
129

Factorizations of the Orlik-Solomon
Algebras

By Hiroaki TERAO
Department of Mathematics, International Christian University

寺尾宏明 (国際基督教大（ICU)）
1 Introduction.
Let $L$ be a finite geometric}attice with the top element $1$

タ

and the bottom ele-
ment $\hat{0}$ , and the rank function $r$ . Let $r=r(i)$ . The characteristic polynomial
of $L$ is defined by

$\chi(L;t)=\sum_{\lambda\in L}\mu(\hat{0},X)t^{r-r\langle X)}$ .

In the right handside $\mu$ is the M\"obius function [6]. For certain geometric
lattices including the supersolvable lattices [7], it is known that the charac-
teristic polynomial $\chi(L;t)$ factors as

$\chi(L;t)=\prod_{i=1}^{f}(t-d_{i})$ (each $d_{i}$ is a nonnegative integer).

In this paper we prove a sufficient condition (2.9) of the factorization of this
type. The condition is stated as the existence of a “nice” partition of the
set $A=A(L)$ of atoms of $L$ . It is not difficult to check that a supersolvable
geometric lattice admits a $\iota nice$” partition (2.4).

In fact we will actually show a stronger result. Let us briefly explain about
it. Let $K$ be an arbitrary field. In [4, p. 171] the Orlik-Solomon al$g$ebra $OS(L)$

of $L$ over $K$ was introduced. It is a graded anticommutative K-algebra. One
of the most important results concerning $OS(L)$ is [4] :

Poin $(OS(L);t)= \sum_{\lambda\in L}\mu(\hat{0},X)(-t)^{r(X)}$ .
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Here the left handside stands for the Poincar\’e series of the graded algebra
$OS(L)$ . Suppose that we have a partition $(\pi_{1}, \ldots , \pi_{*})$ of the set $A$ of atoms
of $L$ . Define

$(\pi;);=$ the vector space over $K$ spanned by 1 and the elemenets of $\pi_{i}$

for $i=1,2,$ $\ldots$ , $s$ .
Then the main theorem (2.8) in this paper is that there exists a natural

graded vector space isomorphism

$\prime_{\iota}’$ : $(\pi_{1})\otimes(\pi_{2})\otimes\cdots\otimes(\pi_{s})arrow 0S(L)$

if and only if the partition $(\pi_{1}, \ldots , \pi_{s})$ is “nice”.
The above-mentioned sufficient condition easily follows from the main

theorem.

2 Main Theorem and Its Corollaries.

Let $L,$ $K,$ $A=A(L),$ $OS(L)$ be as in the previous section.

Definition 2.1 A partition $\pi=(\pi_{1}, \ldots, \pi_{s})$ of $A$ is called independent if
atoms $H_{1},$ $\ldots.H_{s}$ are independent $(i. e., r(H_{1}\vee\cdots\vee H_{s})=s)$ whenever
$H;\in\pi;(i=1, \ldots, s)$ .

For $X\in L$ , define

$L_{X}$ $:=\{Y\in L|Y\leq X\},$ $A_{X}$ $:=A(L_{X})=\{H\in A|H\leq X\}$ .

Definition 2.2 Let $X\in L$ . Let $\gamma_{\{}=$ $(\gamma_{t}1, \ldots , \pi_{s})$ be a partition of $A$ . Then
the induced partition $\tau tX$ is a partition of $A_{X}$ whose blocks are the subsets
$\pi;\cap A_{X}(i=1, \ldots, s)$ which are not empty.

Definition 2.3 A partition $\pi=$ $(\pi_{1}, \ldots , \tau_{s})$ of $A$ is called nice if:
1) it is independent, and
2) the induced partition $\pi_{X}$ contains a block which is a singleton unless

$A_{X}\neq\emptyset$ .
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Remark. In [2], M. Falk anf M. Jambu studied a similar partition. A
major difference from ours lies in their assumption that the characteristic
polynomial of $L$ factors completely in $Z[t]$ .

Example 2.4 Let $L$ be a supersolvable lattice. Then the set $\mathcal{A}=A(L)$

admits a nice partition. In fact, define

$\pi_{i}=\{H\in A|a\leq X_{i}, H\not\leq X_{i-1}\}$

fora chain of modular elements

$\hat{0}=X_{0}<X_{1}<\cdots<X_{r}=\hat{1}$ $(r(X_{i})=i)$ .

Then it is not difficult to show that a partition $\pi=(\pi_{1}, \ldots, \pi_{f})$ is a nice
partition.

