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On the existence of weak solutions of

stationary Boussinesq equation
Hiroko MORIMOTO (aﬁyaj;"'i’ 13 &% 5’{“3')

81. Notations and results.

In this paper, we discuss the existence of weak solutions
of equations which describe the motion of fluid of natural
convection (Boussinesq approximation) in a bounded domain  in
Rn, 2 £ n. We consider the following system of differential

equations which is called stationary Boussineoq equation:
(u*v)u = - % Vp + vV Au + B8 g 8§ ,
(1-1) { divu = 0 , | in Q
(u*v)8 = x A8 ,
where uw-V = ; u, %E.' Here u is the fluid velosity, p is the
J J
' préssure , 0 is the temperature, g is the gravitational vector
function, and p(density), v(Kinematic ﬁisoosity), B(coefficient
of volume expansion), K{(thermal conductivity) are positive
constants. We study this system of equations with mixed
boundary condition for 6.

In the previous paperl 8], we treated this problem only for
the case n = 3. By using the Galerkin method, we can show the
existence of weak solution, for any integer n greater than or
équal to 2. Some uniduéness result is also obtained.

Let 8Q (the boundary of Q) be devided into two parts r,, Te

such that
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M =r,ur,, r,nr, = ¢.
The boundary conditions are as follows.
u=0re=g’ onrl’
(1-2)
0, g_e'-' O ’ on r2’

u

where £ is a given function on 'y, n is the outer normal vector

to 2Q. If we can find a function 68y defined on Q, of class

C2(n C1(Q), satisfying 6, = £ on I'; and %; 8o = 0 on I,
then we can transform the equations (1-1),(1-2) for u and

9 =0- 0, ahd we obtain the following:
1

(u*9u = - 5 VP + vAu + Bgd + Bgly , in Q ,
divu=0, in Q ,
(1-3) (u-v)¥ = kA - (u'v)8, + ¥ A8y , in Q ,
u=0,8=0 |, on My,

- 98 _
us=0, on ° o, on Is.

For the domain §}, we assume:

" Condition(H)

Q is a bounded domain in Rn with C2 Boundary. The
boundary 3 of Q is devided as follows:

M =Tr,vr, , ry nr; = ¢ , measure of r{y # 0,

and the intersection F,n Fz is a n-1 dimensional C! manifo{d.

In order to state the definition of weak solution and our

result, we introduce some

F tion es
Do = {vector function @GCM(Q)Isupp pcQ , div ¢=0 in Q}
H = completion of D, under the L2(Q)-norm
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= completion of D_ under the H!(Q)-norm

+ full, n

\'
V = completion of Do under the norm HuﬂHl(Q) LMy

Do = { scalar function ¢ € C ()]
® = 0 in a neighborhood of "'y} ,
W = completion of Dy under the H!(Q)-norm

¥ = completion of Dy under the norm "U"H1(Q)+ ﬂuHLn(Q).

Consider L2 inner product of the first equation of (1-3) with v
in V " and the third equation of (1-3) with T in W. Then we

obtain:

Auxiliary problem: Find u € V and § € W satisfying

( v(Vu,vv) + B(u,u,v) = (Bg@,v) -(8glgy,v) = 0 ,

for all v in V ,

(1—4){ '
k(v¥,vT) + b(u,¥,t) + b(u,0,,T) + K(Vy,VT) = 0,
\ for all © in W ,
where
B(u,v,w) = ((u-V)v,w)
n v (x)
=Jq 2 w0 e w0 dx,
i, j=1 J
and
b(u,8,t) = ((u-v)08,T)
n
= fQ > u,(x) Qgizl T(x) dx .
j=1 4 X,

Now, we define the weak solution of (1-1),(1-2).

Definition 1. The pair of functions {u,0) is called a weak

solution of (1-1),(1—2), if there exists a function 84 in Cf(ﬁ)
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such that we€ v , 0 - 0, € W, 65 = £ on 'y, g; 8o = 0 on Ty,

and, {u,¥) ( ¥ = 0 - 6y) satisfies (1-4).

