On the existence of weak solutions of stationary Boussinesq equation

Hiroko MORIMOTO (明治大学工学部 森平浩子)

§1. Notations and results.

In this paper, we discuss the existence of weak solutions of equations which describe the motion of fluid of natural convection (Boussinesq approximation) in a bounded domain Ω in \mathbb{R}^n , $2 \le n$. We consider the following system of differential equations which is called stationary Boussinesq equation:

$$(1-1) \begin{cases} (\mathbf{u} \cdot \nabla)\mathbf{u} = -\frac{1}{\rho} \nabla \mathbf{p} + \nu \Delta \mathbf{u} + \beta \mathbf{g} \theta , \\ \operatorname{div} \mathbf{u} = 0 , & \operatorname{in} \Omega \end{cases}$$

$$(\mathbf{u} \cdot \nabla)\theta = \kappa \Delta \theta ,$$

where $\mathbf{u} \cdot \nabla = \sum_{j} \mathbf{u}_{j} \frac{\partial}{\partial \mathbf{x}_{j}}$. Here \mathbf{u} is the fluid velosity, \mathbf{p} is the pressure, θ is the temperature, \mathbf{g} is the gravitational vector function, and $\rho(\text{density})$, $\nu(\text{kinematic viscosity})$, $\beta(\text{coefficient of volume expansion})$, $\kappa(\text{thermal conductivity})$ are positive constants. We study this system of equations with mixed boundary condition for θ .

In the previous paper [8], we treated this problem only for the case n = 3. By using the Galerkin method, we can show the existence of weak solution, for any integer n greater than or equal to 2. Some uniqueness result is also obtained.

Let $\partial\Omega$ (the boundary of $\Omega)$ be devided into two parts Γ_1 , Γ_2 such that

$$\partial \Omega \, = \, \Gamma_1 \, \cup \, \Gamma_2 \, , \quad \Gamma_1 \, \cap \, \Gamma_2 \, = \, \phi \, .$$

The boundary conditions are as follows.

(1-2)
$$\begin{cases} u = 0, & \theta = \xi, & \text{on } \Gamma_1, \\ u = 0, & \frac{\partial \theta}{\partial n} = 0, & \text{on } \Gamma_2, \end{cases}$$

where ξ is a given function on Γ_1 , n is the outer normal vector to $\partial\Omega$. If we can find a function θ_0 defined on Ω , of class $C^2(\Omega)\cap C^1(\overline{\Omega})$, satisfying $\theta_0=\xi$ on Γ_1 and $\frac{\partial}{\partial n}$ $\theta_0=0$ on Γ_2 , then we can transform the equations (1-1),(1-2) for u and $\theta=\theta-\theta_0$ and we obtain the following:

For the domain Ω , we assume:

Condition(H)

 Ω is a bounded domain in \textbf{R}^n with \textbf{C}^2 boundary. The boundary $\partial\Omega$ of Ω is devided as follows:

 $\partial\Omega$ = Γ_1 \cup Γ_2 , Γ_1 \cap Γ_2 = ϕ , measure of Γ_1 \neq 0, and the intersection $\overline{\Gamma}_1\cap$ $\overline{\Gamma}_2$ is a n-1 dimensional C^1 manifold.

In order to state the definition of weak solution and our result, we introduce some

Function spaces:

 $\begin{array}{lll} D_{\sigma} &=& \{ vector \ function \ \phi \in C^{\infty}(\Omega) \ \big| \ supp \ \phi \ \subset \ \Omega \ , \ div \ \phi = 0 \ in \ \Omega \} \\ H &=& completion \ of \ D_{\sigma} \ under \ the \ L^{2}(\Omega) - norm \end{array}$

 $V = completion of D_{\sigma} under the H^{1}(\Omega)-norm$

 $\widetilde{V} = \text{completion of } D_{\sigma} \text{ under the norm } \|\mathbf{u}\|_{H^{1}(\Omega)} + \|\mathbf{u}\|_{L^{n}(\Omega)}$.

 $D_0 = \{ \text{ scalar function } \phi \in C^{\infty}(\overline{\Omega}) |$

 $\varphi \equiv 0$ in a neighborhood of Γ_1 ,

 $W = completion of D_0 under the H^1(\Omega)-norm$.