Example 2.5 Consider the lattice arising from the following matroid (the
non-Fano matroi d)

3

For this, $\{\{1\}, \{2,3,4\}, \{5,6,7\}\}$ is a nice partition.
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For a partition $\pi=$ $(\pi_{1}, \ldots , \pi.)oiA$ , define a graded vector space

$(\pi)$ $:=(\pi_{1})\otimes(\pi_{2})\otimes\cdots\otimes(\pi.)$ ,

where each graded vector space $(\pi_{i})$ is as in the Introduction. Agree that
$(\pi)=K$ when $A=\emptyset$ . Since the Poincar\’e series Poin $((\pi;);t)$ of each $(\pi;)$ . is
equal to $(1+|\pi;|t)$ , we obtain

Poin $(( \pi);t)=\prod_{\mathfrak{i}=1}^{s}(1+|\pi;|t)$ .

Definition 2.6 A k-tuple $I=$ $(H_{1}, \ldots , H_{k})$ $(k\geq 0)$ of elements of $A$ is
called a k-section of $\pi$ if

$H;\in\pi_{n(i)}(i=1, \ldots, k)$ , $1\leq n(1)<n(2)<.$ . . $<n(k)\leq s$ .

For a k-section $I=$ $(H_{1}, \ldots , H_{k})$ , define $p_{l}$ by

$p_{I}$ $:=x_{1}\otimes\cdots\otimes x_{s}\in(\pi)$ .

Here
$x_{j}=\{\begin{array}{l}H_{i}iij=n(i)liij\not\in\{n(l),\ldots,n(k)\}\end{array}$

Then $p_{I}$ is homogeneous of degree $k$ . The graded K-vector space $(\pi)$ has
a basis { $p_{l}|$ $I$ is a section of $\pi$ }.

For the Orlik-Solomon algebra we keep the notation in [5]: For a k-tuple
$I=$ $(H_{1}, \ldots , H_{k})(k\geq 0)$ of atoms, the notation $a_{I}\in OS(L)$ stands for the
class of the exterior product $e_{H_{1}}\wedge\ldots\wedge e_{H_{k}}$ . Recall that each element of the
Orlik-Solomon algebra $OS(L)$ can be (not necessarily uniquely) expressed as
a linear combination of { $a_{I}|$ $I$ is a tuple of atoms}.

Definition 2.7 Define
$\kappa$ : $(\pi)arrow OS(L)$

as the homogeneous K-linear map of degree zero satisfying

$\kappa(p_{I})=a_{I}$

for each section $I$ of $\tau$ .
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The main theorem is:

Theorem 2.8 The map $\kappa$ is an isomorphism (as gmded vector spaces) if
and only if the $pa$rtition $\pi$ is nice.

We will prove this theorem in the next section.

Corollary 2.9 If there exists a nice partition $\pi=$ $(\pi_{1}, \ldots , \pi_{s})$ , we have $s.=r$
and

$\chi(L;t)=\sum_{\lambda\in L}\mu(\hat{0}, X)t^{\tau-r(X)}=\prod_{i=1}^{f}(t-|\pi_{i}|)$.

Corollary 2.10 If $\pi$ is a nice partition, then the multiset $\{|\pi_{1}|, \ldots , |\pi_{s}|\}$

depends only upon $L$ .

Corollary 2.11 If $\pi$ is a nice partition, then

$r(X)=|t^{\backslash }i|\pi;\cap A_{X}\neq\emptyset\}|$

for all $X\in L$ .

Corollary 2.12 Let $A$ be an arrangement of hyperplanes in a vector space.
Let $L$ be the intersection lattice of A. Suppose that there exists a partition
$\pi=$ $(\pi_{1}, \ldots , \tau_{t_{S}})$ of $A$ such that

1) codim $(H_{1}\cap\cdots\cap H_{s})=s$ whenever $H;\in\pi;(i=1, \ldots,s)j$ and
2) For every $X\in L$ , there exists a block $\pi_{i\chi}$ of $\pi$ such that the set

$\{H\in\pi;_{X}|X\subseteq H\}$ is a singleton.
Then $s=r(L)$ and

$\chi(L;t)=\prod_{i=1}^{s}(t-|\pi;|)$ .

These corollaries, except 2.11 which will be proved in the next section,
are immediate consequences from the main theorem.

科
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3 Proof of Main Theorem
We keep the notation in the previous section. First we will review three
results concerning the Orlik-Solomon algebra. Denote the homogeneous part
$oi$ degree $d$ of the graded algebra $OS(L)$ by $OS_{k}(L)$ :

$OS(L)= \bigoplus_{k=0}^{r}OS_{k}(L)$ .

For a tuple $I=$ $(H_{1}, \ldots , H_{k})oi$ atoms, let

$I=H_{1}\vee\cdots\vee H_{k}\in L$ .

For each $X\in L$ , define a vector subspace $OS_{X}(L)$ of $OS(L)$ which is gener-
ated by $\{a_{I}|I=X\}$ . Agree that $OS_{0}(L)=OS_{\hat{0}}(L)=K$ .