Now, we state our results.
Theorem 1
Let Q@ be a bounded domain in Rn with C? boundary satisfying

the condition (H). If the function g(x) is in Lm(Q) and € is

of class C{(FT),then there exists a weak solution of (1-1),(1-2).

Remark 1

Generaly, Vc v n LP@Q) and ¥ ¢ w n L™Q). For 2 < n < 4,

V=vVand W=w (c.f.Masudal7], Giga[3] ).  Therefore our
theoremvcontains the result of [8].

Let g = HgHLm(Q) , and ¢,cy,c2 be constants in Lemma 3
(§2>. As for the uniqueness, we have:
Theorem 2

The weak solution {(u,0) of (1-1),(1-2) satisfying
(i) ueLl@, 6erL™,
(ii) clull + ﬁgwgﬁlgz— 16l < v, whenn >3,
((ii)! cllullp + ﬁgwgﬁlgg_ HGHp < v, for some p > 2, when n = 2 )
is , if it exists, unique.
Remark 2

The condition (i) is automatically satisfied when 2 < n £ 4.

Remark 3

If we set

c

Re = I Hunn (Reynolds number),



Ra = Br,ccico_ el (Rayleigh number),
VK n
then the condition (ii) reads as
Re + Ra < 1.

See also Joseph[I5].

§2. Some lemmas.
In this section, we prepare some lemmas.
Lemma 1
V and W are separable Banach spaces.
Proof. A subset of separable metric space is separable(e.g.
Brezis[21). 1f we show V n L™CQ) is separable, Lemma is

proved. We can identify V n L"(Q) as a subset

_

e . n
axlv, vee s Bx v); vV € VN L))

n

F = {(v,

of Ln(Q)x L2(Q)x+ % L2(Q). Since the latter space is

'separable, the set F is also separable and Lemma 1 is proved.

Lemma 2 (Sobolev)

Sobolev spéce H1(Q) is continuously imbedded in Lq(Q);

2n
n-2

For the proof , see Adams([11].

where q = for n 23, and + ® > q 21 for n = 2.

Lemma 3 (Poincare)

There exist constants c;, c2, ¢ depending on Q and n

such that



64

(i) lul < c,lvul for Yu € Vv ,

(ii) Huﬂq < c“Vuﬂ for Yu €V, q = nﬁg (n23),
q = 4 (n=2),

(iii) el < c,lval for Y0 € W.

These constants are used in the statement of Theorem 2.
For the proof of (i),(iii), see Morimoto[8]. (ii) follows

from (i) and Lemma 2.

By Holder's inequality and Lemmas 2,3, we have:

Lemma 4

Let n = 3. There exists a constant Cp depending on Q and

n such that
IBCu,v,w)| < cglvulivvilvi
for Yu € V,Yv € H!(®),Yw € L),
Ib(u,08,t)| < cglvallivelich

for Yu € V,¥0 € H1(®),t € LM,
hold.

Using the integration by parts, we obtain:

Lemma 5
(i) B(u,v,w) = - B(u,w,V) for Yue€ vV, Yv,w € H! n L"
holds. In particular,'

B(u,v,v) = 0 for Y u €V, Yv € H! n LM .

(ii) b(u,8,7)

- b(u,t,8) for Y u €V, Y 8,t € H' n L",
holds. In particular,

" b(u,0,0) = 0 for Yuev, Y eH nL"



Lemma 6 (Whitney)

Let Q be a bounded domain in R™ with C2 boundary . If &
is a C! function defined on 8Q, then for any positive number €
and' any p 2 1, there exists an extension 8, of £ such that

8, € Cl(rM,

8 =&, 2% -4 on ag,

an
4] .
I o“p < &
Proof. It is well known as Whitney's extension theorem(see
Malgrangel6]). In the case n = 3, we can prove it

directly( Morimoto[81), and it is easy to extend to the general

case.

§3. Proof of Theorem 1.