 $\widetilde{W} = \text{completion of } D_0 \text{ under the norm } \|\mathbf{u}\|_{H^1(\Omega)} + \|\mathbf{u}\|_{L^n(\Omega)}$.

Consider L^2 inner product of the first equation of (1-3) with v in \tilde{v} , and the third equation of (1-3) with τ in \tilde{w} . Then we obtain:

Auxiliary problem: Find $u \in V$ and $\theta \in W$ satisfying

$$(1-4) \begin{cases} v(\nabla u, \nabla v) + B(u, u, v) - (\beta g \theta_0, v) - (\beta g \theta_0, v) = 0 , \\ & \text{for all } v \text{ in } \widehat{V}, \end{cases}$$

$$\kappa(\nabla \theta, \nabla \tau) + b(u, \theta, \tau) + b(u, \theta_0, \tau) + \kappa(\nabla \theta_0, \nabla \tau) = 0,$$

$$\text{for all } \tau \text{ in } \widehat{W}, \end{cases}$$

where

$$B(\mathbf{u}, \mathbf{v}, \mathbf{w}) = ((\mathbf{u} \cdot \nabla) \mathbf{v}, \mathbf{w})$$

$$= \int_{\Omega} \sum_{i=1}^{n} \mathbf{u}_{i}(\mathbf{x}) \frac{\partial \mathbf{v}_{i}(\mathbf{x})}{\partial \mathbf{x}_{i}} \mathbf{w}_{i}(\mathbf{x}) d\mathbf{x},$$

and

$$b(\mathbf{u}, \theta, \tau) = ((\mathbf{u} \cdot \nabla) \theta, \tau)$$

$$= \int_{\Omega} \sum_{j=1}^{n} \mathbf{u}_{j}(\mathbf{x}) \frac{\partial \theta(\mathbf{x})}{\partial \mathbf{x}_{j}} \tau(\mathbf{x}) d\mathbf{x}.$$

Now, we define the weak solution of (1-1),(1-2). Definition 1. The pair of functions (u,0) is called a weak solution of (1-1),(1-2), if there exists a function θ_0 in $C^1(\overline{\Omega})$ such that $u \in V$, $\theta - \theta_0 \in W$, $\theta_0 = \xi$ on Γ_1 , $\frac{\partial}{\partial n} \theta_0 = 0$ on Γ_2 , and, $\{u, \theta\}$ ($\theta = \theta - \theta_0$) satisfies (1-4).

Now, we state our results.

Theorem 1

Let Ω be a bounded domain in \mathbb{R}^n with \mathbb{C}^2 boundary satisfying the condition (H). If the function g(x) is in $L^{\infty}(\Omega)$ and ξ is of class $C^1(\overline{\Gamma_1})$, then there exists a weak solution of (1-1),(1-2). Remark 1

Generaly, $\widetilde{V} \subset V \cap L^n(\Omega)$ and $\widetilde{W} \subset W \cap L^n(\Omega)$. For $2 \le n \le 4$, $\widetilde{V} = V$ and $\widetilde{W} = W$ (c.f.Masuda[7], Giga[3]). Therefore our theorem contains the result of [8].

Let $g_{\infty} = \|g\|_{L^{\infty}(\Omega)}$, and c, c_1, c_2 be constants in Lemma 3 ($\S 2$). As for the uniqueness, we have:

Theorem 2

The weak solution $\{u,\theta\}$ of (1-1), (1-2) satisfying

(i) $u \in L^{n}(\Omega)$, $\theta \in L^{n}(\Omega)$,

(ii) $c\|u\|_{n} + \frac{\beta g_{\infty} cc_{1}c_{2}}{\kappa} - \|\theta\|_{n} < \nu$, when $n \ge 3$, ((ii)' $c\|u\|_{p} + \frac{\beta g_{\infty} cc_{1}c_{2}}{\kappa} - \|\theta\|_{p} < \nu$, for some p > 2, when n = 2) is , if it exists, unique.

Remark 2

The condition (i) is automatically satisfied when $2 \le n \le 4$.

Remark 3

If we set

Re = $\frac{c}{v} \|u\|_n$ (Reynolds number),

Ra =
$$\frac{\beta g_{\infty} cc_1 c_2}{\nu \kappa} \|\theta\|_n$$
 (Rayleigh number),

then the condition (ii) reads as

See also Joseph[5].