Lemma 3.1 $([4 2.11J)$ For each $k\geq 0\backslash ,$ we have

$OS_{k}(L)= \tau(\lambda’)=k\bigoplus_{\lambda\in L}OS_{\lambda’}(L)$

.

Lemma 3.2 $([3_{J}1.7J)$ For $X,$ $Y\in L$ with $Y\leq X$ , there exists a natural
$isomo\varphi hism$

$OS_{1’}(L_{X})arrow^{\sim}OS_{1’}(L)$ .

Define a boundary map

$\partial:OS_{k}(L)arrow OS_{k-1}(L)(k=1, \ldots, r)$

to be the K-linear map satisfying

$\partial(a_{I})=\sum_{j=1}^{k}(-1)^{j-1}a_{I_{f}}$ .

for any k-tuple $I=$ $(H_{1}, \ldots , H_{k})oi$ atoms. Here

$I_{j}=(H_{1}, \ldots, H_{j-1}, H_{j+1}, \ldots, H_{k})$

for $1\leq j\leq k$ .
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Lemma 3.3 $([4, 2.18J)$ The complex $(OS_{*}(L)_{-}, \partial)$ is acyclic.

Next let $\pi=(\pi_{1}, \ldots, \pi_{*})$ be a partition $oi$ the set $A=A(L)$ . We study
the graded vector space $(\pi)$ . Denote the homogeneous part of degree $k$ of
$(\pi)$ by $(\pi)_{k}$ :

$( \pi)=\bigoplus_{k=0}^{\delta}(\pi)_{k}$ .

For each $X\in L$ , define a vector subspace $(\pi)_{X}$ of $(\pi)$ which has a basis
{ $p_{I}|$ $I$ is a section with $I=X$ }. Agree that $(\pi)_{0}=(\pi)_{\dot{0}}=K$ .

Lemma 3.4 Suppose that $\pi$ is an independent partition. For each $k\geq 0$ ,
we have

$( \pi)_{k}=r(X)=k\bigoplus_{X\in L}(\pi)_{X}$

.

Proof. By definition, the right handside is actually a direct sum. Note
that $(\pi)_{k}$ has a basis

{ $p_{I}|$ $I$ is a k-section of $\pi$ }.

Put $X=I$. Then $p_{I}\in(\pi)_{X}$ . We have $r(X)=k$ because $\pi$ is independent.
$r$

Lemma 3.5 For $X,$ $Y\in L$ with $Y\leq X$ , there exists a natural isomorphism

$(\tau_{X})_{Y}arrow^{\sim}(\tau)\}’$ .

Proof. If $I$ is a section $oi\pi$ with $I=Y$, then $I\subseteq A_{Y}\subseteq A_{X}$ . Thus $I$

is also a section of $\pi_{X}$ . This shows:

{I $|$ $I$ is a section of $\pi$ with $I=Y$}
$=$ {I $|$ $I$ is a section of $\gamma_{1}\lambda’$ with $I=Y$ }.

Therefore an isomorphism

$p_{I}\in(\pi_{X})_{Y} p_{I}\in(\pi)_{Y}$

7
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is obtained by inserting $u_{1\otimes}r-r(X)$ times. I

Define a K-linear map

$\partial:(\pi)_{k}arrow(\pi)_{k-1}(k=1, \ldots,s)$

satisfying

$\partial(p_{I})=\sum_{1=1}^{k}(-1)^{j-1}p_{I_{j}}$

for any k-section $I$ of $\pi$ . Then it is easy to check $\partial 0\partial=0$ .

Lemma 3.6 Suppose that a partition $\pi$ of $A$ contains a block which is a
singleton. Then the complex $((\pi)_{r}, \partial)$ is acyclic.

Proof. We can assume that $\pi_{1}$ is a singleton: $\pi_{1}=\{a_{1}\}$ . Suppose that
$x\in(\pi)_{k}$ is a cycle: $\partial x=0$ . Write $x$ as

$x=a_{1}\otimes x_{1}+1\otimes x_{2}$ ,

where $x_{1},$ $x_{2}\in(\pi_{2})\otimes\cdots\otimes(\pi_{s})$ . Then

$0=\partial x=1\otimes x_{1}-a_{1}\otimes(\partial x_{1})+1\otimes(\partial x_{2})=1\otimes(x_{1}+\partial x_{2})-a_{1}\otimes(\partial x_{1})$ .

This imlies
$x_{1}=-\partial x_{2}$ .

Define
$y=a_{1}\otimes x_{2}\in(\pi)_{k+1}$ .