Under our assumptions on 8Q and £, we have an éxtension 0o
of € (Lemma 6), andee study the equation (1-4). Using the
Galerkin method, we construct approximate solutions of (1-4).
Let (wj) be a sequence of functions in Do , linearly independent
and total in V. We can assume (V¢j,V¢k) = ajk without loss of
generality. Let (wjf be a sequence of functions in Do,
linearly independent and total in ¥. We can assume (ij,Vwk) =
8,x- Since V (resp. ¥ ) is separable and D, (resp. Do ) is
dense there, we can find theée functions. We pﬁt

m m
e ke, 0™ =3 ¢
j=1

=1 me 3%

and we consider the following system of equations:
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(3-1) v(Vu(m),V¢j) + ((u(m)°V)u(m),¢j) - (Bge(m).Qj) - (Bg80,9;)

= 0, 1 < j<m.

3-2) k8™ W v @™ ?e™ o+ c@™emeg

+ |<<v90,w«.) = 0, 1 <j < m.
Substituting u(m), G(m)lnto these equatlons, we obtain:
. 1 . 1 -
(3-8) &, + kZQ EyEg (@ 9199,0) - | E Ena (BEY 0 )
1 _ .
v(Bgeo,cpj) = , 1< j<m,

+

R~ O

' 1 . .
(3-4) g .+ sz ek (P V¥ ¥ ) 2 8, (9 7)80,¥,)

K
+(V80, % ) = 0, 1 <j<m.

The left hand side of (3-3),(3-4) determines a polynomial which

we denote by

ﬁj - Pj(£1t€29"",&2m) ’ 1 < j < 2m

Pj is a polynomial in € = (51,-~‘,§2m) of degree 2. Let P be a
mapping from R2m to R2m defined by P(E) = (Pl(ﬁ),°'°‘,P2m(E)).
Then the fixed point & of P, if it exists, is a solution of
(3-3),(3-4). We show the existence of a fixed point of P.

Let £ = E(X) be any solution of &€ = XP(&), 0 £ x £ 1. First we

treat the case n 2 3.

m
S le. |2 = gva™ 2 = 2 P (E)E,
j=1 1 B SR
_ _ A _L
- i) J E 2& gkiﬂ((¢k V)¢Q,¢ ) + z €m+k§ (gwk,¢ )

A8
F Ty 2 8 00,0

(m)

= - ﬁ((u‘m)-V)u ™y . 5%((ge(m),u‘m’)+ (g0o,u'™)y)

< &ﬁgw Ao ™+ we i nu™y
< Aﬁﬁwgl Cco1ve ™y« g nve ™y,

where we have‘used Lemmas 4,5. Thereby,
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(3-5) Iva ™y < 2L (oouve ™y 4 w1,

Similarly,
m

K

2 (m),»o o
DL L A hiad EEEIE DI SUC 2L
j=1 “j=1
= -2 3 pE B (e VW, ¥,
K . K°m+8°m+j k 2°* 7]
J,k,.q,
+2 Tk ((@, ¥ .,80) - A2 & (8o, VY )
Ko keme Pk j* Yo T om 02 7¥j
= - 2 tcaw™evye™ 0™y ™ 9300001 -1 (98,70 ™)
A (m) (m) (m)
< ” Hu "2n/(n—2)"ve uueonn + xllve w8,
» (by Holder's inequality)
< Ac “Vu(m)HHVG(m)Hﬂeoﬂn + xlvegilive ™y

(by Lemma 3).

For n = 2, we have

196 ™2 < 2 you ™ yuve ™ yneons + xuveonnve ™y,

Thereby,

(3-6) Ive ™) < 2¢ uébnp Iva ™| + A 1ve,l.

wvhere p = n wvhen n 2 3, and p = 4 when n = 2.. Substituting
(3-6) into (3-5), we obtain:
e 42 ' :
C(1- SC1CoBB AT g gy e My < 2c2BZ
.. KV P v
ACéording to Lemma 6, we can choose 6, such thatA

TN . _eccicoBe o 1
(3-7 1 Xy 2 ueonp > 5

holds. Then, we have

(3-8) Ivu‘™y < Zéﬁtﬁg

< 2B&e (coivaol + N8> = 0.