§2. Some lemmas.

In this section, we prepare some lemmas.

Lemma 1

 \widetilde{V} and \widetilde{W} are separable Banach spaces.

<u>Proof.</u> A subset of separable metric space is separable(e.g. Brezis[2]). If we show $V \cap L^{n}(\Omega)$ is separable, Lemma is

d. We can identify $V \cap L^n(\Omega)$ as a subset

$$F = \{(v, \frac{\partial}{\partial x_1}v, \dots, \frac{\partial}{\partial x_n}v); v \in V \cap L^n(\Omega)\}$$

of $L^n(\Omega) \times L^2(\Omega) \times \cdots \times L^2(\Omega)$. Since the latter space is separable, the set F is also separable and Lemma 1 is proved.

Lemma 2 (Sobolev)

Sobolev space $H^1(\Omega)$ is continuously imbedded in $L^q(\Omega)$, where $q=\frac{2n}{n-2}$ for $n\geq 3$, and $+\infty>q\geq 1$ for n=2. For the proof , see Adams[1].

Lemma 3 (Poincaré)

There exist constants $c_1,\ c_2,\ c$ depending on Ω and n such that

(i)
$$\|\mathbf{u}\| \leq c_1 \|\nabla \mathbf{u}\|$$
 for $\forall \mathbf{u} \in V$,

(ii)
$$\|u\|_{q} \le c \|\nabla u\|$$
 for $\forall u \in V$, $q = \frac{2n}{n-2}$ $(n \ge 3)$, $q = 4$ $(n=2)$,

(iii)
$$\|\theta\| \le c_2 \|\nabla \theta\|$$
 for $\forall \theta \in W$.

These constants are used in the statement of Theorem 2. For the proof of (i),(iii), see Morimoto[8]. (ii) follows from (i) and Lemma 2.

By Hölder's inequality and Lemmas 2,3, we have:

Lemma 4

Let $n \geq 3$. There exists a constant $c_{\mbox{\footnotesize{B}}}$ depending on Ω and n such that

hold.

Using the integration by parts, we obtain:

Lemma 5

(i) B(u,v,w) = -B(u,w,v) for $\forall u \in V, \forall v,w \in H^1 \cap L^n$ holds. In particular,

$$B(u,v,v) = 0 \qquad \qquad \text{for } \forall \ u \in V, \ \forall v \in H^1 \cap L^n \ .$$
 (ii)
$$b(u,\theta,\tau) = -b(u,\tau,\theta) \quad \text{for } \forall \ u \in V, \ \forall \ \theta,\tau \in H^1 \cap L^n,$$
 holds. In particular,

$$b(u,\theta,\theta) = 0$$
 for $\forall u \in V, \forall \theta \in H^1 \cap L^n$.

Lemma 6 (Whitney)

Let Ω be a bounded domain in R^n with C^2 boundary $\partial\Omega$. If ξ is a C^1 function defined on $\partial\Omega$, then for any positive number ϵ and any $p\geq 1$, there exists an extension θ_0 of ξ such that

$$\theta_0 \in C^1(\mathbb{R}^n)$$
,

$$\theta_0 = \xi$$
 , $\frac{\partial \theta_0}{\partial n} = 0$ on $\partial \Omega$,

$$\|\theta_0\|_p < \epsilon$$
.

<u>Proof.</u> It is well known as Whitney's extension theorem(see Malgrange[6]). In the case n=3, we can prove it directly(Morimoto[8]), and it is easy to extend to the general case.

§3. Proof of Theorem 1.

Under our assumptions on $\partial\Omega$ and ξ , we have an extension θ_0 of ξ (Lemma 6), and we study the equation (1-4). Using the Galerkin method, we construct approximate solutions of (1-4). Let $\{\phi_j\}$ be a sequence of functions in D_σ , linearly independent and total in \widehat{V} . We can assume $(\nabla\phi_j,\nabla\phi_k)=\delta_{jk}$ without loss of generality. Let $\{\psi_j\}$ be a sequence of functions in D_0 , linearly independent and total in \widehat{W} . We can assume $(\nabla\psi_j,\nabla\psi_k)=\delta_{jk}$. Since \widehat{V} (resp. \widehat{W}) is separable and D_σ (resp. D_0) is dense there, we can find these functions. We put

$$u^{(m)} = \sum_{j=1}^{m} \xi_{j} \varphi_{j}$$
, $\theta^{(m)} = \sum_{j=1}^{m} \xi_{m+j} \psi_{j}$,

and we consider the following system of equations:

