _ 3

o in [0,T 1xT

(2.5.c) dive =divK =0
(2.5.d) (H,9)v"=(H,v)K =0
(2.5.¢) v7(0)=vy, K*(0)=K; on T°.
Here vq is uniquely determined by

V(pa+aP-Ka) - qu weak” in Lm([O,T*];HS_l(T3)), as o - o,

Remarks. (1) It follows that ﬁqmec([O,T*];HS_l(Ts)),
q"eL”(10,7,1:L%(T%)) and (H,v)q"=0.
(2) The motion described by (2.5) is essentially the two dimensional
motion in the plane which is orthogonal to H. In fact, let
H=(0,0,1), Uw=(vI,v;) and Bm=(K;,K;). where vm=(v;,vz,v;) and
Km=(K;,K;,K§), we can write (2.5.a)-(2.5.e) in the system of the two
dimensional incompressible ideal magneto-fluid motion
(2.6.8)  (9,+(U”,9)U™+v(q"+E (K)2) +BxrotE=0
(2.6.b) (8,+(U”,¥))B (B, 7)U"=0 in [0,T,]xT?
(2.6.c) divU"=divB“=0
(2.6.d) UT(0)=U}, B”(0)=B; on T?,
where U;=(vgl,v:2) and B:=(K31,K82), and two linear equations
(2.7.a) (8,+(U”,¥))vg-(B”,v)K3=0

. s s in [0,T,1xT?
(2.7.b)  (8;+(U ,¥))Kz-(B ,9)v5=0
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oo

03’
(3) When (a(ﬁ,v)vg.a(ﬁ,v)Kg) converges to zero faster than (2.2.c),

@ - o 2
(2.7.c) v3(0)=v K3(O)=K03 on T-.

we can eaéily find the limiting system (2.5).

3. Uniform estimates. In this section, we show uniform
estimates in o of the solutions to (2.4.a)-(2.4.d), which will be
stated in Proposition 3.2 and Corollary 3.3. To this end we assume

that the solutions (va,Ka,pa) are sufficiently smooth.

Lemma 3.1. There exists a constant A,>0, independent of «,
such that
| 18, 0% (0)H,_ +18, K (0) I _ < &,.
Proof. First, we estimate StKa by Hsml-norm at t=0. Since
Hr(T3) forms a Banach algebra for any r>3/2, it follows from (2.2.c),
(2.3) and (2.4.b) that

o o 0 o 7] (04
18,K%(0) Iy_ < I(v§, V) Kg-(KG, D)0l oy +all (A, ¥) V]

(04
0"8—1 "S-l

< C(a2+a)),
whefe C is a positive constant depending on s.
Next, in order to estimate atv“, let Po be the orthogonal
projection on Lz(Ts) to L?(Ta). Applying P0 to (2.4.a), we have
Stvaé—Po[(va,v)vafKaxrotKa]+a(ﬁ,v)Ka.

Since Pc is a bounded operator on Hr(T3) for any r=0, it follows that

o o o, O o 7 o
Hatv (O)Hs_ls Il(vO,V)v0+K0xrotK0|IS_l+ozll(H,V)KOIIS_1
2
< C(AO+A1),
where C is the same as above one. Now, putting A2=ZC(A§+A1), we
have proved the lemma. (u]

Proposition 3.2. There exist constants T*>O and A3>0 which are
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independent of o such that, for any te[O,T*],

o o w0 o
v (t)HS+H8tv (t)"3—1+"K (t)HS+H8tK (t)"s_ls A3.

Proof. For simplicity, we ignore the superscripts o of

(va,Ka,pa) and put vi’B=S§DBv, etc., where i=0,1 and i+|B8I<£ s.
8

Applying ain to (2.4.a) and (2.4.b), we have

(8.1.2)  (8,+ (v, v Pukxrotk® Pav(pt - Puali-k* ) -a(, vy k* BoFt-f,
(3.1.b) F*P-(v, 90" P-ainf ((v,v)v) skxrotk® B-alnf (kxrotk)
(3.2.2) (3,4, vk Pk, 0P Pea(l, mvt Pt P,

(3.2.0) ¢4 P, mx*P-abnf(w.min) -k mviPeaint ((k,v0).

