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Introduction

The purpose of this paper is to investigate the stability for Qn
incompressible fluid motion in a bounded domain in R™.

Let Q be a bounded domain in Rn_(n = 2) with smooth boundary
2Q. The motion of the fluid occupying Q is governed by the Navier-

Stokes equations:
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- Aw t weyvw + vq = {, v-w = 0 in Q, ]
%(S)
W = 0, )
l9) '
where w = w(x) = (wl(x),---, w?'(x)) and q = q(x) denote the
velocity and the pressure of the fluid, réspectively, and f = f&x

= (fl(x),---, fn(x)) denotes the external force. If w(xd and
f (xD are perturbed by a(x) and g(x,t), respectively, then the
perturbed flow v(x, t2 is governed by the following time—dependent

Navier—Stokes equations:

atv -~ Av + veov + vm=f + g in Q :=Q x (0,«,

There are many papers concerning the stability problem for the
solutions of the Navier—Stokes equations. See, e.g., Ladyzénskaya
(10), Heywood (6) (7}, Masuda (11) and'Sattinger (12). These results,
however, are obtained in Lz—setting or require some regularityL
assumptions on the perturbed flow at the initial time. Making use of
the method developed by Giga & Miyakawa (5), we consider the |

perturbed flow in Lr and take such assumptions away.
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To state our results, we need some preliminaries. For me€eR

m, r

and r >'1, W «» denotes the Sobolev space of order m, so that

W T = LT@. We set WMI@ =wm T ec®, L@ =L @ o

For k € N u{0}, a Banach space X and an interval I ¢ R, Ck(I; X0

denotes the space of continuously differentiable functions from I

into X. For 0 < a < 1, C“(I; X0 denotes the space of functions‘in>

CO(I; X satisfying the Holder condition with exponent a on

compact subintervals of I. We set BC(I; XD = CO(I; X n Lm(I; XD.

(o]

CO o(Q) denotes the set of all Cw-vector fields ¢ with compact

support in € such that v-@

o. For r > 1, Xr denotes the
completion of CZ o (@ with respect to the LY @ -norm I-1_. Then

by Fujiwara & Morimoto (1), we have the following decomposition:

L@ = X_ ®G_ (irect sum),
where Gr = {vm; 1t € Wl’r(Q)}. Let Pr be the projection operator
from Lr(Q) onto Xr assocjiated with this decomposition. We define

the Stokes operator A_ by A_ =~ P_A with domain DA = XN

{u € Wz’r(Q); u = 0}. Applying Pr to both sides of (S) and
aQ
(N. S), we have the equations in Xr:
A w+ P wwvw =P f. S’
r r T
Y s Av+Pv-w =P (f+g, t>0 )
dt 'r r r ’ :
}(N.S)’
v(0) = a + w. J
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Our main results now read:

Theorem 1. Let r > max(n/3,1) and f € LY(Q). Then there is a
positive mumber x = x(r) such that (S>’ has a}unique solution w

in D(Ar) if IIPrfIIr < A

Theorem 2. Let r >/max(n/3;1) and 0 < u < 1. Let o satisfy

o =n/2r - 1/2 for n/3 < r < n/2, o =1/2 + & for r = n/2, where
0 < g < mind1/72, n/20). Let Yy and & satisfy n/2r - 1/72 <y < 1,
820 and ~— ¥ < & < minCl = |¥y1D/2, 1 = . Let x(r) be the
number given by Theorem 1. Then, there aré positive numbers

2 £ x(rd> and n = ndlr,n,v,8 suqh‘that fbr any

(a,f,8) € DAD x LT@ x c*(,=; LT@)> with IP_fi_ < a’,

HA?aH + sup tl—y_aﬂA-aP gl =< n, (N.S)' has a unique solutiom v
£>0 r r°'r

satisfying:
0 Y 1 I,

(1) v € C(C(0,«=; D(Ar)) N C (0, =) ; Xr)’

(2) vt) — w € D(Af) for t > 0, Ar(v - w) € Co((o,o); Xr)’ where
w is the unique solution given by’Theorem 1;

(3) uAf(v(t) - Wi = 0tT™ as t—> o for y<a<1 - 5.