(3-1)
$$v(\nabla u^{(m)}, \nabla \varphi_j) + ((u^{(m)} \cdot \nabla) u^{(m)}, \varphi_j) - (\beta g \theta^{(m)}, \varphi_j) - (\beta g \theta_0, \varphi_j)$$

= 0, $1 \le j \le m$.

$$(3-2) \quad \kappa(\nabla \theta^{(m)}, \nabla \psi_{\mathbf{j}}) \ + \ ((\mathbf{u}^{(m)} \cdot \nabla) \theta^{(m)}, \psi_{\mathbf{j}}) \ + \ ((\mathbf{u}^{(m)} \cdot \nabla) \theta_{0}, \psi_{\mathbf{j}})$$

$$+ \quad \kappa(\nabla \theta_{0}, \nabla \psi_{\mathbf{j}}) \ = \ 0, \qquad \qquad 1 \le \mathbf{j} \le \mathbf{m}.$$

Substituting $u^{(m)}$, $\theta^{(m)}$ into these equations, we obtain:

$$(3-3) \quad \xi_{\mathbf{j}} + \frac{1}{\nu} \sum_{\mathbf{k}, \ell} \xi_{\mathbf{k}} \xi_{\ell} ((\varphi_{\mathbf{k}} \cdot \nabla) \varphi_{\ell}, \varphi_{\mathbf{j}}) - \frac{1}{\nu} \sum_{\mathbf{k}} \xi_{\mathbf{m}+\mathbf{k}} (\beta g \psi_{\mathbf{k}}, \varphi_{\mathbf{j}}) - \frac{1}{\nu} (\beta g \theta_{0}, \varphi_{\mathbf{j}}) = 0 , \qquad 1 \leq \mathbf{j} \leq \mathbf{m},$$

$$(3-4) \quad \xi_{\mathbf{m}+\mathbf{j}} + \frac{1}{\kappa} \sum_{\mathbf{k}, \ell} \xi_{\mathbf{k}} \xi_{\mathbf{m}+\mathbf{k}} ((\varphi_{\mathbf{k}} \cdot \nabla) \psi_{\ell}, \psi_{\mathbf{j}}) + \frac{1}{\kappa} \sum_{\mathbf{k}} \xi_{\mathbf{k}} ((\varphi_{\mathbf{k}} \cdot \nabla) \theta_{0}, \psi_{\mathbf{j}}) + (\nabla \theta_{0}, \nabla \psi_{\mathbf{j}}) = 0, \qquad 1 \leq \mathbf{j} \leq \mathbf{m}.$$

The left hand side of (3-3), (3-4) determines a polynomial which we denote by

$$\xi_{i} - P_{i}(\xi_{1}, \xi_{2}, \dots, \xi_{2m})$$
 , $1 \le j \le 2m$.

 P_j is a polynomial in $\xi = (\xi_1, \cdots, \xi_{2m})$ of degree 2. Let P be a mapping from R^{2m} to R^{2m} defined by $P(\xi) = (P_1(\xi), \cdots, P_{2m}(\xi))$. Then the fixed point ξ of P, if it exists, is a solution of (3-3), (3-4). We show the existence of a fixed point of P. Let $\xi = \xi(\lambda)$ be any solution of $\xi = \lambda P(\xi)$, $0 \le \lambda \le 1$. First we treat the case $n \ge 3$.