Using the integration by parts, we know that (3.1.a) and (3.2.a)

imply
Tt ut by —ma(kxrotk® B vt 8 v2a( (@, kY B 0T s
+2(Fi’8,vi’6)o,
Y S SO I TET S TAL Y SRS RS ITY RO TALL Y Sl PO
+2(C£'B,Ki’8)0,
where (-,:), stands for the inner product in g0-12, Since
(erotKi’ﬂ,vi'B)0=((K,V)vi’s-(vi’B,V)K,Ki’s)o, it follows that
(3.3) %.d_(é{(vivﬂ,vtyB)o_"(K'L'B,K'l’-os)O}

ARV S S IR C ALl AL WO Tl SULS I

0 0 0

To estimate (3.1.b) and (3.2.b) by the Lz—norm, we use the
Gagliard-Nirenberg inequality: for any i,r with 0< i< r,

i 1-i/7, 1T peyi/T
ID fILZrlig Crlfle D" 7y

and the Sobolev inequality: for any r>3/2,

71 oF CIe1

where Cr are positive constants depending on r. Then we can prove

i,8 i,8 2
(3.4) WF" "M+ UG™ "l o< Cl(vw(E),K(E)) Mg,
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where H(v(t),K(t))HE=1+Hv(t)H8+H8tv(t)ﬂs_1+HK(t)H8+H8tK(t)HS_1 and C
is a positive constant depending on s. '

For example,

(v.V)vi’B—aéDB((v,v)v)

_ c, Py YvJ,Y.VUt'J,ﬂ‘Y’
1<j+lvl,i<i, lyi<ig] =Y 7° 7%

_ il . B!
where C, - 8 o= TicH) 177 (Bp)iy!’

side are estimated by

and eéch‘terms of the right hand

1w’ Y ew By < d Yy et BT (for 1/p+1/g=1)
L=P L9

< ¢ 1?01 /PpPIvlyd.0yl/e
p L= 0
x C_[pt-d:0)1-1/qpaC1B1-1yI+1) i-5,0,1/q
q ® 0
L
Joul-1/Dyad y1/p
< Cp,suatvus—l uatvuplyl X

1-1/q,~i~J. .1/
s-1 19¢ “vhgigi-1p1+1)-

Setting p=(s8-J)/lyl, we find plyl+j< s and q(IBIl-lyl+1)+i-j< s.

i-g

x Cq'sﬂet vl

Hence, we have

1,B8_pi,B 2 2
I(v,v)v —atD ((v,v)v)nos C(HvHS+HathS_1).

Now, we have from (3.3) and (3.4) ‘
d o o 2 - o o 3
(3.5.a) Hf“(v (t),.K (t))ﬂEs Ch(v™(¢t),K (t))HE.
On the other hand, by (2.3) and Lemma 3.1, we get

+tA,E A,

o
(3.5.b) (v (o),K“(O))nEs 1A +Ay= A,

1
Solving (3.5.a)-(3.5.b), we find
o o
I(v™(¢t).K (t))HEs 2A4/(2—CA4t).

Hence, choosing constants T* and A, which satisfy

3
..1 _ _
(3.6) 0< T, < 2(CA,) ", 85=24,/(2-CA,T,),
we have proved the proposition. a]
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Note that V(pa+aﬁ'Ka) and (ﬁ,v)Ka are orthogonal in L2, then
the following result follows easily from Proposition 3.2 and the

equations (2.4.a) and (2.4.b).

Corollary 3.3. There exists a constant A5>O, independent of o,

such that, for any te[O.T*],

1$ A

7 o 7 o o, 5. O
all(H,V)v HS_1+aH(H,V)K H8_1+HV(p +oH K )“3- 5

4. The convergence of functions. In this section, we discuss
in general the convergence of the sequences of functions having the
uniform estimate such as Proposition 3.2 or Corollary 3.3.

The following lemma can be proved similar to [5], but we show

it for completeness.

Lemma 4.1. Let {Ua(t,m)} be the sequence of functions
satisfying the following assumptions:
(4.1.a) U%ec(r0,7,1:8%(T%))nct (10,7, 1:8%571(T%))
and there exists a constant A6>O. independent of o, such that/

o o
(4.1.b) WU (t)H8+H8tU (t)HS_ls A for any te€[o0,7T.].