In section 1, we shall prove Theorem 1. In the special case n

2, T o)

< 4, every weak solution w of (S) in Wé’z(Q) belongs to W
if f € Lr(Q). See Temam (14, p. 172, Remark 1.4) and Gerhardt (2).
Little has been known, however, about the existence of strong

solution of (S) in the case n =2 5. Using the properties of the
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fractional powers of the Stokes operator developed by Giga (4), we
shall construct a strong solution of (S) in any dimension for f
small enough. In section 2, we shall prove Theorem 2.  Let w € D(Ar)
be the solution in Theorem 1. Setting u(t) = v(t) - w, we have the
following equation:

du Ay +Bu+Puvu=Pg, t>0

dt r r r .o ’ ]
}(N.S)“

u(l® = a,

where Bru = Pr(w'Vu + u-vw). Then, the stability problem for (3>
can be reduced to obtaining the time—decay estimates for the solution
of (N.S>™. In order to solve (N,S)” globally in time, we make some
modifications of the argument in Giga & ijakaWa (5. This requires
the analysis of the perturbed operator Ar + Br' From our
view—point, the result of (5) may be regarded as the stability
theorem in LT(Q around the rest fluid motion, i.e., w =0 in Q.
To characterize the domains of the fractional powers of the perturbed

operators plays an important role in our case.

1. Proof of Theorem 1

In what follows, different positive constants might be denoted by the

letter C. Since Ar has the bounded inverse A;l in Xr’ S is

equivalent to the following equation in Xr:

_5_
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w+ AP weww = ATIP 1. S
r r r

We consider D(Ar) as a Banach space with the norm -1 given

DCA D’
r

by ful = !IAruIlr for u € D(Ar).« Without loss of generality,

DD
r
we may assume f € Xr’ i.e., Prf = f. For f € Xr and w € D(Ar)’

we define

FCE,w) :i= w + A_IP w-vw — A Llg.
r r r

Then we have:

Proposition 1.1, Let r > max(n/3,1). Then,
(1) F: {f,w) +—— F{,w) is continuous from Xr X D(Ar) into D(Ar).
(2) For each f € Xr’ the map F(f, *): D(Ar) 3w — F(f,w) € D(Ar)

is of class CI.

Proof. We choose 6 = 6(n,r) and p = pln,r) satisfying
0<0<1, 1 /2 < p<1 and 8 + p = n/2r + 1/2. By Giga & Miyakawa

(5, Lemma 2.2), we have
. 8 P
ﬂPru VVIIr < CllArullrllArler < C“Aru“r“Arv"r’ u, v € D(Ar). a. D

Hence F({f,w) € D(Ar) for all f € Xr' and w € D(Ar). Since

HF(fl,w) - F(fz,w)ﬂD(Ar) = llPr(f1 = fz)nr for fi € Xr’ i=1, 2,

and w € D(Ar)’ part (1) will follow if we can show part (2). For
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each w € D(Ar)’ we define a linear operator Kw by
Ku=u+Aa P (w-vu + u-vw) for u € DCAD.
w r - r r

By (1. 1>, Kw is in the space B(D(Ar)) of all bounded operators in

D(Ar). Moreover, for each f € Xr’ we have

IF(f,w + u>) — F(f,w) — K ul

w''DcA
r

S 2 _ 2

= 1A u-vul < CIA ulf = C“u"D(Ar)'

This shows that the Fréechet derivative DwF(f,w) at (f,w) € er
D(Ar) is equal to Kw' Since again by (1.1), the inequality

HKW v - Kw vl < CﬂArvﬂrnAr(w

- woll
1 9 D(Ar) 1 2" 'r
holds for all Wi V € D(Ar), i=1, 2, we see that the map w +— Kw
is continuous from D(Ar) into B(D(Ar)). This completes the proof

of Proposition 1.1. 8]

By the proof of this proposition, we have F(0,0) = 0, DwF(0,0)
.= KO = jdentity on D(Ar)' Therefore it follows from the implicit
function theorem that there is a unique conrtinuous mapping w from a

neighborhood UA = {f € Xr; “f“r < 2} of O into D(Ar) such that

w(0) =0, FU,wld) =0 for f € U_. 1.2
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(1. 2) shows that w{f) 'is a unique solution ofv(S)".

2. Proof of Theorem 2

We define the operator Br by Bru = Pr(w~Vu + u-vw) for
u € D(Br):= D(A:), where w is the solution obtained in Theorem 1.