$$\begin{split} \sum_{j=1}^{m} \|\xi_{j}\|^{2} &= \|\nabla u^{(m)}\|^{2} = \lambda \sum_{j=1}^{m} P_{j}(\xi)\xi_{j} \\ &= -\frac{\lambda}{\nu} \sum_{j,k,\ell} \xi_{j} \xi_{k} \xi_{\ell}((\varphi_{k} \cdot \nabla)\varphi_{\ell}, \varphi_{j}) + \frac{\lambda \beta}{\nu} \sum_{j,k} \xi_{m+k} \xi_{j}(g\psi_{k}, \varphi_{j}) \\ &+ \frac{\lambda \beta}{\nu} \sum_{j} \xi_{j}(g\theta_{0}, \varphi_{j}) \\ &= -\frac{\lambda}{\nu}((u^{(m)} \cdot \nabla)u^{(m)}, u^{(m)}) + \frac{\lambda \beta}{\nu}((g\theta^{(m)}, u^{(m)}) + (g\theta_{0}, u^{(m)})) \\ &\leq \frac{\lambda \beta g_{\infty}}{\nu} (\|\theta^{(m)}\| + \|\theta_{0}\|)\|u^{(m)}\| \\ &\leq \frac{\lambda \beta g_{\infty} C_{1}}{\nu} (c_{2}\|\nabla\theta^{(m)}\| + \|\theta_{0}\|)\|\nabla u^{(m)}\|, \end{split}$$

where we have used Lemmas 4,5. Thereby,

$$(3-5) \|\nabla u^{(m)}\| \leq \frac{\lambda \beta \varepsilon}{\nu} e^{C_1} (c_2 \|\nabla \theta^{(m)}\| + \|\theta_0\|).$$

Similarly,

$$\begin{split} \sum_{j=1}^{m} \|\xi_{m+j}\|^2 &= \|\nabla\theta^{(m)}\|^2 = \lambda \sum_{j=1}^{m} P_{m+j}(\xi)\xi_{m+j} \\ &= -\frac{\lambda}{\kappa} \sum_{j,k,\ell} \xi_k \xi_{m+\ell} \xi_{m+j}((\phi_k \cdot \nabla)\psi_{\ell}, \psi_{j}) \\ &+ \frac{\lambda}{\kappa} \sum_{j,k} \xi_k \xi_{m+j}((\phi_k \cdot \nabla)\psi_{j}, \theta_0) - \lambda \sum_{j} \xi_{m+j}(\nabla\theta_0, \nabla\psi_{j}) \\ &= -\frac{\lambda}{\kappa} \left\{ ((u^{(m)} \cdot \nabla)\theta^{(m)}, \theta^{(m)}) - ((u^{(m)} \cdot \nabla)\theta^{(m)}, \theta_0) \right\} - \lambda (\nabla\theta_0, \nabla\theta^{(m)}) \\ &\leq \frac{\lambda}{\kappa} \|u^{(m)}\|_{2n/(n-2)} \|\nabla\theta^{(m)}\| \|\theta_0\|_n + \lambda \|\nabla\theta^{(m)}\| \|\nabla\theta_0\| \\ &\qquad \qquad (by \ \text{H\"older's inequality}) \end{split}$$

$$\leq \frac{\lambda c}{\kappa} \| \nabla \mathbf{u}^{(m)} \| \| \nabla \boldsymbol{\theta}^{(m)} \| \| \boldsymbol{\theta}_0 \|_n + \lambda \| \nabla \boldsymbol{\theta}_0 \| \| \nabla \boldsymbol{\theta}^{(m)} \|$$

(by Lemma 3).

For n = 2, we have

$$\| \nabla \boldsymbol{\theta}^{\, (m)} \|^{\, 2} \, \leq \, \frac{\lambda c}{\kappa} \, \| \nabla \mathbf{u}^{\, (m)} \| \| \nabla \boldsymbol{\theta}^{\, (m)} \| \| \boldsymbol{\theta}_{\boldsymbol{0}} \|_{\, 4} \, + \, \lambda \| \nabla \boldsymbol{\theta}_{\boldsymbol{0}} \| \| \nabla \boldsymbol{\theta}^{\, (m)} \| \, .$$

Thereby,

$$(3-6) \|\nabla \theta^{(m)}\| \leq \frac{\lambda c}{\kappa} \|\theta_0\|_p \|\nabla u^{(m)}\| + \lambda \|\nabla \theta_0\|.$$

where p = n when $n \ge 3$, and p = 4 when n = 2. Substituting

(3-6) into (3-5), we obtain:

$$(1 - \frac{cc_1c_2\beta g_{\infty}\lambda^2}{\kappa \nu} \|\theta_0\|_{p}) \|\nabla u^{(m)}\| \leq \frac{\lambda c_1\beta g_{\infty}}{\nu} (c_2\lambda \|\nabla\theta_0\| + \|\theta_0\|).$$