@ (coallvioll + U8l

© (cxllvloll + 81D

Similarly, using (3-7), we have:

(3-9) 1ve™y < 20ve,l + %Zueon 04

Note that p; and p, are constants independent of A and m.
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Thereby the solution € of € = XP(E) satisfies:

2m
> Iﬁjl2 < pt + p5 = p2, for 0 < Y < 1.

i=1 _
Leray-Schauder's Theorem[ 41 tells us the existence of a fixed
point-of the mapping P: &€ = P(£), such that‘IEI < p. Thus we
have obtained the solutions u'™,8™ of (3-1),(3-2).

Moreover, they satisfy the estimates:

{(m)

ivu‘™y <o, , 1ve™y < p,

Since V (resp.¥W) is compactly imbedded in Ho (resp. L2%), we
can choose subsequences of {u(m)},(e(m)} which we denote by the
same symbols, and elements u € V, 8 € W such that the following

convergences hold:

(3-10) u(m) — u weakly in V, strongly in Ho

(3-11) 8™ — g weakly in W, strongly in L2(Q).
For these convergent sequences, the following lemma holds:
Lemma 7

B(u(m),u(m),v) —— B(u,u,v) , for v € D,

ba™, 0™ 1) —— b(u,8,tv) , for vt € Do .
The proof is found in [ﬁ] and omitted. Using this lemma for

(3-1),(3-2), we find

(3-12) v(vu,vv)+B(u,u,v)-(Bgl,v)- (Bgly,v) = 0

*

(3-13) K(v0,vT)+b(u,0,T)+b(u,08p,T)+ K(V8p,VT) = O

hold for v = ¢y T = wj , Yi . By Lemma 4, we see }hé linear
functional

v — B(u,u,v) (resp. T — b(u,0,t) )
is continuous in L" . Thereby fhe linear functional

v — the left hand side of (3-12)
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(resp. t — the left hand side of (3-13) )

is continuous in V n LM (resp. w n L" ).  Since (9.}

J
(resp.{wj)) is total in V (resp.W ) , (3-12)(resp.(3-13)) holds
for any v in V (resp.¥). Thereby {u,98) is a required weak

solution.

§4. Proof of Theorem 2.
Let (u;,0,), i=1,2, be weak solutions of (1-1),(1-2) |

satisfying (i),(ii). For i = 1,2, there is a function 68,1’

satiéfying the condition in Definition 1. vThen ui and

6, <1 _ g, @

8. - 8,1 satisfy (1-4). Since

i is 0O onTl, , it

belongs to W. Thereby, 8, - 0, is also in V. Put u = u;~- us
0 = 0;,~- 085. Then, they satisfy the following:

v(vu,vv) + B(u,u;,v) + B(up,u,v) - (Bgu,v) = 0, v € V,

(4-1)
k(v0,vr) + b(u,8;,T) + blu,,0,t) = 0, YTt € W.

Here we have used Lemma 5. From the condition (i), we see
uevV, 0€eW.
Therefore, we can take v = u,t = 9, and we have

vliivul? + B(u,u;,u)-Bg(8,u) = 0,

(4-2)
klvel? + b(u,8,,0) = 0.

"Let n = 3. Making use of the Holder's inequality and
Lemma 5 to estimate (4-2), we have
vival?2 < Jlull, Ival Hu1ﬂn + Bg l9lillal ,

2n/(n-2)
klvallz < Hull ivoll uelun .

2n/(n-2)

- 11 -
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By Lemma 3, we estimate the right hand side of the above
equations, and we obtain:

vivul < cllugll_ Ivul + Bg_cicolvell ,

klivel < c"Glﬂn Ivull.
Thereby,

vival < (cllu;ll_ + —ﬁgmﬁglg2— 16,4 > ivul

holds. Since uy , 6; satisfy the condition (ii):
Bg_ccico_
cﬂuiﬂn + e "91"n < v,
therefore lvull= IVl = 0. Since u = 0 on 9Q and 8 = 0 on [y,
we see u = 0, 6= 0 in Q. Thereby u;= u, , 9; = 6, in Q

When n = 2, we have

vivaull? < Huﬂp,HVuH Hulﬂp + Bg_lolillul

kllvelz < flu vo 0
ivel I Hp,ﬂ o 1Hp
where 1/p + 1/p' = 1/2. We discuss in a similar way to the

case n 2 3, and we have u = 0, 9 = 0. Theorem is proved.
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