Then it follows that D(Ar) c D(Br) and
o
IIBrullr < C“Arw“r"Aru“r’ u € D(Br)' ' 2. D

Indegd, by the choice of o, we have 1/2 < o <1 and 1 + ¢% n/2r
+ 1/72. Then (2.1) follows from Giga & Miyakawa (5, Lemma 2. 2).

The following propositions play an important role in this section.

Proposition 2.1, Let L_ := Ar + B. with domain D(Lr) = D(Ar)’

r r

There is a positive constant C* = C*(Q,n,r) - such that if
lIArwIlr < C*. then 2+:='(1 € C; Rex =2 0} < p(— Lr) (the resolvent set

of - L}) and

1

= i
T + Lr) ﬂ

<M 1+ Ia1) * for all A € 3, 2.2

BX )
r

with a positive constant Mr independent of .
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Proof. It follows from Giga (3) (see also Wahl (15, Chapter M) that

S, € P(-AD and B+ *)-1“B(Xr> <N A+ 1ap”! for all a e 3,

with Nr > 0 independent of A. Since Lr + X =
(1 +B_(A_+ A)—l)(Ar #+) for A €3, it is sufficient to prove

. -1
that there is a constant kr € (0, D such that "Br(Ar + 20 “B(Xr)

< kr for all x € E+. -Indeed, by (2.1) and the moment inequality (

see Tanabe (13, Proposition 2.3.3)), we have

IB A+ 0 Y£1_ < cia wh 1A%a + 0 1y
I r r r r r r r
< CIA wi BA A + 0 1e% 1 + o 1ggl™@
r I r r r r r
< CIA wi_CON. + DIfI O ¢ + 1an tygg »17°
r r r r I r
< CIN_ + DA wh 1El | 2.3

for all 2x € 2+ and all f € Xr' Therefore taking C* .so that
0 < C* < l/C(Nr + 1) and k _:= C(Nr + I)C*, we see, under the

r
. -1
condition IlArwllr < C*, that IlB(Ar + 20 '“B(Xr) < kr < 1. o

An immediate consequence of this proposition is as follows.

Corollary 2.2. Let IlA}wllr < C*. Then, - Lr generates a uniformly
—tI_.r ,
bounded holomorphic semi—group {e )tzo of class CO in Xr‘
Moreover, we can define the fractional power L? of I_.r for
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. . . o
any o € R. Concerning the domains of fractional powers Lr and - A

we have the following:

Proposition 2.3. Suppose that HArri < C, (see Propositiom 2.71).

b 3
(1) For 0 < « < 1, the identity D(Af) = D(Lf) holds and there is

a constant K K{e, such that

K- L% < 1a%n < KiL%ul for all u € DA, 2. 0
r r r r r r r

(2) For x >0 with x + ¢ <1, there is a comstant K’'= K’ (x,o,1)

such that

X

“Xal o < K* 1A Full for all u € X_. 2. 5)
r r r r )

IILr

Proof. (1> We first prove that D(A?) c D(L?). For simplicity, we

write A=A, B = Br and L = Lr' Note that

Red

A% = x  sinne [ A%+ 0 " tda
LO :
-1, "~ -1 -1
= x “sinno by (A + B + 2O A+ B + DA + 2 dx
Jo
_ -1 = -1 -1
= n “sinme | A FC@W + 0 T+ BQA + 0 )da
‘0
=L%+5s, 2. 6)
[04
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4

where Sa = 7 1sinna I A_a(L + A)_lB(A + A)—ldx. Suppose that u €

0

D(Aa). Setting v = Aau, we have by (2.8 u = L_av + Sav. Therefore

it is enough to show Sav € D(La). By (2.2, (2.3>, Krein (9, p.115

(5.15)) and CC*(Nr + 1) < 1, we have

L% + *)-1"B<x , = M+ 0% B+ A)-IHB(X N 0ot
r r

for all x = 0. This gives

f L% @ + 0 1B + A)—lvﬂrdx
0

Lol

1

< f AL+ 0y 1
0

B(Xr)"B(A + ) Hrdx

< M f A%+ A)o+a—2dxuvﬂr.
0

Since ¢ < 1, the last integrand above converges and we obtain Sav €
04 53 [0 4 . - __
DIL™. We next prove that D(L™) < DA™. Similarly we have L =

4
- -—

A + T , where T- = - x 'sinno f A%, o+ 7!t
o oL 0

B + B + 0 lda.