According to Lemma 6, we can choose θ_0 such that

$$(3-7) \quad 1 - \frac{cc_1c_2\beta g}{\kappa v} \|\theta_0\|_p > \frac{1}{2}$$

holds. Then, we have

$$(3-8) \|\nabla \mathbf{u}^{(m)}\| \leq \frac{2\lambda c_1 \beta g}{\nu} (c_2 \lambda \|\nabla \theta_0\| + \|\theta_0\|)$$

$$\leq \frac{2c_1 \beta g}{\nu} (c_2 \|\nabla \theta_0\| + \|\theta_0\|) \equiv \rho_1.$$

Similarly, using (3-7), we have:

$$(3-9) \|\nabla\theta^{(m)}\| \le 2\|\nabla\theta_0\| + \frac{1}{c_2}\|\theta_0\| \equiv \rho_2.$$

Note that ρ_1 and ρ_2 are constants independent of λ and m.

Thereby the solution ξ of $\xi = \lambda P(\xi)$ satisfies:

$$\sum_{j=1}^{2m} |\xi_j|^2 \le \rho_1^2 + \rho_2^2 \equiv \rho^2 , \text{ for } 0 \le \forall \lambda \le 1.$$

Leray-Schauder's Theorem[4] tells us the existence of a fixed point of the mapping P: $\xi = P(\xi)$, such that $|\xi| \le \rho$. Thus we have obtained the solutions $u^{(m)}$, $\theta^{(m)}$ of (3-1), (3-2).

Moreover, they satisfy the estimates:

$$\| \nabla \mathbf{u}^{\left(\mathbf{m} \right)} \| \leq \rho_1 \quad , \ \| \nabla \boldsymbol{\theta}^{\left(\mathbf{m} \right)} \| \leq \rho_2 \ .$$

Since V (resp.W) is compactly imbedded in H_{σ} (resp. L^2), we can choose subsequences of $\{u^{(m)}\}, \{\theta^{(m)}\}$ which we denote by the same symbols, and elements $u \in V$, $\theta \in W$ such that the following convergences hold:

(3-10)
$$u^{(m)} \longrightarrow u$$
 weakly in V, strongly in H_{σ}

(3-11)
$$\theta^{(m)} \longrightarrow \theta$$
 weakly in W, strongly in $L^2(\Omega)$.

For these convergent sequences, the following lemma holds:

Lemma 7

$$B(u^{(m)}, u^{(m)}, v) \longrightarrow B(u, u, v)$$
, for $\forall v \in D_{\sigma}$
 $b(u^{(m)}, \theta^{(m)}, \tau) \longrightarrow b(u, \theta, \tau)$, for $\forall \tau \in D_{\sigma}$.

The proof is found in [9] and omitted. Using this lemma for (3-1), (3-2), we find

$$(3-12) \qquad v(\nabla u, \nabla v) + B(u, u, v) - (\beta g\theta, v) - (\beta g\theta_0, v) = 0 ,$$

$$(3-13) \qquad \kappa(\nabla\theta, \nabla\tau) + b(u, \theta, \tau) + b(u, \theta_0, \tau) + \kappa(\nabla\theta_0, \nabla\tau) = 0 ,$$

hold for $v=\phi_j$, $\tau=\psi_j$, $\forall\,j$. By Lemma 4, we see the linear functional

$$v \longrightarrow B(u,u,v) \text{ (resp. } \tau \longrightarrow b(u,\theta,\tau) \text{)}$$

is continuous in L^n . Thereby the linear functional

$$v \longrightarrow the left hand side of (3-12)$$

(resp. τ \longrightarrow the left hand side of (3-13)) is continuous in $V \cap L^n$ (resp. $W \cap L^n$). Since $\{\phi_j\}$ (resp. $\{\psi_j\}$) is total in \widehat{V} (resp. \widehat{W}), (3-12)(resp. (3-13)) holds for any v in \widehat{V} (resp. \widehat{W}). Thereby $\{u,\theta\}$ is a required weak solution.

§4. Proof of Theorem 2.