6
Then, by passing to a subsequence, there exists a function
UmEC([O,T*]sz) such that, as o =» «,

(4.2.a) U% » U™  weak” in L™(10,7,1;H5(T°)),

(4.2.b) U%

» U”  inc(lo,7,1:8575(1%) for any e>0,
and furthermore,
(4.2.c) U%eC, (10,T,1:H%(T))nLin([0,7,1;H51(T%)),

(4.2.4) 9,U% » 8,U"  weak® in L7(10,7,1:8°°H(T%)), as o » =.

Proof. The first notice is that, by (4.1.a) and (4.1.b),

{Ua(t,x)} is uniformly bounded and equi-continuous with respect to «

- 8 -
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That is, for any (t,m),(s,y)e[O,T*]x'ﬂ'3 and any o,

0% (t,2) 1< Cag, 1U%(t,2)-U%(s,¥) 1< Cag(It-8l+lz-y]),
where C 1is a positive constant depending on s.

By the Ascoli-Arzela theorem and passing to a subsequence,
there exists UwGC([O,T*]xTS) such that

sup 31U (£, 2)-UT(t, )1 » 0, as o = =.
(t,z)€[o,7, 1xT

Since Ts is a compact manifold, it follows that

sup (f 3IUa(t,a:)—Um(t,m)Izd:z)l/2
telo,1,1 T

< C sup Ww*ct,z)-u"(t,z) 1,

(t,z)€[0,T,1xT°

where C=(2n)3/2. Hence, we have

(4.3) U% - U® in c([0,T,1;L%(T)), as a » =.
On the other hand, by (4.1.b) and passing to a subsequence, we

have

(4.4) U% > U°  weak® in L™([0,7,1:8%(T%)), as a » =,

because this topology is stronger than that in (4.3). By the

resonance theorem, we know that (4.1.b) and (4.4) imply

(4.5) WU7Ng

ol
< 1lim WU ms.T < As.

* - »

T

Using the Interpolation inequality: for any r,r' with 0< r'< r,

1-r'/r r'/r '

ﬂfﬂr.s Crllfll0 Hfﬂr )

we have from (4.3) and (4.5)
o o 8-€,43

(4.6) U" > U in C([O,T*];H (TY)) for any £>0, as o - o,

Next, we show two regularities (4.2.c) of u”. Let Va=Ua-Uw.
We note that, for any weHS(TB), there exist wkecm(T3) such that
nw—wkus - 0, as k = o, For each P

V(). 0,) o= (VE(2) 0,0 o1+ DV (1) ,D%, )

- 9 -
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_ o0 _(n8-1,a s+1
=(VE(8),9p) o 1~ (D7 VE(2), D% g, )
The right hand side of above equality converges uniformly on [O,T*]

to zero, as o -+ =.  Now, (V¥(£),0) =(V¥(£),0-0,) + (VX (1) ,0,) The

s
first term of right hand side is estimated by
o o

(V7 (t),0 ¢k)3l$ v mS,T*H¢ ¢k“3$ 2A6"¢ ¢kﬂs.
Therefore, (Va(t),tp)S converges uniformly on [O,T*] to zero. By
(Ua(~),¢)S€C([O,T*]), we have (Uw(°).¢)SEC([O,T*]). This means

o : 8,3

u”ec, ([0,T,1;H%(T%)).
On the other hand, for any t,se[O,T*], we have

o o o
w=(¢)-v (S)H8_1$ ma_ v It-sl< Aglt-sl.

t s-1,T,
By (4.6) we get IUT(L)-UT(s)l,_;< Aglt-sl. This means
(4.7) UeLip(l0,T,1;E5(T%)).

Finally, we know from (4.7) that there exist etum(-) having
finite values in Hs_l—norm, on [O,T*] almost everywhere. On the
other hand, by (4.1.b) and passing to a subsequence, there exists a
function W({,z) such that ,

8,U% » w weak” in L7([0,T,1:E°7H(T%)), as o » =.

Since W is equal to atU” in distribution sense, the proof is

completed. o

By using the Sobolev inequality, the following convergence

follows easily from Lemma 4.1.