Hence it suffices to show that Tav € D(Aa) for v € Xr' By the

proof of Proposition 2.1, we see that 1 + B(A + A)_l is invertible

-1,-1 _ -1
and 1C1 + BCA + 20 O “B(Xr) < = kD) for all x = O.

Therefore



-_—1 — — —
IBCA + B + 1)~ = 1B + 0 Fa o+ B + 0 HhTy

Bex B(X )
iy r

1,1

< IBCGA + ) TCl + BCA + 20 ) 1

1
'B x> BX )

< (1 - kr)_l(l + 0771

for all X = 0 and we get as before

f 1A% % + 0 IBG *+ B + 20 tvnda
0

od

-0, O -1 -1
< fol 1A% A + 20 HB(Xr)HB(A + B+ 0 vi_dx

<N (1 -k )'1f A%+ 0T 240v . < .
r r 0 . r

This shows that T, v € DA%  for all v € X_. After all we obtain
D(Aa) = D(La). Since 0 € pA) n pL), (2.4) is an immediate
consequence of this identity.

(2) By (2.6), it suffices to show

-X
HSKullr < ClA u“r for all u € Xr’

. . . X
with C > 0 independent of |u. For this purpose, we prove HSKA vﬂr

< Cllvllr for all v € DA™, By (2.1) and Krein (9, p.115 (5.15)),

we have

IBCA + A)—IAKvHr < Crawl 1A% + m"lA“vur



= CHAerHAo+K(A + ,o"lvur
- +ie—
<cc, o+ DA+ VT v < a s 0Ty
r r r

for all v € D(AK). Hence it follows from (2.2) that

©

X -1 . -K -1 -1,x
HSKA vllr < X “sinnxk IOA 1L + 0 “B(Xr)“B(A + ) A vﬂrdk
< Mx Lsinnx f AT+ D e,
0
-as required. o

Now, we solve (N.S)”. We first construct a solution of the

following integral equation:

~tL, t = (=)L |
u =e fat [ P_(g(s) = u-vus))ds. (1.
0

In order to solve (I.E), we use the implicit function theorem similar

to Kozono (8. Let r, ¥ and & be as in Theorem 2. We define

) S ¢ _ o r
function spaces ¥ = i?,& and % = gy by
ii s = {f; measurable functions on 0, = with values in Xr’
tl'y“aL:af € BCC(0,=); X )},
| 37 = (& BCCO,= ;DA n coc(o,m>;D<Lfl+Y)/2>>;
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sup tCI_Y)/2ULru(t)Hr < w0},

t>0

r

respectively. Then <X and @; are Banach spaces with norms

Y, d
Ifhy, = 0E0 _ := sup tl_y_aﬂL—éf(t)ur,
o t>0 r
Y, d
- +
bully = ful _ := sup ILTuCO 0 + sup ¢ ¢ ?)/2HL§1 Y)/2u(t)ur,
Y t>0 t>0
Y
respectively. Without loss of generality, we may assume Prg = g.
For (a, g,u) € D(L:) X X X %, we define
‘ —tL_ ot = (t=s)L_ .
G(a,g,u) (t) = udt) — e a — f e (g (s) —~Pru~Vu(s)Dds.
0

Then we have:

Proposition 2.4. Suppose that HAerr < C, (see Proposition 2.71).

(1) G: (a,g,u) +— G(a,g,u) 1is continuous from D(L?) x X X% into
Y.

(2) For each (a,g) € D(L:) x X, the map

G(a,g,*): 9 2u +— G(a,g,u) € % {38 of class CI.

Proof. We first show that G(a,g,u) € % for (a, g,u) €
D(Lt) X I x %, By the moment inequality (Tanabe (13, Propotition

2.3.3)), we have

(1+Y-2a)/(l—v)"L(1+Y)/2u“2(a—Y)/(1—Y)

o
IL7ull . < C
r'r r r r

v
a,y“Lru"
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for v £ ¢ < (1+Y)/2 and u € D(L§1+?)/2) with Ca ¥ independent

s

of wu. Therefore it follows that

ILSu Ol < ¢ ful . t¥ % t >0, v <o < (1+y)/2 2.7
r r o, Y %
—tLr t —(t—s)Lr
for u € 9. Now, we set vo(t) = e a, vl(t) = f e g(s)ds
0
t —(t—s)Lr
and v, (t) = f e P u-vu(s)ds. Note that by Corollary 2.2, the
0
inequality
[0 4 _th -
“Lre‘ "B(Xr) < Cat for all e =20, t > 0,

holds with Ca independent of t. Hence v, € % since a € D(L:).