Let $\{u_i, \theta_i\}$, i=1,2, be weak solutions of (1-1), (1-2) satisfying (i), (ii). For i = 1,2, there is a function $\theta_0^{(i)}$ satisfying the condition in Definition 1. Then u_i and $\theta_i - \theta_0^{(i)}$ satisfy (1-4). Since $\theta_0^{(1)} - \theta_0^{(2)}$ is 0 on Γ_1 , it belongs to W. Thereby, $\theta_1 - \theta_2$ is also in W. Put $u = u_1 - u_2$ $\theta = \theta_1 - \theta_2$. Then, they satisfy the following:

Here we have used Lemma 5. From the condition (i), we see $u \in \widetilde{V}, \theta \in \widetilde{W}$.

Therefore, we can take $v = u, \tau = \theta$, and we have

Let $n \ge 3$. Making use of the Hölder's inequality and Lemma 5 to estimate (4-2), we have

By Lemma 3, we estimate the right hand side of the above equations, and we obtain:

$$\begin{split} & v \| \nabla \mathbf{u} \| \, \leq \, \mathbf{c} \| \mathbf{u}_1 \|_n \, \| \nabla \mathbf{u} \| \, + \, \beta \mathbf{g}_{\infty} \mathbf{c}_1 \mathbf{c}_2 \| \nabla \theta \| \, \, , \\ & \kappa \| \nabla \theta \| \, \leq \, \mathbf{c} \| \theta_1 \|_n \, \| \nabla \mathbf{u} \| \, . \end{split}$$

Thereby,

 $v\|\nabla \mathbf{u}\| \leq \{\mathbf{c}\|\mathbf{u}_1\|_{\mathbf{n}} + \frac{\beta g_{\infty} \mathbf{c} \mathbf{c}_1 \mathbf{c}_2}{\kappa} - \|\boldsymbol{\theta}_1\|_{\mathbf{n}}\}\|\nabla \mathbf{u}\|$

holds. Since u_1 , θ_1 satisfy the condition (ii):

$$c\|u_1\|_n + \frac{\beta g_{\infty} cc_1 c_2}{\kappa} \|\theta_1\|_n \leq \nu,$$

therefore $\|\nabla u\| = \|\nabla \theta\| = 0$. Since u = 0 on $\partial \Omega$ and $\theta = 0$ on Γ_1 , we see u = 0, $\theta = 0$ in Ω . Thereby $u_1 = u_2$, $\theta_1 = \theta_2$ in Ω .

When n = 2, we have

$$\begin{split} & \|\nabla \mathbf{u}\|^2 \leq \|\mathbf{u}\|_{\mathbf{p}}, \|\nabla \mathbf{u}\| \|\mathbf{u}_1\|_{\mathbf{p}} + \beta \mathbf{g}_{\infty} \|\boldsymbol{\theta}\| \|\mathbf{u}\| \ , \\ & \|\nabla \boldsymbol{\theta}\|^2 \leq \|\mathbf{u}\|_{\mathbf{p}}, \|\nabla \boldsymbol{\theta}\| \|\boldsymbol{\theta}_1\|_{\mathbf{p}} \ . \end{split}$$

where 1/p + 1/p' = 1/2. We discuss in a similar way to the case $n \ge 3$, and we have u = 0, $\theta = 0$. Theorem is proved.

References.

- [1] R.A.Adams, Sobolev Spaces, Academic Press, New York, 1975.
- [2] H.Brezis, Analyse fonctionnelle. Théorie et applications,
 Masson, Paris, 1987
- [3] Y.Giga, Solutions for semilinear parabolic equationa in L^p and regularity of weak solutions of the Navier-Stokes system, J.Diff. Eq. 62(1986) no.2,186-212.
- [4] D.Gilbarg and N.S.Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, 1983.
- [5] D.D.Joseph, On the stability of the Boussinesq equations,

- Arch.Rat.Mech.Anal., 20(1965), 59-71.
- [6] B.Malgrange, Ideals of Differentiable Functions, Tata
 Institute of Fundamental Reseach, Oxford Press,
 Bombay, 1966.
- [7] K.Masuda, Weak solutions of Navier-Stokes equations,
 Tôhoku Math. J., 36(1984),623-646.
- [8] H.Morimoto, On the existence of weak solutions of equation of natural convection, to appear in J. Fac. Sci.Univ. Tokyo, Sec. IA, Vol. 36 No. 1.
- [9] R.Temam, Navier-Stokes Equations, North-Holland,
 Amsterdam, 1977.