Then
$\partial y=1\otimes x_{2}-a_{1}\otimes(\partial x_{2})=1\otimes x_{2}+a_{1}\otimes x_{1}=x$. $\bullet$

Proof of Main Theorem.
Sufficiency:
Assume that $\pi$ is a nice partition. We will prove by induction on $r(L)=$

$r(i)$ . When $r(L)=0,$ $A=\emptyset$ . Thus $(\pi)=K=OS(L)$ .
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Assume that $r=r(L)>0$ . Note $s\leq r$ because $\pi$ is independent. Con-
sider a diagram

$0$ $arrow$

$\downarrow\kappa_{f}^{f}(\pi)$

$arrow\partial$

$\downarrow^{\pi_{\kappa_{r-1}^{r-1}}}()$

$arrow\partial$ a
$()\downarrow^{\pi_{\kappa_{1}^{1}}}$

$arrow\partial$

$\downarrow\kappa_{0}^{0}(r_{t})$

$arrow$ $0$

$0$ $arrow$ $oS_{r}(L)$
$arrow\partial$

$oS_{r-1}(L)$
$arrow\partial$ $arrow\Theta$

$OS_{1}(L)$
$arrow\partial$

$OS_{0}(L)$ $arrow$ $0$ .

Here all of the vertical maps are induced from $\kappa$ : $(\pi)arrow 0S(L)$ . The top
row is exact because $oi3.6$ . The bottom row is exact because of 3.3. Note
that

$(\pi)_{k}=$ $\oplus(\pi)_{Y}\simeq$ $\oplus(\pi_{Y})_{Y}$

$r(\}’)=k1’\in L$ $r())=k1^{\prime,}\in L$

by 3.4 and 3.5. Also note that

$OS_{k}(L)=$ $\oplus$ $OS_{J’}(L)\simeq$ $\oplus$ $OS_{1’}(L_{1’})$

$\tau(Y)=k1’\in L$ $r(Y)=k1’\in L$

by 3.1 and 3.2. By applying the induction assumption to $L_{1’}$ for $r(Y)<r$ ,
we know that $\kappa$ ; $(i=1, \ldots, r-1)$ are isomorphisms. Therefore $\kappa_{f}$ is also
an isomorphism. Putting these together, we get an isomorphism

$\kappa$ : $(\tau_{t})arrow^{\sim}OS(L)$ .

Necessity:
Suppose $\kappa$ is an isomorphism. First we will show that $\pi$ is independent.

Let $I$ be a section of $\pi$ . Then $p_{I}\neq 0$ . So

$a_{I}=\kappa(p_{I})\neq 0$ .

This shows that $I$ is indepenedent.
Next we will show that $\pi_{X}$ contains a block which is a singleton unless

$X=\hat{0}$ . Since
$( \pi)=\bigoplus_{Y\in L}(\pi)_{Y}$

, $OS(L)= \bigoplus_{Y\in L}OS_{Y}(L)$ ,

$\kappa$ induces isomorphisms
$(\pi))’arrow^{\sim}OS_{Y}(L)$ .

9
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By 3.5 and 3.2, we obtain

$( \pi_{X})=\bigoplus_{Y\in L_{X}}(\pi_{X})_{Y}\simeq$
$\bigoplus_{Y\in_{\lambda},Y\leq^{L}},$

$(\pi)_{Y}\simeq$

$\bigoplus_{1\in_{X},Y’\leq^{L}}OS_{1’}(L)$
$\simeq\bigoplus_{Y\in L\chi}OS_{1’}(L_{X})$

$=$ $OS(L_{X})$ .

Let $X\neq\ovalbox{\tt\small REJECT}$ Then

$0= \sum_{1’\in L}\mu(\hat{0}, Y)=Poin(OS(L_{X});1)=Poin((\pi_{X});1)=\prod_{i}(1-|\pi;\cap A_{X}|)$ .
$1’\leq X$

This implies that $\pi_{X}$ contains a block which is a singleton. $\bullet$

Remark. In [1] A. Bj\"orner and G. Ziegler gave a sufficient condition for
the map $\kappa$ to be an isomorphism. The condition is the existence of a rooting
map $\rho$ for which the root complex $RC(L, \rho)$ factors completely. We do not
know if the existence oianice partition is enough to construct sucha rooting
map.

Proof of Corollary 2.11. As we saw in the proof of Main Theorem, the
isomorphism $\kappa$ induces isomorphisms

$\kappa_{X}$ : $(\pi_{X})arrow^{\sim}OS(L_{X})$

for all $X\in L$ . So $\pi_{X}$ is a nice partition of $A_{X}$ . By 2.9, we have

$r(X)=r(L_{X})=|\pi_{X}|=|\{i|\pi;\cap A_{X}\neq\emptyset\}|$ . 口

Since we have the factorization theorem for free arrangements [8], it is
natural to pose

Problem. If an arrangement admits a nice partition, then is it free?

The converse is not true in general. (For example, the Coxeter arrangemnt
$D_{4}$ has no nice partitions.)

10
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