Corollary 4.2. Let {U%(t)} be the same sequence of functions

as Lemma 4.1, then

U“-Dlua - Um~D1Uoo weak” in Lm([O,T*];HS_l(Ts)), as o ~» o,

Next, we consider the convergence‘of functions having the

- 10 -
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estimate such as Corollary 3.3.

Lemma 4.3. Let {V®(¢t,2)} be the sequence of functions
satisfying the following assumptions:
(4.8.2) v¥ec(10,T,1;H5(T%))
and there erists a constant 4-,>0, independent of a, such that
(4.8.b) W(@H, V() ,_ < &,  for any te€[0,T,].
Then, by passing to a subsequence, there exists a function V' (t,z)
such that, as o » =,

¢ 5 v® weak™ in Lm([O,T*];Lz(TS)),

(B, 9= (B, 9V » (B,vV"  weak” in L7([0,T,1;8571(T%)),

where Y2(t.z)=v%(t,z)-v¥(t,z- (B, 2)A/1H1%).

Proof. We can assume H=(0,0,1) without loss of generality.
By the definition of V%, we have
Vit 2)=vi(t,2) -V (¢, 3 .3,,0), (H,V)V%=(H,VIVE.

Since Va(t,ml,m2,0)=0, it follows that, for any xSE(—n,n),
XL
vt =[ 20,9%(t, 7, 8)dE.
0
Using the Schwarz inequality, we get

V%, ) 12< nfn |937“(t,x1,xz,&)|2dg.
-7

By integrating both sides of above inequality over TS, we have from
(4.8.b) that

(4.9) WX Ny CUEH, VIO I, Ch,,

ahere C 1s a positive constant.

By (4.8.b) and passing to a subsequence, there exists a function
W(t,z) such that

(B, 9)v® - W  weak” in Lw([O,T*];HS—l(T3)), as o - o,

- 11 -
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On the other hand, by (4.9) and passing to a subsequence, there
exists a function V*(t,z) such that

P 5 v®  weak® in Lm([O,T*];Lz(Ts)), as o = .
Now, return to the proof of the lemma, we know that w=(H,v)v" in

distribution sense and this completes the proof. o

Lemma 4.4, Let {Va(t,z)} be the sequence of functions
satisfying the following assumptions: VaeC([O,T*];HS(TB)) and there
erists a constant Ag>0, independent of «, such that

Iwv(¢)ly_ < a3 for any te[0,T,].

Then, by passing to a subsequence, there ezxist a constant V and a
functionlvm(t,x) such that, as o0 » =,

v -7 » v°  weak” in L7([0,T,1:L2(T%)),

w® 5 w®  weak® in L7(10,7,1;8571(T3)).

This lemma is proved similar to Lemma 4.3, because we have

HV“—?ﬂos CHVV“HO, where C is a positive constant.

5. The proof of Theorem. By the results of Section 3 and 4,
it is proved that there exist a constant T* determined in (3.6)vand
vector fields
(5.1.a) (»7,K™)ec, (10,7, 1;H%(T°))nLip([0,T,1:H57H(T")),

(5.1.b) (q%,u",L™)eL”([0,T,1;L%(T?))

such that, as o = =,

(5.2) (%K% » (™,K”)  weak® in L™([0,T,1;H5(T%))
and each terms of (2.4.a) and (2.4.b) converge weakly in
L”(10,7,1;8571(T%)) to suitable terms, that is,

a [+ o] o
(5.3.a) (8, ,atK“) 5 (3,07,8,K7),

- 12 -
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(5.3.b) (0%, 9%, K%rotk®, (v, v)KY, (K%, v) o)
s> ((¥7, 907, K xrotk”, (v, VK™, (K, 7)v"),

(5.3.¢) (B, 9%, a(H,VKY) » ((H, 9y, H L"),
(5.3.4) v(p +all-k%) » vg~.
In fact, (5.1.a),(5.2),(5.3.a) and (5.3.b) follow easily from
Lemma 4.1 and Corollary 4.2. Setting v¥=av® or ak® in Lemma 4.3 and
v®=p%+ofi-k* in Lemma 4.4, we obtain (5.1.b),(5.3.c) and (5.3.d).