0

Moreover, we have

o t o —(t-s)Lr_
ILv, (DI < IL"e g(s)ll ds
r1 r o F r
-t =(t-s)L '
ot+d r -& -
< ﬂLr e “B(X )ﬂLr g(s)“rds‘
c r
<C Itct— > % g, s Ty
ot+d 0 S L s
—y— YT
< Ca+6 B(l-« 6,?+5)ugﬂit (2.8
for o< 1 - 8, where BC(C., <) is the beta function. Since v,

(1 + /72 <1 - &, there is a positive constant B such that
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(1=-y>/2 (1+?)/2V

sup HLyvl(t)H + sup t “Lr

()1 < Blgl,. 2.9
+>0 r r +>0 r x

1

Hence v1 € %, Taking p = (1 + /2 - &/2, we have p > 0,
p + & >1/2 and & + 2p =1+ v =2 n/2r + 1/2. Since & + ¢ < 1,.we

obtain, by Proposition 2.3, Giga & Miyakawa (5, Lemma 2.2) and (2.7,

o t o+ -—(t—s)Lr -5
IL%, (oI < IOnLr e gy y 1l Prus7u (o) ds
t —x=8, =8
< Ca+8K fo(t*s) “Ar Pru~Vu(s)Hrds
t -x—8 2
< C K’f (t—s) 1APu ¢s) 1%ds
xtd 0 r r
2 t -—& 2
< C ..K'K J (t—s) ILPu sy 1%ds
ot+d fo} o : r r
2 pt —x—-8, .2 2y-2p
< Ca+6K Kp fo(t—s) nuﬂws ds
=C . K'KZtul? It(t— yTETE YL,
- o+s p u ¥ 0 S S S
- y 1wl o 2.7
= Ca+6K KpB(l o 5.Y+6)“uﬂgt 2. 10>
for v < aa <1 - 8. Hence there is a coﬁstant B* > 0 such that
sup ILYv, COON_ + sup t(1_Y)/2ﬂL§1+?)/2v2(t)ﬂr < B’“uﬂg 2.1
t>0 ' t>0
and we have v2 € W, After all we see that G maps D(L:) X 4 X ¥

into %, In view of Corollary 2.2 and (2.9), part (1) will follow if
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we can show part (2. For u, v € %, we put
t —(t~s)Lr
(Tuv)(t):= vty + I e Pr(u-Vv(s) + v-vu(s))ds
0

In the same way as in (2.11), we see that,‘Tu € B(Xr) for u € ¥

and that u +— Tu is continuous from ¥ into B(Xr). Moreover,
. 2
1G(a, g, ut+v) G(a, g, u) TuV“y < B Hvﬂy 2.12>

for (a,g,u) € D(L:) x X x% and v € 9. Indeed, in the same way as

in (2.10), we have

> ta_YﬂLT(G(a,g,u+v) - Ga,g,u) - T v)IIr
a=y, (y+1)/2 u
_ t = (t-s>L
= 3 & Ynf L% P vewv(sddsl_ = B'uvu§
o=y, (y+1) /2 0

for all t > 0.
(2.12) shows that the Frechet derivative DuG(a,g,u) at (a,g,u) €

D(L:) X L XY is equal to Tu. This completes the proof. o

Since G(0,0,0) = 0, DuG(0,0,0) =*identity on %, it follows from

the implicit function theorem that there is a unique continuous map

u from a neighborhood V_, = {(a,g) € DY) x %€ “Lyaﬂ + lIgh, < n")
n : r r 'r X
of 0, ®» into % such that
u(0,0 =0, GC(a,g,ula,g)) =0 for (a,g) € Vn,. (2. 13

This shows that uf(a, g) is a unique solution of (I.E) for (a, g).
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Using the same method as in Giga & Miyvakawa (5, Theorem 2.5), we see
that Pru~Vu for such a solution u is Holder continuous on (0, «)

with values in X _. Then it follows from Tanabe (13, Theorem

r
3.3.4) that u satisfies the differertial equation . S)”. (]
Remark. By Proposition 2.3, we can choose n in Theorem 2 so small

that (a,g) € Vn,. Since the map w : UA 3 f —» w(f) € D(Ar) is
continuous (see Proposition l.l), we can take X7 £ ) so that

ﬂArwlIr < C, if “f“r < X',
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