Now, it follows from (5.3.a)-(5.3.d) that (v ,K ,q ,u ,L%)
satisfy the equations
(5.4.2)  (8,+(v”,v))0 "+ xrotk"+vq" - (H,v)L"=0,
(5.4.b)  (8,+(»7, V)K"~ (K", V)"~ (H,")u”=0.
By (2.4.c) and Corollary 3.3, we have (2.5.c¢),(2.5.d) and
(5.4.c) divy =divL”=0.

The initial data (2.5.e) follow from (2.2.b),(5.1.a) and (5.2).

Next, we show the regularity of the solution to (5.4.a)-
(5.4.c) and (2.5.c)-(2.5.¢e). To this end we prove the following a

priori estimate.

Proposition 5.1. For any t,t,€[0,T,1,
v (D) Ug+IK (t)“ss v (L) Mg+ IK (E5) N}

x exp[CCIVO™1 _+I1vK™1 ) 1t-t 11,
L L

where C is a positive constant depending on s.

Proof. Let the solution to (5.4.a)-(5.4.c) and (2.5.c)-(2.5.¢e)
be sufficiently smooth, which is justified by approximating the
initial data by smooth data.

Using the Gagliard-Nirenberg inequality, we can prove similar

- 13 -
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to the proof of Proposition 3.2 that

TV (O I+ 1K () U h< C L7071+ 19”1 HIw™(8) I+ 1K™ (£) 1},

L L
where CS is a positive constant depending on 8. By the Gronwall's

inequality, we have proved the proposition. o

By Proposition 5.1, we have

Tim (10" (E) I+ IKT (D) U b< BT (E) I+ 1K™ (Eg) H .
t-t, |

On the other hand, since (vm,Km)eC”([O.T*];HS(Ts)), it follows from
the resonance theorem that

v (tO)HS+HK (tO)HSS %lg {lv (t)HS+HK (t)"s}.
»to

Hence, we have

(v, k") ec(10,7,1;H5(T%)) .
g’ L2(T3) 5 ST where ST is
orthogonal complement of S={(#,V)f; feHl(T3)} in Lz. Applying Po to

Let new projection define as P

(5.4.a) and next applying PS, we have

Gtv =-PSP0[(v ,V)v +K xrotK ].
Since (vm,v)vm+Kmxroth€C([O,T*];Hs_l(Ts)) and Pg,P_ are bounded
operators on Hr(TS) for any r>0, it follows that

8, v7ec(r0,7,1;8571(T%)) .

t
Similarly, it is proved that

(8,K”,va”, (B, 9)L", (A, w)u")ec([0,T,1:8°7H(T")).

The next lemma shows that (H,v)L”=(H,v)u =0 and (#,v)q =0 in

(5.4.a)-(5.4.b). For simplicity, we put #=(0,0,1).

Lemma 5.2. Let feL®(T°) and 857eL*(T°).  If 83f=0, then f is

independent of Tqy-

- 14 -



Proof. Any function f€L2(T3) has a Fourier development

flz)= 2 fnein'x.b Since the right hand side is a convergent series
(n)

in the Lz-sense, we have

957 (z)=- 3 (ng)%r ™"
(n)
in distribution sense. By the assumptions, the right hand side is

belong to Lz(Ts) and is equal to zero. Note that {e£n°$} is
complete in LZ(T3), then we have (n3)2fn=0 for any =n. This means

that f is independent of 2 0

3
Applying (#,v) to (5.4.a) and (5.4.b), we have

(5.9.a) v(E-vq™)-(H,v)2L"=0,

(5.9.b) (H,v)%u"=0.

Applying div to (5.9.a), we get A(ﬁ~qu)=0 by (5.4.c). We can prove

that (I_{,V)q°° is equal to a constant, similar to Lemma 5.2. Now, we

have (ﬁ,v)sz=(E,v)2um=o and (ﬁ,v)zqm=0. By Lemma 5.2, we have

(H,v)L"=(H,v)u" =0 and (H,v)q =0.

Finally, we prove the uniqueness of the limiting solution.
Let (¥ ,K”) be a solution to (2.5.a)-(2.5.e). The following
inequality follows easily from the same arguement in Proposition 5.1,
Hv™-F) (0l g+ HK™-KT) () Ny D(v™-F7) (0) Hy+ I (K™-K™) (0) I,

which implies the uniqueness of the solution. Therefore, we have

proved our theorem. o
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